Tema 18 microorganismos

Post on 09-Jun-2015

624 views 1 download

Transcript of Tema 18 microorganismos

La diversidad de los microorganismos

Tema 18

Microbiología

Ciencia que estudia los microorganismos

Pasteur

Cada proceso de fermentación es realizado por un microorganismo distintos.

Demuestra la falsedad de la teoría de la generación espontánea demostrando que los microbios estaban en el aire.

Schwann indica que las levaduras son responsables de la fermentación alcohólica.

Métodos de estudio de los microorganismos

Microorganismos

Cualquier ambienteMezcla de especies

En la naturaleza

Para estudiarlos

CultivosCondiciones

controladas y óptimas

Individuos genéticamente homogéneos (cultivo puro)

Métodos de aislamientoIdentificación

Asepsia y esterilización

Medios de cultivo en laboratorio

-Son ricos en nutrientes.-Pueden ser líquidos o sólidos (agar-agar).-Pueden contener sustancias específicas para que crezcan ciertos tipos de microorganismos.

Aislamiento por agotamiento de asa en superficie.

Métodos de aislamiento de los microorganismos

Con un asa bacteriológica, se pasa una porción de la muestra a la superficie de un medio de cultivo hecho a base de agar y se siembra en el medio por estrías en cuadrantes.

Métodos de estudio de los microorganismos

Aislamiento por dilución y siembra en profundidad

Métodos de estudio de los microorganismos

Aislamiento directo Para los microorganismos de mayor tamaño (algas, protozoos) que se pueden aislar utilizando pipetas Pasteur y una lupa binocular.

Colonias de bacterias

Serratia marcescensCultivada en Agar MaConkey

Pseudomonas aeruginosaCultivada enAgar Tripticasa-soja

Shigella flexneriCultivada enAgar MacConkey Colonias de Bacillus subtilis que han

crecido en medios con pocos nutrientes

Métodos de esterilización

Comprende todos los procedimientos físicos y químicos, que se emplean para destruir los microorganismos de un medio de cultivo o material de laboratorio.

Es el más utilizado. Se emplea un autoclave (120ºC- 20’)

Se usan membranas filtrantes con poros de un tamaño determinado. Se usan si el calor afecta al medio de cultivo.

Tienen gran penetrabilidad y se las utiliza para esterilizar materiales termolábiles. Muy usadas a escala industrial. Afectan a los ácidos nucleicos

Utilización de un asa de cultivo como método de transferencia aséptica

• No es un proceso de esterilización• Es un proceso que reduce la población microbiana de un líquido.• La leche, nata y ciertas bebidas alcohólicas (cerveza y vino), los zumos, se

someten a tratamientos de calor controlado que sólo matan a ciertos tipos de microorganismos pero no a todos.

• La temperatura seleccionada para la pasteurización se basa en el tiempo térmico mortal de microorganismos patógenos. Es el tiempo más corto necesario para matar una suspensión de bacterias a una temperatura determinada.

Pasteurización

Métodos de identificación

Clasificación de los microorganismos

Bacterias

Algas

Hongos (levaduras)

Protozoos

Clasificación de los microorganismos

Bacterias

Características:

•Organismos procariotas•Tamaño entre 0.1 y 50 µm•Autótrofas o heterótrofas. Anaerobias, aerobias o anaerobias facultativas.•Se encuentran en cualquier tipo de ambiente sobre la tierra.•Pueden estar solas o formar colonias.•La forma es un criterio de clasificación (cocos, bacilos, vibrios y espirilos)•Hoy en día se clasifican por comparación de secuencias de ARN ribosómico.•Se distinguen dos grandes grupos: Eubacterias y arqueobacterias

(Antepasado universal)

PROGENOTE

DominioBacteria

DominioEukarya

DominioArchea

procariotas

eucariotas

• Grupo amplio, con varias ramas evolutivas.

• Gran capacidad adaptativa.• Son la mayor parte de las bacterias

conocidas

• Mayoría de anaerobias• Membranas sin ac. grasos• Pared sin peptidoglucanos

Morfología bacteriana

• Organización procariota• Unicelulares• Ausencia de membrana nuclear• Ausencia de orgánulos membranosos• ADN circular y no unido a histonas• Ribosomas 70 S

CARACTERÍSTICAS GENERALES

ESTRUCTURAS PRESENTES EN LAS BACTERIAS

• Cápsula bacteriana• Pared bacteriana• Membrana plasmática• Citoplasma

o Ribosomaso Inclusioneso Vesículas

• Material genético• Pili y fimbrias• Flagelos

Cápsula bacteriana• Este componente no aparece en todas las bacterias (en las patógenas si

suele estar presente). • Mide entre 100 y 400 Å de grosor• Está formada por polímeros glucídicos que no llegan a formar una

estructura definida.

Propiedades de la Cápsula

o Mejora en las propiedades de difusión de nutrientes hacia la célula.o Protección contra la desecación.o Protección contra la predación por parte de protozoos.o Protección contra agentes antibacterianos y bacteriófagos.o Adhesión a sustratos.

Pared celular

• Cubierta rígida que rodea la membrana.• Poseen todas las bacterias excepto los

micoplasmas.• Espesor entre 50 a 100 Å• Sirve como criterio de clasificación según su

respuesta a la tinción de Gram (Gram + /Gram -)

• Funciones:• Protección ante cambios de presión

osmótica• Regulación del paso de iones• Mantenimiento de la forma celular• Resistencia a antibióticos 4-membrana citoplasmática,

5-pared celular,6-membrana externa, 7-espacio periplásmico.

1-membrana citoplasmática, 2-pared celular, 3-espacio periplásmico.

Bacteria Gram positiva.

Bacteria Gram negativa

Bacterias Gram positivas

Gram +

Gram -

Bacterias Gram positivas

Pare

d ce

lula

r

Peptidoglucano

Membrana plasmática

Ácido teicoicoÁcido lipoteicoico

Pared formada por una capa gruesa de mureína (peptidoglucano) formado por NAG y NAM enlazados por enlaces O-glucosídicos. Las moléculas de NAM se enlazan con proteínas, polisacáridos y ácidos teicoicos

Bacterias gram negativas

• Membrana citoplasmática (membrana interna)

• Pared celular delgada de peptidoglucano • Membrana externa

Entre la membrana citoplasmática interna y la membrana externa se localiza el espacio periplásmico, que contiene enzimas importantes para la nutrición en estas bacterias.

Pare

d ce

lula

r

Membrana plasmática

PorinaLPS

Lípido A

Peptidoglucano

La membrana externa contiene proteínas como las porinas (canales proteícos que permiten el paso de ciertas sustancias) o diversos enzimas.

También presenta lipopolisacáridos.

Constituye una fina capa de unos 8 nm de espesor: mantiene la integridad celular y es altamente selectiva.

ESTRUCTURA

Proteína

Fosfolípidos

Fosfolípidos

•No tiene esteroles como el colesterol.

•El porcentaje de los distintos tipos de fosfolípidos es diferente.

• Algunas bacterias como las arqueas tienen unidades de isopreno en lugar de ácidos grasos.

•En algunas arqueas las cadenas hidrofóbicas de cada lado se unen covalentemente entre sí formando una monocapa.

Diferencias con la de eucariotas

BICAPA LIPÍDICA

MONOCAPA LIPÍDICA

La estructura de monocapa es más estable y resistente en ambientes con temperaturas elevadas.

Membrana plasmática de las bacterias

Mesosomas

1. Invaginaciones de la membrana plasmática.

2. Incrementan la superficie de la membrana.

3. Contienen enzimas relacionados con la respiración o fotosíntesis (semejantes a crestas mitocondriales o tilacoides)

4. Enzimas de fijación de nitrógeno y asimilación de nitritos y nitratos

5. Sujeta el cromosoma bacteriano6. Enzima ADN polimerasa

Material genético

ADN bacteriano

• Circular• Bicatenario• Plegado• Asociado a proteínas no histónicas

Plásmidos

• Material extra cromosómico• Puede haber varias copias• ADN bicatenario• Pueden intercambiarse• Se replican de forma independiente

Pili y fimbrias

• Estructuras tubulares de bacterias Gram negativas.

• Sirven de anclaje.• Las fimbrias son cortas y numerosas.• Los pili atraviesan la membrana (las fimbrias

no) y permiten el paso de material genético.

Flagelo bacteriano

Número y posición variable:

Monótricas

Lofótricas

Perítricas

Anfítrico

Partes del flagelo•Cuerpo basal•Filamento

Tipos de bacterias según su fuente de carbono y energía:

Nutrición bacteriana

Fuente de carbono

Fuente de energía

Fuente de carbono inorgánica

Fuente de carbono orgánica

Luz Fotoautótrofos Fotoorganótrofos

Energía química Quimioautótrofos Quimioorganótrofos

Nutrición bacteriana

Reproducción bacteriana

• Se obtienen dos células hijas, con idéntica información en el ADN circular, entre sí, y respecto a la célula madre,

• Las células hijas son clones de la progenitora.

• Se produce cuando la célula ha aumentado su tamaño y ha duplicado su ADN.

• El ADN bacteriano se une a un mesosoma, que separa el citoplasma en dos y reparte cada copia del ADN duplicado a cada lado.

• Una bacteria donadora (F+) pasa plásmidos (ADN) a una bacteria receptora (F-).

• Si el plásmido se integra en el cromosoma bacteriano se llama episoma y puede transportar genes de este cromosoma.

Las bacterias son capaces de captar del medio trozos de ADN procedentes de otras bacterias o de otros organismos e integrarlos en su cromosoma

• Cuando una célula es atacada por un virus bacteriófago, la bacteria genera nuevas copias del ADN vírico.

• En la fase de ensamblaje se pueden introducir fragmentos de ADN bacteriano en la cápsida del virus.

• Los nuevos virus ensamblados infectarán nuevas células. Mediante este mecanismo, una célula podrá recibir ADN de otra bacteria e incorporar nueva información.

Funciones de relación

• Muchas bacterias tienen movilidad, ya sea por flagelos, contracción o reptación, acercándose o alejándose de los estímulos ambientales (luz, alimentos…)

• Pueden responder modificando su metabolismo, adaptándolo a las condiciones concretas.

• Si no pueden moverse y el ambiente es desfavorable originan formas de resistencia, las endosporas, formas de vida latente protegidas por una gruesa membrana, capaces de resistir condiciones extremas.

• Cuando el ambiente es favorable, germinan y originan bacterias funcionales.

Protoctistas: Las algas

•Son Eukarya autótrofos fotolitótrofos (fotosintéticos).

•Algunas son móviles mediante flagelos y otras sésiles.

•Las algas microscópicas son unicelulares o forman colonias

•Sus paredes celulares tienen principalmente celulosa.

•Viven en medios acuáticos o en medio terrestre con abundante humedad.

•Tienen importancia ecológica como productores de oxígeno y ser la base de las cadenas tróficas en ecosistemas acuáticos (fitoplacton)

Protoctistas: Las algas

Protoctistas: Protozoos

Protoctistas: Hongos

•Son Eukarya heterótrofos, unicelulares o pluricelulares

•Sus paredes celulares tienen principalmente quitina.

•Viven en ambientes muy diversos, la mayoría terrestres.

•Tienen importancia ecológica como descomponedores (saprófitos)

•Se reproducen por esporas, que se forman en las hifas. El conjunto de hifas es el micelio

•Dependiendo de la estructura formadora de esporas se dividen en Ascomycetes (ascas) y Basidiomycetes (basidios).

HONGOS FILAMENTOSOS

SETAS

LEVADURAS

HONGOS MUCOSOS

Conidios(esporas)

Hifas sustrato

Hifas aéreas • Son hongos filamentosos unicelulares de forma ovoide.

• Se reproducen asexualmente por gemación.

• Son importantes en procesos industriales de fermentación.

Candida albicans es una levadura capaz de formar micelio.• Son los típicos mohos de la fruta, el pan o el queso.

• Forman filamento o hifas que se agrupan para formar el micelio.

• Hongos filamentosos del grupo Basidiomycetes.

• Sus cuerpos fructíferos se denominan setas.

• La fusión de micelios haploides origina hifas dicarióticas que formarán las setas.

• Filogenéticamente son muy distantes de los hongos (tienen características entre hongos y protozoos)

• Se alimentan de microorganismos sobre materia vegetal en descomposición.

• Se dividen en hongos mucosos celulares y acelulares.

Grupos de hongos

Los virus

Características generales• Descubiertos por Pasteur (1884)• Son partículas microscópicas sin estructura celular, formados • por un fragmento de ácido nucleico rodeado por una cápsula proteica.• Sólo visibles con microscopio electrónico.• Son parásitos intracelulares obligados que utilizan metabolismo y reproducción del

huésped para multiplicarse.• Poseen ADN ó ARN como material genético y una envoltura proteica que rodea el

ácido nucleico.• Son metabólicamente inertes y carecen de maquinaría para generar energía o

sintetizar moléculas. No realizan nutrición ni relación por lo que muchos científicos no los consideran seres vivos.

• Fuera del huésped no tienen actividad (viriones)

Los virus

Características generales

• Según su huésped se clasifican en bacteriófagos, virus vegetales y virus animales.

• Son causantes de muchas enfermedades como gripe, hepatitis o sida.

• Se utilizan en ingeniería genética como vectores en la clonación de genes.

• Tienen papel en la evolución ya que pueden insertar material genético de unos organismos en otros.

• Llevan información para unas pocas proteínas, de su estructura y algunas enzimas.

Los virus: Clasificación

Los virus: Morfología

• Cápsida proteica

• Ácido nucleico

• Envoltura (no siempre)

NucleocápsidaVirión

Las proteínas de la cápsida se llaman capsómeros y según se ordenen sirven como sistema de clasificación de los virus

Helicoidales

Icosaédricos

Complejos

Con envoltura

El ácido nucleico forma una espiral. Los

capsómeros tienen simetría helicoidal (VMT)

Capsómeros de dos tipos hexones y pentones (gripe)

Cabeza icosaédrica y cuello helicoidal (bacteriófagos)

Envoltura membranosa con glucoproteínas víricas

Los virus: Multiplicación

● Los virus no realizan funciones de nutrición ni relación. Se multiplican cuando se encuentra con una célula capaz de infectar, penetra en ella y utiliza su maquinaria para multiplicarse creando nuevas partículas virales.

● El ciclo replicativo de los virus pueden seguir dos caminos:

- Ciclo lítico: se produce lisis (muerte celular).

- Ciclo lisogénico: se integran como profago.

Los virus: Multiplicación

División celular

El ciclo replicativo de los bacteriófagos pueden seguir dos caminos:

CICLO LÍTICO

CICLO LISOGÉNICO

Inyección del ADN vírico

Replicación del ADN vírico

Síntesis de proteínas y ensamblaje de

partículas víricas

Lisis

ADN vírico

Cromosoma bacteriano

Integración del ADN vírico en el cromosoma

bacteriano

Ciclo lisogénico

Ciclo lítico

1. ADSORCIÓNLa proteína de adhesión viral reconoce receptores específicos en el exterior de la célula. Las células que carecen de los receptores apropiados no son susceptibles al virus.

2. PENETRACIÓNLos virus penetran las células de maneras diversas dependiendo de la naturaleza misma del virus.

Virus envueltos(A) Entran por fusión con la membrana plasmática. (B) Entrada vía endosomas en la superficie celular Virus no envueltos o desnudos Pueden cruzar la membrana plasmática directamente o pueden ser tomados en endosomas. Si son transportados en endosomas, luego cruzan (o destruyen) la membrana de dichas estructuras.

3. PÉRDIDA DE LA CÁPSULA Perdura hasta que nuevos viriones infecciosos sean creados.

4. SÍNTESIS DE ÁCIDO NUCLEICO Y PROTEINAS VIRALES5. ENSAMBLAJE/MADURACIÓN6. LIBERACIÓN O DESCARGA

Fases de la multiplicación vírica

Virus desnudos

Virus envueltos

Ciclo de un retrovirus: VIH

1. Penetración en la célula y perdida de envoltura

2. Paso de ARN a ADN gracias a la transcriptasa inversa

3. Formación de ADN de doble cadena4. Integración en el cromosoma

celular5. Transcripción6. Traducción de proteínas víricas

a. Envuelta b. Capsulas c. Transcriptasa inversa

7. Ensamblaje8. Salida de la célula

Viroides

• Son los agentes infecciosos más pequeños conocidos.

• No poseen proteínas ni virus.• Son secuencias de ARN circular que interfieren

con el ARN celular. • Tienen una fases extracelular (metabólicamente

inactivos) y otra intracelular.• Se han encontrado sólo en núcleos de células

vegetales, sobre todo, en cítricos.• Pueden actuar como ribozimas y catalizar su

propia replicación. • Se las considera las secuencias más antiguas,

anteriores a las células más primitivas, es decir, antes de la formación del primer ser vivo.

Plantas afectadas por viroides

• Son proteínas alteradas que actúan provocando un cambio conformacional en proteínas normales, transformándolas en proteínas alteradas.

• Este cambio provoca la pérdida de la función en la proteína, pudiendo generar graves alteraciones en la célula.

• Éste es el caso del síndrome de las "vacas locas" o la encefalopatía espongiforme bovina y su variante en la especie humana.

Priones

PrP

PrPsc

1. La PrPsc, la forma molecular resistente a proteasa, actúa como ‘plantilla’. 2. Se asocia con la forma helicoidal permitiendo a esta última ser convertida a la

forma resistente de pliegues beta (presuntamente mediante la disminución de barreras energéticas que normalmente previenen que esto suceda).

3. Ahora hay dos moléculas de la forma resistente que pueden actuar como plantilla y así el proceso se acelera.

En el ser humano•Enfermedad de Creutzfeldt-Jakob•Insomnio familiar fatal. •Nueva variante de la enfermedad de Creutzfeldt-Jakob. •Enfermedad de Gerstmann-Straüssler-Scheinker.. •Kuru

En especies animales•"Tembladera" o Scrapie (prurito lumbar) en ovejas. •Encefalopatía espongiforme bovina (llamada enfermedad de las vacas locas).

Enfermedades causadas por priones