2 Relación tripartita.pptx.pdf

Post on 15-Jan-2016

13 views 0 download

Transcript of 2 Relación tripartita.pptx.pdf

1.- ESTRUCTURA 2.- PROPIEDADES 3.- PROCESAMIENTO 4.- PERFOMANCE

O USO

Relación entre propiedades, estructura y procesamiento

Estructura de los materiales

Propiedades de los materiales

Procesamiento de los materiales

Estructura de los materiales

Estructura atómica Unión atómica y

Ordenamiento atómico

Estructura de granos Estructura multifásica

Estructura atómica y enlaces interatómicos

Enlaces Primarios Enlaces secundarios

Iónico

Covalente

Puente de hidrógeno

Van der Waals Metálico

© 2

00

3 B

rook

s/Cole P

ub

lishin

g / T

hom

son

Learn

ing™

The metallic bond forms

when atoms give up their

valence electrons, which

then form an electron sea.

The positively charged atom

cores are bonded by mutual

attraction to the negatively

charged electrons

ENLACE METÁLICO

© 2

00

3 B

rook

s/Cole P

ub

lishin

g / T

hom

son

Learn

ing™

When voltage is applied to a metal, the

electrons in the electron sea can easily

move and carry a current ENLACE METÁLICO

© 2

00

3 B

rook

s/Cole P

ub

lishin

g / T

hom

son

Learn

ing™

Covalent bonding requires that electrons be shared

between atoms in such a way that each atom has its outer sp

orbital filled. In silicon, with a valence of four, four

covalent bonds must be formed ENLACE COVALENTE

© 2

00

3 B

rook

s/Cole P

ub

lishin

g / T

hom

son

Learn

ing™

Covalent bonds are directional. In silicon, a

tetrahedral structure is formed, with angles of

109.5° required between each covalent bond ENLACE COVALENTE

© 2003 Brooks/Cole Publishing / Thomson Learning™

An ionic bond is created between two unlike atoms with different

electronegativities. When sodium donates its valence electron to

chlorine, each becomes an ion; attraction occurs, and the ionic bond

is formed

ENLACE IÓNICO

© 2003 Brooks/Cole Publishing / Thomson Learning™

When voltage is applied to an ionic material, entire ions must

move to cause a current to flow. Ion movement is slow and the

electrical conductivity is poor

ENLACE IÓNICO

Enlaces secundarios

(a) Polymer chains have strong covalent ‘backbones’, but bond to each other only with

weak hydrogen bonds unless they become cross-linked. (b) Cross-links bond the

chains tightly together. The strong carbon–carbon bonds are shown as solid red lines.

Schematic diagram of donor and acceptor levels located in the forbidden energy gap

SEMICONDUCTORES

In a typical insulating solid, a full valence band

is separated by a substantial energy gap from

the empty conduction band. Note the break in

the vertical scale

SEMICONDUCTORES

Superconductors have the ability to levitate vehicles with embedded magnets.

This picture shows an experimental zero-friction train in Japan, built to use

helium-coo led metal Superconductors.

Fibras de refuerzo en una matriz polimérica

COMPUESTO

PROPIEDADES DE LOS MATERIALES

Propiedades

Físicas

Propiedades

Mecánicas

Densidad Resistencia a la tensión

Color Resistencia a la compresión

Punto de fusión Resistencia al impacto

Conductividad térmica Resistencia a la fatiga

Conductividad eléctrica Resistencia a altas temperaturas (termofluencia)

Magnetismo Rigidez

Comportamiento óptico Ductilidad

Elasticidad Desgaste (abrasión)

Resistencia a la corrosión

PROPIEDAD

TÉRMICA

PROPIEDAD

ELÉCTRICA

PROPIEDAD

MECÁNICA

PROPIEDADES DE LOS MATERIALES

Propiedades

Físicas (importante por el uso)

Propiedades

Tecnológicas (importante para la

fabricación)

Propiedades

Químicas (importante para el

uso y la fabricación )

Densidad Forjabilidad Resistencia a la corrosión

Punto de fusión Maquinabilidad Aleabilidad

Conductividad térmica Aptitud para soldar

Propiedades venenosas

Conductividad eléctrica

Elasticidad

Dureza

Resistencia mecánica

Resistencia a la tensión

a) Aluminio b) Magnesio

Rigidez

Resistencia a la fatiga

Resistencia a la compresión

Resistencia al impacto

(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

The impact test: (a) The Charpy and Izod tests, and (b) dimensions of

typical specimens

Procesamiento de los materiales

METALES

Colada o vaciado

Introducir material líquido en moldes en el que tiene lugar la solidificación

VACEADO

Vertical continuous casting, used in

producing many steel products. Liquid

metal contained in the tundish partially

solidifies in a mold

Elaboración mecánica En muchos casos son elaborados en caliente (1000°C en el caso de

aceros) o en frío (temperatura ambiente).

Forjado

El material se calienta hasta una temperatura a la cual se le puede deformar fácilmente: mediante un martillo de mano o usando presión.

Anillos / Camisas Forjadas

máx. 70" diam. ext. - 8.2 tons

Anillos Rolados (sin costura)

máx. 160" diam. ext. y 30"

altura de cara - 6.8 tons

FORJADO

Discos Forjados

máx. 70" diam. ext. - 8.2 tons

Flechas Forjadas

máx. 70" diam. ext. -

8.2 tons

EXTRUSION

ROLLING FORGING

DRAWING

TREFILADO

EXTRUSION

Metalurgia de polvos

Doblado Estirado

Perforado y estirado

Aptitud para soldar Maquinado

A schematic diagram of the

fusion zone and solidification

of the weld during fusion

welding: (a) initial prepared

joint, (b) weld at the

maximum temperature, with

joint filled with filler metal,

and (c) weld after

solidification.

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

Techniques for manufacturing sheet and plate glass:

(a) rolling and (b) floating the lass on molten tin.

Laminado

Flotado

Procesamiento de los materiales

CERÁMICOS

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

Techniques for forming lass products: (a) pressing, (b) press

and blow process, and (c) drawing of fibers.

Compresión

Presionado y soplado

Trefilado

Procesamiento de los materiales

CERÁMICOS

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

Processes for shaping crystalline ceramics: (a) pressing, (b) isostatic

pressing, (c) extrusion, (d) jiggering, and (e) slip casting.

Moldeo por

escurrimiento

Extrusión

Compresión

Procesamiento de los materiales

CERÁMICOS

Steps in slip casting of

ceramics. (Source:

From Modern Ceramic

Engineering, by D.W.

Richerson, Copyright

© 1992 Marcel Dekker.

Reprinted by

permission.)

Procesamiento de los materiales

POLIMEROS

Según el polímero:

TERMOPLASTICOS y TERMORIGIDOS (termoestables)

TERMOPLASTICOS (Acrìlicos, ABS, Nylon, polietileno, PVC)

Inyección

Schematic diagram of an injection molding apparatus. (Adapted from F.W. Billmeyer,

Jr., Textbook of Polymer Science, 2nd edition. Copyright 1971 by John Wiley & Sons,

New York. Reprinted by permission of John Wiley & Sons, Inc.)

Schematic diagram of an extruder. (Reprinted with permission from

Encyclopædia Britannica, © 1997 by Encyclopædia Britannica, Inc.)

Extrusión

Soplado

(c) 2003 Brooks/Cole Publishing / Thomson Learning™

This figure shows a schematic of the blow-stretch process used for fabrication of a

standard two-liter PET (polyethylene terephthalate) bottle from a preform. The stress

induced crystallization leads to formation of small crystals that help reinforce the

remaining amorphous matrix.

Schematic diagram of an apparatus that is used to form thin polymer

films. (Reprinted with permission from Encyclopædia Britannica,

1997 by Encyclopædia Britannica, Inc.)

Moldeo por transferencia

TERMORIGIDOS : (epóxicos, fenólicos, poliamidas, etc)

Moldeo por compresión

Typical forming processes for thermosetting polymers: (a) compression molding and (b) transfer molding.

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

Figure 15.29 Typical forming processes for thermoplastic: (a) extrusion, (b) blow

molding, (c) injection molding, (d) thermoforming, (e) calendaring, and (f) spinning.

RESISTENCIA

QUÍMICA

Resistencia a la corrosión

Electrolito

Ánodo

Flujo de

electrones

Cátodo

O2 + 2H2O+4e- 4OH- e

e Fe Fe++ + 2e-

Metal

Resistencia a la corrosión

Electrolito

Ánodo

Flujo de

electrones

Cátodo

2H+ + 2e H2 e

e Fe Fe++ + 2e

Metal

Microstructural features

in metals, showing their

length scale and the

properties which they

determine. Each interval

on the length scale is a

factor of 1000.

Microstructural features in

ceramics and glasses, showing

their length scale and the

properties which they determine.

Each interval on the length scale is

a factor of 1000.

Microstructural features

in polymers and

elastomers, showing

their length scale and the

properties which they

determine. Each interval

on the length scale is a

factor of 1000.

Evolution of molecular architecture in polymer molding.

(a) Alignment of molecules during viscous flow in

shaping. (b) Partial crystallization during cooling.

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under

license.

During hot working, the elongated anisotropic grains immediately recrystallize. If the hot-working temperature is properly

controlled, the final hot-worked grain size can be very fine

Schematic trends in structure and strength, hardness, and ductility properties of cold worked metals that are annealed at different temperatures for a fixed time.