LOSAS ALVEOLARES COMPRIMIDA - Sociedad Mexicana de ... · PDF fileSELECCIÓN DEL TIPO DE...

Post on 05-Feb-2018

223 views 0 download

Transcript of LOSAS ALVEOLARES COMPRIMIDA - Sociedad Mexicana de ... · PDF fileSELECCIÓN DEL TIPO DE...

NOVEDADES EN EL USO DE ELEMENTOS

ALVEOLARES EN LOSAS Y MUROS.

Dr. Ing. Manuel Suárez González.

Promueve la introducción de los métodos usados en la producción en serie.

Mayor mecanización. Mayor productividad. Menor costo.

Mayor organización del trabajo. Mayor calidad

CONCEPTO DE PREFABRICACIÓN.•Las Estructuras están conformadas por piezas o elementos.

•Los elementos son elaborados en fábricas o plantasindustrializadas.

•Los Prefabricados son transportados y montados en obra.

Facilita las Soluciones Técnicas de los Proyectos.

DEFINICIÓN DE LAS LOSAS PREFABRICADAS ALVEOLARES. SECCIÓN EQUIVALENTE.

•LOSA ALVEOLAR ES UN ELEMENTO DE HORMIGÓN PREFABICADO PRETENSADO, PROVISTO DE HUECOS CONTINUOS PARA REDUCIR SU PESO Y EN CONSECUENCIA SU COSTO.

PRINCIPIOS DEL PRETENSADO

Fibra neutra

Compresión

Tracción

-100sobrecargas Descarga Total+100

pretensado

=

b +100

c100

a 0

Esquema Tensional de una sección a flexión.

Estados Tensiónales de una sección pretensada a flexión.

Algunas Recomendaciones para el diseño de losas alveolares:

• Pretensar equivale a comprimir el hormigón, esto es posible solo si es posible el acortamiento del elemento.

• No intentemos agotar la capacidad a compresión del hormigón durante la transferencia. Para ello, seleccionemos secciones eficientes de las losas alveolares L=(35-45) H.

•Evitemos tracciones bajo cargas permanentes, desconfié de la capacidad a tracción del hormigón.

•Bajo la acción de todas las cargas no se debe sobrepasar la capacidad a tracción del hormigón.

TIPOS DE MÁQUINAS.

FABRICANTE TIPO DE MÁQUINA TIPO DE REVENIMIENTO

FORMA DEL HUECO

Dy-Core Extrusora Seco / cero Tubular

Dynaspann Colocadora Húmedo / normal Tubular

Elematic Extrusora Seco / cero Tubular

Weiler Extrusora Seco/cero Tubular

Spancrete Colocadora Seco / cero Abovedado

SpanDeck Diferentes secciones

Húmedo / normal Rectangular

Ultra-Span Extrusora Seco / cero Tubular

ALGUNAS DE LAS SECCIONES COMUNES.

Primera tolva

Segunda tolvaTercera Tolva

Esquema de extrusión Máquina Weiler

Tolva de hormigón

Vibradores

Usillos conformadores

Tubos conformadores

Sentido de Colado

Sentido de colado

Vibrador

Tubos conformadores

Usillos conformadores

SERIE ESPESOR m LUCES m CARGAS DE USO Kg/m24000 0.10 3.50-6.50 750-1506000 0.15 4.00-8.50 1300-1608000 0.20 6.00-10.50 1000-200

10000 0.25 8.00-12.50 950-20012000 0.30 10.00-14.00 1050-230

RANGOS DE USO PARA LOSAS ALVEOLARES

CODIFICACION DE LOSAS Y MUROS SPANCRETELS 8606

Losa Spancrete.

Peralte en pulgadas.

Diámetro de torones inferiores en n/16 de pulgada.

Cantidad de torones inferiores de presfuerzo.

MS 8606/606

Muro Spancrete.Peralte en pulgadas.Diámetro de torones inferiores en n/16 de pulgada.

Cantidad de torones inferiores de presfuerzo.

Diámetro de torones superiores en n/16 de pulgada.Cantidad de torones superiores de presfuerzo.

SECCIONES SPANCRETE.

SECCIONES SPANCRETE.

SECCIONES SPANCRETE.

SECCIONES SPANCRETE.

SECCIONES SPANCRETE.

TABLA DE CARGAS SUPERPUESTAS PARA LOSAS SPANCRETE.

TABLA DE CARGAS SUPERPUESTAS PARA LOSAS SPANCRETE.

TABLA DE CARGAS SUPERPUESTAS PARA LOSAS SPANCRETE.

TABLA DE CARGAS SUPERPUESTAS PARA LOSAS SPANCRETE.

TABLA DE CARGAS SUPERPUESTAS PARA LOSAS SPANCRETE.

PROCEDIMIENTO PARA EL CÁLCULO DE LOSAS ALVEOLARES

1. DETERMINACIÓN DE LA CARACTERISTICAS DE LOS MATERIARLES (HORMIGÓN, PRESFUERZO), LUZ DE CÁLCULO Y LAS CARGAS.2. SELECCIÓN DEL TIPO DE LOSA A EMPLEAR. DETERMINACION DE LAS CARACTERISTICAS GEOMETRICAS DE LAS SECCION SIMPLE Y COMPUESTA.3. PROPUESTA DE FUERZA DE PRETENSADO Y DETERMINACIÓN DE LAS PERDIDAS DE PRESFUERZO INSTANTANEAS Y DIFERIDAS.4. REVISIÓN DEL ESTADO LIMITE DE SERVICIO: ESFUERZOS EN LAS FIBRAS SUPERIORES E INFERIORES, DEFORMACIONES, ESFUERZOS EN EL FIRME.

5. REVISIÓN DEL ESTADO LIMITE DE RESISTENCIA: MOMENTO ÚLTIMO, CORTANTE.

MODELO DE CÁLCULO DE UNA LOSA ALVEOLAR

CARACTERISTICAS DE LOS MATERIALES.

CARACTERISTCAS GEOMETRICAS DE LA SECCIÓN SIMPLE Y COMPUESTA

FUERZA DE PRETENSADO Y DETERMINACION DE PERDIDAS DE PRESFUERZO

DETALLES DE EMPLEO DE LOSAS

ALVEOLARES EN ESTRUCTURAS DE

MAMPOSTERIA.

EDIFICIO DE OFICINAS TORRE JVIII. ESTADO DE PUEBLA, MEXICO

DATOS GENERALES:

• ALTURA 128 m, 28 NIVELES.

•AREA DE CONTRUCCION 16 500 m2.

Sección canal para conexiónmediante colado en sitio.

Sección cajón pretensada

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Viga prefabricada pretensada

Ductos para instalaciones

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Accesorio para apoyo en columnas

TPU - TRU

Zona de colado en sitio.

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Continuidad inferior.

Vigas prefabricadas

Columnas coladas en sitio

Continuidad superior

Vigas pretensadas de sección variable y losas

alveolares para edificios altos.

Vigas pretensadas sobre columnas coladas en sitio

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Vigas listas para recibir las losas prefabricadas alveolares

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Conexión superior viga / columna

Acero de refuerzo de continuidad superior

Estribos de viga prefabricada

Grapas de cierre de estribo

Losas prefabricadas alveolares sobre vigas pretensadas

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Vista general 2do tablero.

Proceso de junteo entre losas prefabricadas alveolares

Losa alveolar lista para recibir firme

Columna colada en sitio

Losa prefabricada spancrete

Vigas pretensadas

Nudo colado en sitio

Viga pretensadas de sección variable y losas alveolares para edificios altos.

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Velocidad de construcción: 3 pisos/mes

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

Vigas pretensadas de sección variable y losas alveolares para edificios altos.

CENTRO COMERCIAL HVN. ESTADO DE

MEXICO

DATOS GENERALES:

• PLAZO DE CONTRUCCION: 4 MESES.

•AREA DE CONTRUCCION 60 000 m2 APROX.

TABLEROS DE LOSAS ALVEOLARES SIN FIRME Y CON ACABADO INTEGRAL.CARACTERÍSTICAS Y VIRTUDES MÁS RELEVANTES:

Eliminación del firme y por ende de las fisuras en este.

Integración del acabado de piso al trabajo estructural del tablero.

Reducción de trabajos en obra, al eliminarse dos etapas en el ciclo de construcción, colado de firmes y colocación de piso.

Disminución de costos al industrializarse diferentes actividades.

Empleo de métodos industriales de fabricación y control del acabado de piso.

Acortamiento de los plazos de ejecución de las obras

Disminución de las sobrecargas muertas en el tablero

Losas Spancrete con Acabado Integral.

Sistema de Losas Alveolares con Acabado Integral. Maquina Spancrete.

Máquina para el desbaste de losas alveolarescon acabado integral.

Sección Transversal de las Losas Prefabricadas con Piso Integral ya pulidas.

ALGUNOS TIPOS DE ACABADOS.

Diseñando adecuadamente las mezclas, se pueden variar los colores, tamaños y tipos de los agregados, ofreciendo muchas opciones para todo tipo de aplicaciones.

Control de flechas y contraflechas. Prueba de Carga.

El peralte de la Losa Spancrete ha sido determinado para evitar flechas y/o contraflechas

3 ú b j

Losas Spancrete apoyadas sobre las Losas con Acabado, simulando los “racks” de la tienda. Equivalen a 1,300 kg/m2.

30 cm en 9 m de luz

Ejemplo de aplicación.

Nivel de Estacionamiento con Losa Spancrete sin Firme y semi-pulida en GRIS

Nivel de Hipermercado con Losa Spancrete sin Firme y pulida en BLANCO

Nivel de Cubierta con Dalla

AUCHAN HIPER-ARBOLEDASFoto en Marzo de 2002

Marzo 2002

Abril 2002

Mayo 2002

Mayo 2002

Mayo 2002

Junio 2002

Aditamentos para el montaje de las Losas Prefabricadas con Piso Integral.

Para el Montaje de las LOSAS y a efectos de evitar el maltrato de las mismas con los estrobos, se pueden emplear “GANCHOS C” que permiten manipular los elementos con mayor facilidad, limpieza y rapidez

Acabado gris normal (sin pulir).Nivel estacionamiento.

Dada la alta resistencia del hormigón > 350 Kg/cm2 no se requiere de endurecedor superficial

Acabado gris normal (sin pulir). Nivel estacionamiento.

Acabado blanco pulido. Nivel tablero en Centro Comercial.

Acabado blanco pulido. Nivel tablero en Centro Comercial.

Acabado blanco pulido. Nivel tablero en Centro Comercial.

Acabado blanco pulido. Nivel tablero en Centro Comercial.

Acabado blanco pulido. Nivel tablero en Centro Comercial.

Acabado blanco pulido. Nivel tablero en Centro Comercial.

Y TAMBIÉN SE PUEDE USAR COMO MURO.

Muro Alveolar

Aislante Térmico.

Acabado de hormigón

Acabado de hormigón

Aislante Térmico.

Muro Alveolar

Se muestra una sección transversal de dos losas prefabricadas pretensadas extruidas con el acabado de piso integral incluido, así como el detalle de llave de cortante y el armado de la misma.

DETALLES CONSTRUCTIVOS.

Se presentan los detalles de armado del complemento de las vigas portantes donde apoyan las losas prefabricadas con piso integral, así como las losetas de piso para el complemento de las mismas para los casos de vigas centrales, de borde y con volados.

DETALLES CONSTRUCTIVOS.

Se exponen los detalles de armado del complemento de las vigas de rigidez, así como las losetas de piso para el complemento de las vigas para los casos de vigas centrales, de borde y con volados cuando se emplean losas prefabricadas extruidas con acabado de piso integral.

DETALLES CONSTRUCTIVOS.

VAR. #3 L=130cm TIPO 2EN TRABES DE BORDEEN TRABES INTERMEDIAS

VAR. #3 L=130cm TIPO 1

Se muestran los detalles de armado de las losas prefabricadas con acabado de piso integral para su conexión al diafragma del tablero.

DETALLES CONSTRUCTIVOS.

Se muestra un tablero tipo con el despiece de las losas prefabricadas pretensadas con acabado de piso integral, así como el refuerzo requerido alrededor de las columnas.

DETALLES CONSTRUCTIVOS.

1. Los huecos circulares para el paso de ductos de hasta 10” (254 mm), se realizarán con una máquina extractora de corazones.

DETALLES CONSTRUCTIVOS.

2. Los huecos mayores a 10” (254 mm) podrán ser ejecutados en las losas, previa consulta técnica con el proveedor de las losas o el proyectista.

DETALLES CONSTRUCTIVOS.

3. Los huecos circulares pequeños de hasta 1” de diámetro (25.4 mm), se pueden realizar con un roto martillo, los huecos se realizarán en la zona de los alvéolos.

DETALLES CONSTRUCTIVOS.

INSERTO DE PLACA (NO INCLUIDO)

TORNILLO “T” INSERTO “T”ANCLAJE DE EXPANSIÓN

TORNILLO PASADO

4. Los anclajes y fijaciones en las losas spancrete son fáciles de realizar y como en cualquier otro sistema estará en función de las cargas a soportar.

DETALLES CONSTRUCTIVOS.

DETERMINACIÓN DE SOLICITACIONES EN LOS TABLEROSDEFINICIÓN DE TABLERO:

ELEMENTO ESTRUCTURAL QUE POSIBILITA LA TRASMISIÓN DE LAS CARGAS HORIZONTALES A LOS ELEMENTOS PORTANTES DE LA ESTRUCTURA.

LOS METODOS DE ANALISIS SON:

MÉTODO DE LA VIGA HORIZONTAL

MÉTODO DEL PUNTAL

DETERMINACIÓN DE SOLICITACIONES EN LOS TABLEROS

Las losas se apoyan sobre vigas portantes y están confinadas lateralmente por vigas de rigidez.

DETERMINACIÓN DE SOLICITACIONES EN LOS TABLEROS (secuencia de cálculo)

1. Determinar las fuerzas sísmicas del tablero, de acuerdo con lo recomendado en el “Manual de Diseño Sísmico de Edificios” del ingeniero Roberto Meli.

Pi = (Wi * hi) * C * S Wi

S(Wi * hi) Q

Pi = Fuerza sísmica del tablero

Wi = Masa del tablero

hi = Altura del tablero

C = Coeficiente sísmico

Q = Factor de comportamiento sísmico

ANÁLISIS DE LOS DIAFRAGMAS

DETERMINACIÓN DE SOLICITACIONES EN LOS TABLEROS (secuencia de cálculo)

2. Trasladar de manera amplificada las fuerzas sísmicas del tablero, a fuerzas sísmicas en el tablero.

De acuerdo a las normas técnicas complementarias para diseño por sismo, para evaluar la fuerza sísmica que actúa sobre losas de tablero, se supondrá que sobre ellas actúan las aceleraciones que le correspondería si se apoyara directamente sobre el terreno, multiplicada por 1 + c’ / a0

c’ = Factor por el que se multiplican los pesos de los apéndices a la altura de desplante

a0 = Valor de la ordenada de los espectros de diseño que corresponden a T = 0

ANÁLISIS DE LOS DIAFRAGMAS

DETERMINACIÓN DE SOLICITACIONES EN LOS TABLEROS (secuencia de cálculo)

3. Determinar fuerzas cortantes en juntas entre losas y tensiones y compresiones en vigas portantes y de rigidez.

(Método de la viga horizontal, método del puntal y la biela, apoyos elásticos, etc.)

ANÁLISIS DE LOS DIAFRAGMAS

MÉTODO DE LA VIGA HORIZONTAL

Este método considera al tablero como una como una viga horizontal peraltada. Las vigas laterales ó cualquier otro sistema de resistente de cargas constituyen los apoyos de esta viga (tablero).

Como en cualquier otra viga que soporta cargas, esfuerzos de tensión y compresión son inducidos a las fibras inferior y superior respectivamente, variando estos linealmente de forma análoga a las vigas.

Una variante en este modelo es que se pueden simular varios apoyos elásticos que simulen la contribución real de las rigideces de las columnas.

ANALISIS DE LOS DIAFRAGMAS

MÉTODO DE LA viga HORIZONTALANALISIS DE LOS DIAFRAGMAS

MÉTODO DEL PUNTAL Y LA BIELA

Este método involucra el imaginar que una armadura interna, consistente de puntales de concreto y tensores de acero, conduce las cargas desde una región determinada hasta los apoyos.

Este sistema es la generalización de la analogía de la armadura, que permite tener en cuenta de manera directa y simultanea, la interacción del cortante y la flexión .

ANALISIS DE LOS DIAFRAGMAS

11.4

7.2

TRAB

E D

E RI

GID

EZ

TRABE PORTANTE

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

TRABE PORTANTE

COLUMNAS

TRAB

E D

E RI

GID

EZACCIÓN

MÉTODO DEL PUNTAL Y LA BIELAANALISIS DE LOS DIAFRAGMAS

DETERMINACIÓN DE LAS FUERZAS SÍSMICAS DE tablero

La estructura es prefabricada, a excepción de la cimentación, de ocho niveles.

Las columnas son de sección 60cm x 60cm.

Las vigas portantes son tipo cajón aligerado de 56cm de ancho x 65cm de alto.

Las vigas de rigidez de la misma sección que las vigas portantes.

El sistema de piso esta formado por losas extruidas tipo spancrete serie 10,000 (25cm de espesor) con acabado integral blanco pulido, sin firme.

EJEMPLO DE CÁLCULO

EJE EJEEJEEJEEJE

EJE

EJE

EJE

EJE

DETERMINACIÓN DE LAS FUERZAS SÍSMICAS DE tablero

EJEMPLO DE CÁLCULO

N.P.T.+0.75

N.P.T.+0.90

EJE EJEEJEEJEEJE

DETERMINACIÓN DE LAS FUERZAS SÍSMICAS EN LOS TABLEROS.

EJEMPLO DE CÁLCULO

EJEEJEEJEEJE

N.P.T.+0.75

N.P.T.+0.90

N.P.T.+0.90

N.P.T.+0.75

N.P.T.+0.75

+0.55

DETERMINACIÓN DE LAS FUERZAS SÍSMICAS EN LOS TABLEROS

EJEMPLO DE CÁLCULO

DETERMINACIÓN DE LAS FUERZAS SÍSMICAS EN LOS TABLEROS.

La estructura esta localizada en una ciudad, que de acuerdo a lazonificación sísmica de la misma, se encuentra en la zona I. Los parámetros para diseño sísmico son los siguientes:

c=0.18a0=0.05Ta=0.15Tb=0.60r=0.50

Q=2Estructura tipo B, irregularEl edificio esta destinado a utilizarse como departamentos.Las cargas consideradas en el análisis, además del peso propio de la estructura, son:• Fachada 250 kg/m2

• Muros divisorios y sobrecarga muerta 200 kg/m2

• Carga viva 170 kg/m2

EJEMPLO DE CÁLCULO

418.515-59.471-37.300-69.9660.000-125.939-153.7901406.140-59.471-37.300-69.9660.000-125.939-141.4152405.933-59.471-37.300-69.966-19.368-125.939-121.8403413.214-59.471-37.300-69.966-19.368-125.939-129.1214413.214-59.471-37.300-69.966-19.368-125.939-129.1215

413.214-59.471-37.300-69.966-19.368-125.939-129.1216413.214-59.471-37.300-69.966-19.368-125.939-129.1217430.796-59.471-37.300-69.9660.000-125.939-166.0718

CV1SM3SM2SM1CM2CM1PESO TOTAL (TON)

PESOS POR NIVEL (ton)NIVELES

PESO DE LOS NIVELES

EJEMPLO DE CÁLCULO

298.2843,458.4023.203,314.24TOTAL8.3301,213.6922.902.9418.515116.1682,355.6105.802.9406.140224.2403,531.6148.702.9405.933332.8994,793.27811.602.9413.214441.1245,991.59814.502.9413.214549.3497,189.91717.402.9413.214657.5748,388.23720.302.9413.214768.5989,994.45923.202.9430.7968

PixWi * hihi(m)

ALTURAS

(m)

Wi(ton)

NIVELESFUERZAS LATERALES EN tablero

EJEMPLO DE CALCULO

105.31.400.02418.5158.3301131.31.800.04406.14016.1682160.32.190.06405.93324.2403192.82.590.08413.21432.8994222.42.990.10413.21441.1245252.03.390.12413.21449.3496281.63.790.14413.21457.5747324.54.180.16430.79668.5988

CM1 +CM2+SM1+SM2+SM3+.53*CV1

F’=mi * Si * fi

fi=(1+c’/ao)

c’=(mi * Si) / (Mi * g)

MASA tablero (Mi)mi * SiNIVELES

DETERMINACIÓN DE FUERZAS SISMICAS EN TABLERO

EJEMPLO DE CÁLCULO

MÉTODO DE LA viga HORIZONTAL

Analizaremos ahora un tablero del nivel 8. Considerando que hay cuatro tableros por nivel, a cada tablero del nivel 8 le corresponden :

324.5 ton / 4 tableros = 81.125 ton/TABLERO

Considerando esta carga uniformemente distribuida tenemos :

W = 81.125 ton / 11.4 m =7.12 t/m

EJEMPLO DE CÁLCULO

11.4

7.2

TRAB

E D

E RI

GID

EZ

TRABE PORTANTE

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

TRABE PORTANTE

TRAB

E D

E RI

GID

EZ

apoyo apoyo

R1 R2

w = 7.12 t/mCOLUMNAS

EJEMPLO DE CÁLCULO

MÉTODO DE LA VIGA HORIZONTAL

La reacción sobre las vigas de rigidez, que al mismo tiempo es el cortante en la junta entre la viga de rigidez y la primera losa es:

R1 = R2 = (w*l)/2 = (7.12*11.4)/2 = 40.584 ton

En momento al centro de la viga es:

M = (w*l^2)/8 = (7.12 * 11.4^2) / 8 = 115.66 T-m

La fuerza de tensión y compresión en las vigas portantes es:

F = M / d = 115.66 / 7.2 = 16.06 ton

EJEMPLO DE CÁLCULO

11.4

7.2

TRAB

E D

E RI

GID

EZ

TRABE PORTANTE

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

LOSA

S

TRABE PORTANTE

COLUMNAS

TRAB

E D

E RI

GID

EZ 74°29'53"

52°45'3" 52°45'3"

MÉTODO DEL PUNTAL Y LA BIELA

EJEMPLO DE CÁLCULO

La fuerza de compresión diagonal está dada por:

Sen (52°45’03”) = (81.168 /2) / FdFd = (81.168 /2) / Sen (52°45’03”) = 50.98 ton

La componente vertical de esta fuerza, que al mismo tiempo es el cortante en la junta entre la viga de rigidez y la primera losa es:Cos (37°14’57”) = Fv / 50.98 ton.Fv = Cos (37°14’57”) * 50.98 ton.

Fv = 40.58 tonLa fuerza de tensión en la portante inferior es:

Cos (52°45’03”) = Fh / 50.98 ton.

Fh = Cos (52°45’03”) * 50.98 ton.

Fh = 30.86 ton

EJEMPLO DE CÁLCULO. MÉTODO DEL PUNTAL Y LA BIELA

CAPACIDAD DE LA JUNTA.ENSAYO DE UN TABLEROCON LOSAS ALVEOLARES

ENSAYO DE LA JUNTA ENTRE DOS LOSAS

DETERMINACIÓN DE LA CAPACIDAD DE LA JUNTA ENTRE LOSAS

De acuerdo con las recomendaciones de Spancrete, la capacidad de la junta se puede valuar mediante la expresión:

Vn = 0.04 * f’cg * h * t < 120 * h * tEn la cual:• f’cg = esfuerzo especificado a la compresión del grout• h = longitud de la losa (llave)• t = espesor de la junta (llave)Sustituyendo valores:

Vn = 0.04 * 180 kg/cm2 * 720 cm* 16.1 cm < 120 * 720 cm * 16.1 cm

Vn = 83,462 kg < 1’391,040 kg

Vn = 83.462 Ton.

CAPACIDAD DE LA JUNTA.

------30.86 ton.16.06 ton.Tensión en

vigas portantes

Min. 8 tonMax. 20 ton

83.46 ton.40.58 ton.40.58 ton.En junta

entre viga de rigidez y losa

Capacidad en junta entre

TT´s

Capacidad en junta entre

losas

Método del puntal y la

biela

Método de la viga horizontalSolicitacione

s

CAPACIDAD DE LA JUNTA.

ESPECIFICACIONES TÉCNICAS PARA LA CONSTRUCCIÓN DE TABLEROS CON LOSAS ALVEOLARES SIN FIRME

Además de los detalles constructivos expuestos anteriormente, se deberán observar las siguientes recomendaciones

El mortero de la junta será elaborado con cemento y arena en proporción no mayor de 1:3 y deberá garantizarse una resistencia del mortero f’c = 180 Kg/cm2. La consistencia del mortero deberá ser fluida con vistas a rellenar completamente el volumen de la llave de cortante. Para poder alcanzar estas características de fluidez y resistencia es indispensable que la arena empleada esté limpia y tenga las características de granulometría adecuadas para su colocación.

Previo a la colocación del mortero en las juntas entre losas esta deberá estar humedecida hasta la saturación. Esto se hace necesario con vistas a evitar que el concreto de las losas absorba el agua del mortero y evite con ello la correcta adherencia del mortero a las paredes de la losa.

ESPECIFICACIONES TÉCNICAS PARA LA CONSTRUCCIÓN DE TABLEROS CON LOSAS ALVEOLARES SIN FIRME

Durante el junteo se tomarán las muestras necesaria para la verificación de la resistencia del mortero empleado, de las cuales se realizará a un ensayo a rotura a los 28 días.

En el caso del junteo en losas spancrete con acabado integral, además de que se realice con los materiales adecuados, se deberádejar el mortero sobresaliendo 4-6 mm sobre el acabado integral de la losa spancrete, esto con vista a que durante el pulido final el detalle en la junta no presente oquedades, en los casos convenientes se podrán colocar en la junta agregados de mármol (piedritas) con vistas a igualar el acabado de las losas spancrete.

BIBLIOGRAFÍAPCI 1998. Manual for the design of Hollow Core Slabs. Precast and

Prestrssed Concrete Institute. Segunda edición. U.S.A.PCI 1999. Desingn Handbook. Precast and Prestrssed Concrete

Institute. Quinta edición. U.S.A.Menegotto, Marco. Siesmic Diafragm Behavoir of Untopped Core

Floor.Decimo Segundo Congreso del FIP june 1994D.D.F. 2004. Reglamento de construcciones para el Distrito Federal.

Departamento del Distrito Federal. México, D.F.Rodríguez, Mario E. y Blandón, John J.2002. Ensayes ante cargas

laterales cíclicas reversibles de una estructura prefabricada de concreto reforzado de dos niveles y recomendaciones de diseño. Instituto de Ingeniería de la U.N.A.M. México, D.F.

Reinoso Angulo, Eduardo., Rodríguez, Mario E. y Betancourt Ribotta, Rafael. 2000. Manual de diseño de estructuras prefabricadas y presforzadas. Asociación Nacional de Industriales del Preesfuerzo y la Prefabricación A.C. e Instituto de Ingeniería de la U.N.A.M. México, D.F.

Meli Piralla, Roberto., Bazán Zurita, Enrique. 1985. Manual de Diseño Sísmico de Edificios. Limusa, Grupo Noriega Editores. México, D.F.