0 1 2 345 %˙ (6%786tumechj.tabrizu.ac.ir/article_6116_66bbb6554569a5b... · c, ˝1 51˝[˛ 9...

7
78 47 1 1396 ! 333 - 339 * : [email protected] : ! 21 / 05 / 94 :)* ! 02 / 10 / 94 #$%& ’() *( *% + ,#+(-. *%/0 1 2345 % (6%786 *( 9 * + ,+ - . ,/ 0 /+ 1 1 2- 3 3/ ;%< =3 >6%3 , . ,/ - 0 /+ 1 1 2- 3 3/ < *?@ %A.6 + ,+ - ,/ 0 /+ 1 1 2- 3 3/ B 4 567 8 9+0 :; 91 ., 9 <= > = 8? , 9 @ 4@ 6 + 1 A + - 9 BCD1 4 C@ C E, + . G7, H- - )1 JK; L+ 3MM @>08 38 - C N?C+ )CO C6 AC C-+ C0 8? C ,1 P M 1 . Q H= O 8 H = R= ,1 = S T )0 =U 1 9 9= = VW ) XY HC8 Z[, !, 1 4M Q /\ , 7[, E, .+ , 1 -8 J=- S] 1 = T )0 =U 1 = C+ C6 C+ . ^ 4_>= 567 3- - 1 4-1 > 4 S] 1 G7, )0 . 4/1 OD 9=U )0 ) = 6 4> bc )0 (= )O , , 3 38 9+0 <=/\ S /2 - 9 . < 1 6 A -+ e 8 , 1 9+0 38 - HR . 6 9=U OD 1 8? 0 -+ A )0 = E S *CM fCc1 bCc 3RC HRC 0 )0 = .+ C61 */ :*. )0 =U H- G7, - )1 8? @ 4@ H8 XY -+ A . Investigation of Mechanical and Weld Appearance Properties of Polymer Based Composites in Ultrasonic Welding Process R. Nikoi Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran N. Bani Mostafa Arab Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran A. A. Ghaderi Faculty of Material Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran Abstract In this paper, ultrasonic lap welding process has been used for welding of standard specimens of polypropylene composites reinforced with glass fiber with 4 mm thickness. The tensile-shear strength and appearance properties of welds under was used different conditions of time, pressure and vibration amplitude and glass fiber content were investigated. To investigation the relationship between input variables and appearance properties of welds and weld strength, the response surface method to decrease the number of experiments and costs considering four factors at three levels. Based on experimental observations, effects of input parameters on appearance of welds were clearly evaluated. The results indicated that amplitude and pressure had the most and the least significant effect on the tensile-shear strength of these composites respectively. Best appearance condition of welds (which has least weld defects) was resulted at an amplitude of 33 μm, welding time of 0.4s, pressure of 1.5 bar and glass fiber content of 10%. Increase of welding pressure, time and glass fiber content in composites has negative effects on welds appearance status and causes weld defects increase. Keywords: Appearance of welds, Tensile-shear strength, Polypropylene composite, Glass fiber, Design of experiment. 1 - E 8 91 8 ,/ 9=1 VW 5E@ 1 Q VW >= g . 8 E, 3 , 8 > h8 . 0 8, 1 3 >= 9 W ‘ 91 + : 1 1 +1 i VW V 8? .1 VW = 01 A[O 8 + 9 * 9 ) W1 XY , 3 W, 9= 3, j = , ] 1 [ 8? . >= 8 Oe 8 9>@ 8 9= 18 = W1 eW 3 k@B 9=1 1 8 R = 1 VW l 1 4_>= .+ c 6 , K 3 1 X MW 11 JR@ 91 , 4R20 = =1 8 91 +1 ] 2 [ W . 48 9 M , = 0 Jc 8 , : .,m = .=,K = 3 8? EM @ 8 9= , , 1 9> 8? 9 9= <6 ,K .,m , + ] 3 [ @>08 . 48 .,m 9= @ 1 3 ) 4@ PP > + ( R0 </ 4 ,m . ,/ 9= , ] 4 [ . 4 l 4>= 1 4 8 567 1 3c 4_>= .M E, 8? 8 </ 8 A 4 E, Oe 41 -+ A 3 3 1 l 1 H=o 4 .1 G P > j 3 8 -+ A 38 1 3c 6 8? 4_>= .+ E, 8 3 1 l 1 8? 9=

Transcript of 0 1 2 345 %˙ (6%786tumechj.tabrizu.ac.ir/article_6116_66bbb6554569a5b... · c, ˝1 51˝[˛ 9...

Page 1: 0 1 2 345 %˙ (6%786tumechj.tabrizu.ac.ir/article_6116_66bbb6554569a5b... · c, ˝1 51˝[˛ 9 ˝+˜0 astm ˝e, ˜˛ 9˝= ˇ˜ > 8 ˝2, 8 ˝e, ˝1 + 3˝- 1 l+ ˇ˘ [13 ] d5868 9 ˝cc+˜0

���

��

�� �

���

��

���

�� �

7

8�

���

47�

����

� 1�

���

� 13

96�

�� !

3

33

-3

39

* :�������� �� ���� ������ ������ �������[email protected]

: ���� !����21/05/94

:)�*� !����02/10/94

�#$%& '�() ��� *����(� *%� �� � �+ ,#+(-��. *%/�0 1 �� ���� 2�345� ���%�

� �(�6%786

*(� � �9�* �+�� �,��+���� ���-���.����� �,��/�� ���0� ��/+ �1� �1� ��2-���3��� �3�/� �

;%< � =3� �� >6%3� ��,����� .����� �,��/� ���-���� ���0� ��/+ �1� �1� ��2-���3��� �3�/� �

�<� *�?�@ %A.6 ��+�� �,��+��� ���-��� �,��/������ ���0� ��/+ �1� �1� ��2-���3��� �3�/� �

�� �B

�� 4�� 5�67� 8� 9���+�0 ��� :�;�� 9�1 .���,�����9 <=���>� �= �8�?��� ������,� 9@�� 4@�����6� � ��+�� �1 A��+�-� 9� ��BCD�1 4 � �C@� C�

���E,� �+ .G��7,� H-�- )1 JK�;�� �� L��+ 3�M���M �@>08� �3��8 ���- �C���� N��?�C+ )�CO��� � ���C6� A�C��� �C-�+ ��C0�� 8�?��� �� C� �

,�1����� ��P M�1 . ��Q����H= ���O� ��8�H� �= � R=��� �,�1 �� �= S� T�)�0 =�U 1 9���� 9�=� �=V��W � � ������� )�� �X�Y H��C�8�

Z[, !,�� �1 �� 4 M Q���/\ ���� �, �7[, ���E,� .�+��,� 1 ��-���8� J��=�-�S]�1 �=����� ��T� � )�0 =�U �1 �= �C+��� �C���6� �C+.

^��� 4��_>= 5�67� 3�-� ��� �� ����� � ��- �1 `��� 4�-�1 >� �4� S]�� �� 1 G��7,� )�0 .�����4�/1 �OD� 9=�U)�0 ) �=���6� 4�>�

b��c )�0 �� (�=� �� ����� )�O��� ,� �,� �3���� 3��8 9���+�0 <=���/\�����S ���/2� ��- 9 .� <��� ��1 � ���6� A���� �-�+ �� �e�� ��8� ,� �1

�� � 9���+�0 3��8 ���- H��R � .����� ���6� 9=�U �OD� 1 �8�?��� �� ��0�� �-�+ A��)�0 �= �E�� S��� ���*CM fCc�1 � b�C�c 3�RC�� H��RC �

�� ��0��)�0 �= �� .��+

�C61 *�/ :*� �. )�0 =�UH-� G��7,� �- �)1 �8�?���@�� 4@���� �H���8� �X�Y ��-�+ A����.

Investigation of Mechanical and Weld Appearance Properties of Polymer Based Composites in Ultrasonic Welding Process

R. Nikoi Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

N. Bani Mostafa Arab Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

A. A. Ghaderi Faculty of Material Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract In this paper, ultrasonic lap welding process has been used for welding of standard specimens of polypropylene composites reinforced with glass fiber with 4 mm thickness. The tensile-shear strength and appearance properties of welds under was used different conditions of time, pressure and vibration amplitude and glass fiber content were investigated. To investigation the relationship between input variables and appearance properties of welds and weld strength, the response surface method to decrease the number of experiments and costs considering four factors at three levels. Based on experimental observations, effects of input parameters on appearance of welds were clearly evaluated. The results indicated that amplitude and pressure had the most and the least significant effect on the tensile-shear strength of these composites respectively. Best appearance condition of welds (which has least weld defects) was resulted at an amplitude of 33 µm, welding time of 0.4s, pressure of 1.5 bar and glass fiber content of 10%. Increase of welding pressure, time and glass fiber content in composites has negative effects on welds appearance status and causes weld defects increase. Keywords: Appearance of welds, Tensile-shear strength, Polypropylene composite, Glass fiber, Design of experiment.

1- ���E�

8� 9����1 �� �8�����,��/� 9�=�1��� ���� V��W 5�E@� �1

�� Q����� V��W �>= �� ���� g�� .� 8� ���E,� 3���� � ,� 8���

�>� ���h��8� .����� ��0� ��8�, �����1 ���� 3��� �>= �� �� 9�

��W `��� 9�1 �+�� :���� �1 ���1 ��+�1 ���� �� i� V��W ���� V

�8�?��� .��1 ������ V��W �=��01 � A�[O�� 8� � �+�� 9� *�9�

)�� � �������W1 �X�Y �� ��,��� 3� W�, 9�= 3�,� j���� �=

,�]1[ �8�?��� . �>=� 8� O�e �� �8��� 9>�@� ����8 9�=

�18�� � ���= �����W1 �e�W 3� k@B� 9�=�1��� 1 8�� ���R � �=

�� 1 ������� V��W l��� �1 4��_>= .��+ ���c ���6� ����, �K�

3� �1 ��� �X�� � �M���W 1�1 �� �� J�R@ 9�1 ��,��� 4�R2��0 ��=

�� �=�1��� 8� 9����1 ��+�1]2[������W ��. 4�8� 9 ��M �, ��= ��0�

J���c �� ����� 8� ��� ,��� : .,m���� ��= �� .�=��,K� � �= 3���

�8�?��� �� EM �@� ����8 9�=�,� �, �1 9> �8�?��� 9 9�=

�� <��6� ��,K� � .�,m���� � ,��� ���+]3[ �@>08� .

4�8� �� .�,m���� 9�= �@� �1 3��� ) 4@����PP ��>� ���+� ( ��

R0</� � 4�,m�.� �,��/� 9�= ,�]4[. 4�� �� l��� 4�>= �1

���� 4�� 8� 5�67��1 3���c 4��_>= .���M ���E,� �8�?��� ����8

</� 8� � A���� 4����E,����� O�e ���� 41� ��-�+ A���� 3��� �

���� 3��� �1��� l��� �1 H=�o� 4�� �� .�1 G�� �� ��P � >�j����

3� 8� ��-�+ A���� 3�8�� �1 3���c �����6� � �8�?��� �� �����

4��_>= .�+ ���E,���� �8 3��� �1��� l��� �18�?��� � 9�=

Page 2: 0 1 2 345 %˙ (6%786tumechj.tabrizu.ac.ir/article_6116_66bbb6554569a5b... · c, ˝1 51˝[˛ 9 ˝+˜0 astm ˝e, ˜˛ 9˝= ˇ˜ > 8 ˝2, 8 ˝e, ˝1 + 3˝- 1 l+ ˇ˘ [13 ] d5868 9 ˝cc+˜0

�,�

1

J�;

B-

���

����

� 9

=�U

�8�?�

�� ...

334

9>�@� :�;�� �k@B� p���e �� 4��8�?��� � �= 9���8 �>=� 8�

)�� � �-M �����W1 �= ���� 4�� :�;�� 9�1 �c��� 9

�O,�� � �� ���]5[.

X.Y.Dai � H�����>=]6[ :�;�� ������� V��W �,�1 �1 �

���>� �� 9� �-�+ ��@1 � ����� A���� �1 ��+ ��6� ��@���� �@� 9�=

�� �� ���� �/��� ��W��� � ���+ 9���+�0 �+�O��� )�� �1

9��X �8�?��� JK�;��30 �8�?��� 8� /1 �-�+ A���� ��8� �e��

9��X40 . ,� �-�+ A���� �e��G.H.Payeganeh H�����>= �

]7[ ;��=�U � G��7,� � )�� �1 `� �1 `� l�+ �1 ��+��h�� :�

�1h� l�@7������� �= �8�?��� 4�� �+�-s� ����[e� 9���+�0

�1 ��� 9-�1 S� ������ c, ����� �� �� ���� � �������P

�� JK�;�� G��7,� 1 �2@M ����8 � �[W c, 4��_>=� .���*M

9�>X� 9��=]8[=�U� G��7,� �0�M�� )�� �1 � <= 9�� ��� :�;��

A���� � �-�+ A�����1 ��+ ��6� 4@���� �@� ��8�?��� 9�= ���>�

��Y �1 �����1 � �� :�;�� �+�-s� ����[e� )�� �1 ���� 41�

.�� �,�1 �1h��� �,��= 9���+�0 ���� �� ���E,� ���� 4�� 9

�� c, 9�=����� ��>= �1 R�� �� �+�-s� ����[e� �4�� 3��

�� �,�1 �2@� ����8 � �[W c, .

)�� �=�= �8�?��� 9���+�0 9 ���� ��,� 1R�G �C���� �C�M ��

9���C+�0 �����[Ce� 9���C+�0 �C,� �, �1 :�;�� LW ���C�M �

���� 9���+�0 <�C�6� �C��Y��T� 9�C�1 �C� ��C+ �C� 9���C+�0

��CP ����[e� 9���+�0 �,� �� .���,�������]9[. �C0�� �C1 �C1

:�;�� �� .���,��� 9���+�0 ����1 9���R�8�?��� � K�C1 u�@>08� �=

�6[�� 3��1 .\�� ����� c, 3��1 S]C� 8� �C�M � �C/1 �� K�C1 9

�8�?��� :�;�� 9�1 ���� 4�� 8� ...�67����� ���EC,� 5� �C+]10[ .

9���C+�0 �C��� 9�C=����� CS� ��C7� 4 �C� �H=�o� 4�� 8� A�=

.���,���� 1 �����C�� V��CW RC�� � 9=�U �E� )�C0 �C= 9 �C1

��0� :�;�� �� ����@�� 4@�����6� � ��+�� �1 9�C1 . ,� �-�+ A��

�A�= 4�� �1 3��,�i�� �= 5C�Y � W�C, �C��� 8� v� ��8�?��� 9

H���8� �X�Y )��!,�� Z[,1 �1 J��e �����9 �C��� LC,�� <=

�H��C�8� �CX�Y �� .�C� �� :�C;�� <C= �C1 �.���C,��� 9���+�0

9���C/2� ��C- l��C+ .���,��� 9���+�0 ���� �@e� 9�=�����

N��?�+ )�O��� ����� �J�O[P3��8 � 9���+�0�1 c 3��C� T� 9�C=�

9����Q� �� A�C��� ���C6� ��C��� 9�C=����� C1 ��mCc .�+ � M

l��� �1 R�� �-�+S]� H���� 9��*M�V��W 1 )�0��0� �1 ���C��

�1 3���c .���+ ���� H���8� �X�Y �� 9���� 9�=����� 8� 2�� ���

��+ 9��� �8���� � 9=�U �E��)�0 �C= RC�� �C1 3��C�c �T C��

.�����M �,�1 ��0�W

2- 1 ���A�G1� �/

2-1-� 816 ?6(� 2� !(3H

����8 ���� �C@� 5C�67� 4�� �� ���E,����� �8�?��� 9 4@���C�

�@� .���M b�B�� �C� C,� 9��C@1 .�C,m���� 4�E�� .� 4@����

�c�>h� i� V��W 8� 9� P�1 �� ���O�� >� 4C�� . C,� ���� �C>� j��C��

1 Response Surface Method

4���� >�@� ���X ) ���2\ 4��gr/cm3 914/0 g��C�� G�>� 4�1 �� �� (

.�,m� � 9�=�,��/ �@� .���� �� b�CW C���6� 8� j��>CD 4@���C�

1�1��MN� � M���W� G��7,� � ������ V��W�H�� :�>c� S� ��

�1D ,� �����W1 b�W 9]11[.

�@� �� �� 4@���� �1 3��� ��Q�� ,� 5�Y 8� �/1 V��W �1 �1��

���R� ���9 A���� �1 ��6� 9�= ...� 41� A���� ��-�+ A���� ����� �����

^��� �-�+ A���� .�� wme� � � 4�� A;� ���EC,����� A�C��� 4��

�� �C � ��C�1 ���C� `C��� � g�C� `�X1 . ,� �8�?��� O�e ��

3� ��/� g���� �1 �-�+ A���� ��=<��6� k@B� �C� 9�C�1 ���C� .���C+

l��-� �@e� �-�+ ����>= �-�+ A���� ���=� ���C>O� 9�=2 ���@�C, �

CC���6� �K�CC1 �CC--� G��7CC,� �4���CC� CC>�P �CC-�+ A�CC��� . CC,�

)���c �6��c V��W � K�1 ����>�+ ���C�M ���� (�C����� � 4C�� ��.

8� H=�o���^� g��) �-�+ A���� g�� 4��E (�E,��� ��+ . ,�

3x�C��� �@X� �� �� .�,m���� �8�?��� W�,- �C�

y�� �� 567� �1�� 3x���� ��2,� L,�� .@�� ��C��� A���� �1 4@����

J��CE� �C�8� 9�=�Ce�� �1 �-�+ v�0 8� � �C��M z�C@B�3 g�C�

`��� 8� :���M@�� �1 4@����10 �20 �30 �8� �e�� �-�+ A���� �

.�+ le�X:���M �= ���*� 9�1 J��Ce 8�C �C�>�� �C+ 8� ���C��

G���1 �= 9��Ch� 9Forolen PP1045GB PP3045GB, P2045GB

4�� v?, .�+ 9����W :�C��M �C= .C>� �C1 �C1 y�� �C� ��2C,�

i�� �= ��O1� �1 ��200m*200mm*4mm .���M l����

i�� W�, lX�� 9�0� 8� v� �= � �����C�� V��W 4 �� 9�1�

���>� ������,� 5�Y ���=ASTM-D638 ]12[ � 8C ��2,� .>� �1

CNC �C��M��0 �= i�� 8� HC-� ��2C,� LC,���Zuker W�C,)

c, �1 (3�>�� 5mm/min C M ��CP HC-� 7�. :��C0 ��1

i�� ������� V��W�W�, 9�= �{��� ��+ . ,� ��+

2-2- �?��$ +��* ��(�� �/

���>� �= 9���E,����� ���+�0 ��9 ������C,� �1 51�[�ASTM

D5868 ]13[ l�+ �� ��1 ���� 3�-� 8 ��2,� 8� ���E,� �1 ��+

CNC i�� 8� 9�C1 � ���CC+ ��C0 ��8�?��CC� 9�C= �CC��� 9���CC+�0

.���,���3�>= .�����M ����� ��Y �� l�+ ��1 ������ 4C�� ��C+

���>� l��+ >C�P �� C,� G��C�= �C� �C1 ��CY ��CO1� �C1 �C��M��0

101mm*25mm*4mm 8�i�� �= �� 4C��. ���C+ ��0 ���+ �W�, 9

>�P�@X� �� 9���+�0�1 J��e �����9 l;� <=�� ��+.

2-3- ��+$ �I6%J#K �/

��8� �X�YH� �=Rh� � �� l�@7� � ���� .>� �1 �=DOE �1 �

)��RSM )!,�� Z[, (G� 8� ���E,� �1 � 9���� l�@7� ��R �

Minitab G�h�� S]� 4 �� 9�1 . ,� ��+� �=����� G��7,� 1 �

J�;B-� 9=�U�0) �= 8� wY H���8� Boxbehnken �1

2 Sodalime Glass

Page 3: 0 1 2 345 %˙ (6%786tumechj.tabrizu.ac.ir/article_6116_66bbb6554569a5b... · c, ˝1 51˝[˛ 9 ˝+˜0 astm ˝e, ˜˛ 9˝= ˇ˜ > 8 ˝2, 8 ˝e, ˝1 + 3˝- 1 l+ ˇ˘ [13 ] d5868 9 ˝cc+˜0

|�;

� �9

����

�D�

�1

�E[

;�

@c �

bc

9��

�P �

��

335

L��1- ��(�� ���/ L�� 1 ?�M�6 �/* K5. K#��+$- G%�]13[

A���� ���6� � )�O��� ����� �3��8 ���- ����� ��/\ 4 M Q� ��

.�+ ���E,� �Z[, �, �� �8�?��� �� ��0�� �-�+

:��02 �� 3�-� �� �/�� 8� .�= w�[, � 9���� 9�=�����

.�=� :��0 ��2 �� �1 �� ����6� 4�>� 2���12 L,�� ���6� 2���1

�� �3 �6� 4�-�1 2���1 ,� Q����� ���� ��/\ 9�1 ��.

:��03 ��8� ����� �H� 9�= �� 5�67� 4�� �� ���E,�����

�1 �� 3�-� ��+ �� J��e� .�=27 :��0 �1 51�[� H���8�3 �

�1 9�M�@0 �>��, 9�[W 8�1 8� �� ���+ G�h�� `���� � <=�� ��Y

.��+ �-���8� 4�� J�-���8� ���R= 3��1 K�1 l��� �1 �/�� J2 ���� ��1

.���M

2-4- N�(/ 1 %OP� & ,H��

9���+�0 ���� G�h�� 9�1���/>� ���1 � M Q� �� �� �� ��+

�S jm��� ���� 4�X �� ��� �O[P �1 1 �� �OP�� ��T� � �+ 9�1 .�=

l�+ .�+ �W�, � ��/� ����B,� �� v�0 8� 9_��� ��Q�� 4��

2 7� � _��� ���>� 4 M ��P �� �� 3�-� �� _��� 3��� �= .�=�

.�+ �W�, 9x���� G�������� v�0 8� � ����� �����R � g�� 8� R�� 3��=

2 -5- K5. N(�+$ 1 *����(� R���6 -G%�

9�=������ �C0 5C�Y .���C,��� 9���C+�0 ���� �CX�Y :

) 9���+�0 ��2,� 9�� 1 H���8�Maxwhite 3����C� ��-� W�, (

���M <�Q�����>� � �= ��0�� L��+ 7�:��0 �� 3 J��@>c 7� �

.�C� M ��CP .���,��� 9���+�0 l�C+ �� 3 �9���C+�0 ��2C,�

N��?�+ �_��� ���E,����� ���� 5�67� 4�� ���� .��+ l�C+ ��

4 ��7 ��;�� )�0 �=9 H��C>� �C1 kC@B� L��C+ �� ���� ��0� �1

�+�*M �C>@c ^��� 3���� ,� �1 9�1 . ,� ��+ S]C� 8�� �C=�����

� 1 �E� )�0 ���>� 9=�U l�+ �1 �= ���>� � ���� �E�� �= 9�C1 �=

.�����M ����� ������� V��W �,�1 ���>� �= �C1 ���C+ 9���C+�0 9

H-� 3��8� ��2,� .>� )Zuker- � i��� 9��� �� (3�>�� cC, �1

H-�5mm/min HC-� 3��8� 7�- )C1 �C� M ��CP 9�C�� �

��+3� �= �1 3���c !,����8�H� � �C��M C�S �= :��C0 �� 3 �C1

H���8� �h�� 3���c��+���� . ,�

9��� 8��1 ,� ���� ��+ 8����>� �= 9�1 � :�C� 8�C, �C[1�� 9

��+ 9��� �1h�)�0 �=.�+ ���E,� �

S1��1 - �1 �� ���� T6(HU �7#+(-��. *�/�7H�� ���

�?�� V(� � 7�W6 S1��

(MPa) ,P�� �? �55. K)

)MPa(

,P���? S(J ?�#?+6

)%(

�@� �8�?��� �1 4@����30�-�+ A���� % 3451 3/25 2/13

�@� �8�?��� �1 4@����20�-�+ A���� % 4729 9/43 9/15

�@� �8�?��� �1 4@����10�-�+ A���� % 2707 8/32 3/16

� L�2- ��(�� %OP� & *����(� *6%� �/

L��3- [�(- � 6 *����(� ��\7�? 1� �(�6%78

Page 4: 0 1 2 345 %˙ (6%786tumechj.tabrizu.ac.ir/article_6116_66bbb6554569a5b... · c, ˝1 51˝[˛ 9 ˝+˜0 astm ˝e, ˜˛ 9˝= ˇ˜ > 8 ˝2, 8 ˝e, ˝1 + 3˝- 1 l+ ˇ˘ [13 ] d5868 9 ˝cc+˜0

�,�

1

J�;

B-

���

����

� 9

=�U

�8�?�

�� ...

336

3- *+�P8��1 ]#�7� L ��)

�� ��1� ^��� �1 ,� ���� 8� H���8� H-� )1 ��O� ���-�1 �����

��JK�;�� l>7� ���� �1 3���c �!,�� �1 L�7� G� ��R � ���� ���M .

v?, ���� �= �1 .>� G� ���R � ���� �� �@X� R����� ��P M .��

�@X� :�� .� �[1�� �D��� )�@>0��\ 9� �0�� 2 (9�1 H�� ���1

9��� ��+ )�0 �= �1 ,� ��� �� 4�� �[1�� �>= 9�=�����

��- �9���/2� 3��8 �9���+�0 ����� )�O��� N��?�+ � ���6� A����

��0�� �� �8�?��� �= R��� �>= J�O1� � J�S� l1�6� �=����� ��

l��+ �� ��+ � �� �@X� G�� l��c 9�= �1 �S]� v� 8� ~�B-� ��

�@X� �l�P 8� ��� l��c 9�= ��*M�S]� A*X � :�� ���/� 9���

��+ )�0 �= )�1 .>� 3��,M� (le�X �+ .:��0 R����� v������

���/� 9�1 �,�1 3�R�� S� �=����� R��� ����>� T-Student 9�1

~�B-� ��E� :�� ���E,����� pP�� ���+.

S1��2 - ��$ ^(=� 1 %_(� *�/%7�6���

���6��=��

��- 9���/2� (bar)

����� �����.���,���

)mµ(

3��89���+�0

(s)

A���� ���6��-�+ (%)

1 5/1 27 4/0 10 2 2 30 8/0 20 3 5/2 33 2/1 30

S1��3 - �#6�$��+$#K �/

���>+

H���8�

�/�(7.�& `���

��-

)bar(

�����

)�O���

)mµ(

3��8

��+�0�9

)s(

���6�

��A�� �-�+

(%)

9���

��+

(4����)

1 1 1 2 2 2070

2 3 1 2 2 1765

3 1 3 2 2 1830

4 3 3 2 2 1795

5 2 2 1 1 1354

6 2 2 3 1 1642

7 2 2 1 3 1404

8 2 2 3 3 1376

9 1 2 2 1 1929

10 3 2 2 1 1891

11 1 2 2 3 1450

12 3 2 2 3 1395

13 2 1 1 2 1709

14 2 3 1 2 1993

15 2 1 3 2 1606

16 2 3 3 2 1812

17 1 2 1 2 2101

18 3 2 1 2 1867

19 1 2 3 2 1597

20 3 2 3 2 1864

21 2 1 2 1 1720

22 2 3 2 1 1638

23 2 1 2 3 1555

24 2 3 2 3 1069

25 2 2 2 2 1921

26 2 2 2 2 2017

27 2 2 2 2 1980

L��4- G(�6���?��# *1� %�a86)( ����� ��(��11;) ( ��(��

�����12

L��5- ��� ?��#6 G(� %#1�3)*1� %� a86)( ����� ��(��14 ;) (

����� ��(��13

L��6- G(� %#1�3)6���?��# *1� %� (a86) ����� ��(��15 ); (

����� ��(��13

L��7- G(� %#1�3)6���?��# *1� %� (a86) ����� ��(��21 ;) (

����� ��(��23

Page 5: 0 1 2 345 %˙ (6%786tumechj.tabrizu.ac.ir/article_6116_66bbb6554569a5b... · c, ˝1 51˝[˛ 9 ˝+˜0 astm ˝e, ˜˛ 9˝= ˇ˜ > 8 ˝2, 8 ˝e, ˝1 + 3˝- 1 l+ ˇ˘ [13 ] d5868 9 ˝cc+˜0

|�;

� �9

����

�D�

�1

�E[

;�

@c �

bc

9��

�P �

��

337

3-1- ���%�G(� %/�0 �/

�C�O1 L6 ��>/ 3��� �� H���8� �X�Y :��0 8� �� ��[��>=

��T�S� ~�B-� 9�1 �= H���8� 8� = w�[,�� ����� �C MQ� ��

����C� =��T� S� �,�1 9�1 �= ���>� 4�� ��;� L6 �� ,� ��+

C,� ���EC,� l1�P �= )�0 =�U1 �C��>� H��C�8� L��C+�� m�C�)

9�=11 �12 9�C1 �C/�� ��C;� �C� ,� ��� ��T� ��- ����� L6

( C,� ��C+ ���EC,� ��C- ��T� S� �� 9=�U b��c ����6� �C�61 �

.���=�0K� G8K G��7,� 3��,M� �[1�� ~�B-� 9�1 J�-���8�

���;�4 ��7 �,�1 9�1)�0 =�U �= �S]���T�= � 8� ����C�

Z[,)�0 �= 4C+���8� �C1 :�C�h�� �C,��c 4�C1��� L,��11 �C2�

� l����1 ,� ���� . ,���=�-� �1 ��;�4 �� ��C- C��T� S� 3���

��l�+ 1 )�0 �= 9�. ���� ��+��h� ��;�4 � kC��4 `C��� �C1 b

H��>� �� ��1 <��� �� � ��1 <��� .� ��- �� ��+ 9���+�0 9�= ���>�

.�=� �� 4��;���� 3�-� C�� ��C�/1 fCc�1 ��C- H��RC � �C� �C=�

���C6� H��R � fc�1 v�c1 � ,� ��-� )�0 �OD�1 3�C� �CM�8

b�*���� � . C,� ��C+ G��7,� H=�� �h� �C;� ���5 CS� C��T�

~B-� )�0 =�U 1 N��?�+ )�O��� ����� ,�. ��;�5� k��5 b

� 3�C��� �C,� �C, �C���� �� ��C+ 9���C+�0 9�= ���>� `��� �1

.�=� �� H��>� �� 3���� E=� ��1��;� 5�Y5 �C���� H��RC � �

��+ ��E� H��R � fc�1��X��� ��1 3�C� ���CE�� i�CE�� b�*C� �CM�8

��;� ��. ,�6 U =����>� �= ����6� <=�1 ����+ ��� ���C6� �C/�� �C�

9���+�0 3��8 ��������+�0 �� 93� �= . C,� ���C1 J��E� ��C;�

6� k��6 <C=� ��� .� 3��8 �� ��+ 9���+�0 9�= ���>� `��� �1 b

.�C=� �� H��>� �� ����S <=� ��/\ � ����S 3�C>= ��CY ��C;� 8� �C�6

�� R�� 3��8 H��R � ,���� ��- H��R � ���E�� S� =�U 1 �)�0 �=

�+�*M��mc � 1 13�� 9���C6� 3���C�\ fc�1 b�*� �M�8 ���C� 8�

��0���_D�X �� Z[, �1 b�*� _��� �+ C,� �. ��C;�7 9�C1

A���� ���6� S� ��=�-�+�-� =�U 1 )�0 H��C>� �C1 �C+�*M ��C+

,� ��;�7� k��70 9�= ���>� `��� �1 b 9���� ��C+ 9���+� ��

�e�� ��-�+ A���� �e�� �, .�=� �� H��>� �� ��Y 3�>=� �C���

,� ~B-� ���;� �\=���6� �_CD�X �C6[�� �� 9C>� A�C���

��E� �+�1 ��0��@�� 4@�����R �H� � ��Z[, � :�C;�� 9�1 9-�1

4@���� �@�- 4@���� �@� k�OCD �M���C�\ l��� �1 R��� ���� ��0�

�1 �-�+ A����@�� �C-�+ A�C��� ���C6� H��RC � �4@���� �C� �C/�� CS�

��� G��7,�1 �)�0 �= G��7,� 8� ��@1 �����)�0 �= <��� .���

3�>= ��Y 8� ��)�0 =�U �= �� 3��C,� 9�C1 M �h�� 3���

g�� 4�/1 �1)�0 �= �1�� ��- 3��8 � ����7� Z[, 4�>� �� �� �

����� �� <�Q�� ����7� ���6� 4��K�1 �� ����X��� A�C��� ���C6� ��

���6� �1 .��R� �-�+10 9�1 .�+�1 �e��{�� ����C� �C� ��C+�c�� ��

^��� �HB1 4��3��8� �= ������� 9 :��0 ��3 . ,� ����M �{���

3-2-b��#�61 c 8��$ )ANOVA(

:��0��v������ R�����1� J�O1� g�>h����6�2 4�2���� �

J�O1�39��8� �0�� �4���6� �P5 �F6 ���� 3�-� l��c = �1 z�1�

1Analysis Of Variance 2 Sum of Squares

.��+ �� ���6� ��=�-� �1P �F :��0 v������ R����� �� � 3���

�!,�� 9�� k@B� l���c S� 3�R� ���6� .��>/ ��P � >� �\=

���6�F S]� ��+�1 -�1 �\=� .��1 �=��W -�1 !,�� 1 l��c 3�

) �E�� `�D 4 M Q� �� �1α 1�1 (05/0 3���>Y� Z[,)95

�e��7( ���6� �P 8� -�1 �� l��c =05/0 S]� l��c 3� �+�1� �1

�� � � +�� �=��B� !,�� 1 ���R, �� `�6� 4 M Q� �� �1 3���

�[1�� 4+�� � ��>� A*X �� l��c 3� �1 z�1� �x�� ����0 3��,M�

S]� 8�� Ae 3� �� Q�]14�15[. :��0 8�ANOVA �� ���1�� 3���

9�� .���,��� 9���+�0 ���� 9�=����� 9��*MS� 3�R��

�[W 9�=���� ���� �� . ���� �� �8 ^��� G��7,�8 �� 3���

u�� ���� )�O��� ����� S�N��?�+ 1 2�� ����� �, 8� G��7,�

S]� 4�>� .. ,� ���1 -�1� 9�=����� 4�1 �� ��� G��7,� 1

S]� ���1�� ��� . +�� �=��W ��/c 1 �� ��- �9���+�0� H��-

H�����= (l1�6� J�S�)9 �� �>/ 3����� S]� u��� H��- H����

�����-H�� ��61 �1 ��� 3��8-H�����= ,� -�1 . 4��_>=

H�� -H���� ��- -A���� ��- ��*h� l��c R�� � ��*h� � 3��8 ��

�@X������ l�@7� �1 ���6� 4+�� l��� P 8� -�1 05/0 �1 3���c

G�1 9�=� �S]� l�@7� �@X� �� � ����+ �W��+���/� ��� 8�

�x��.���+ A*X �= v������ R����� :��0 l�@7� 8� �����/�

�1 ,� ,� ���� (�S�� �1 9�= G� A*X 8� v�)�1 :��0 J��e4

�{��� ,� ��+ ���/� :��) l�@7� 4�� 8� le�X 3��,M� �[1�� ��.

9���� (!,��11 ,� 9��8� �0��.

3-3- �6?(�� Residual 1�6?(�� T-Student

����>� 8������ �=10 �� �� l�+8 ,� ��+ ���� 3�-� �� 3���

������ ����� �=9 �1 ,� �� 8� ����^� ���= ��,��� p�8�� 9����

����� J���T� ���8� ���>+ `�X1 �=H� �= � ����� �e�W <�� �

4��_>=��= ����>���� 3�-� ��0�� G�M����� p�8�� �� �=���=

�e�� :��� :�>X� ����>� �� � ,� :��� ��7�� 9���� 8� ��K�1

����� �� .������ A�7�� 3� 8� �@�W �� � ����� ��P :��� LW 9�� �=

l�+9 ����� ���6���8� ���>+ `�X1 ������,� 9�=H� �= �1 J��e

����>� T-Student . ,� ��+ �����

3-4 -�#�� S��

���6� �1 �0�� �1P R����� :��0 �� ��0�� �x�� = �1 z�1�

���, � ���0 3��,M� �[1�� 3���� ,� �1 9�1 ������ v������ 8� ��

�x�� 4+��)��- ��*h� 9�=��( ��*h� � 3��8)�

�( le�X � bD

A���� �e�� �� ��- )(AD ���[1�� ���/� ���� 3��1 ���� l��� �1

���6�P 8� >�0.05 3���>Y� Z[, )95 �(�e�������W9 .�+

3 Mean Squares

4 Degree of Freedom 5 P-Value

6 F-test

7 Confidence Level

8 Main Effect

9 Interaction

10 Residual

Page 6: 0 1 2 345 %˙ (6%786tumechj.tabrizu.ac.ir/article_6116_66bbb6554569a5b... · c, ˝1 51˝[˛ 9 ˝+˜0 astm ˝e, ˜˛ 9˝= ˇ˜ > 8 ˝2, 8 ˝e, ˝1 + 3˝- 1 l+ ˇ˘ [13 ] d5868 9 ˝cc+˜0

�,�

1

J�;

B-

���

����

� 9

=�U

�8�?�

�� ...

338

� ���@X� 4� ��[1�� ����,M� ���/� �1 ,� ,� ���� ��

�1 ) �[1�� J��e1�� 3��1 ( .��+

)1( Fmax=-15021-2404A+1103.5B+5332.8C+152.4D-16.7B2-2.7D2+66.7AB +427.8AC-249BC-3.7BD+54.8CD

) �[1�� �� ��1u ( Fmax�2B��M 9��� : �H� ���1 ��+

)4���� �(A� (��1)��- :B� (3����)����� :C� (����S) 3��8 :D ���6�:

�-�+ A����(��8� �e��) . ,� �[1�� )1( � ���/� :��H� ���1 9���

���>� JK�;�� �2B��M �=9 .���,��� )�� �1 �� ,� ��8�?���

��+ 9���+�0 .��� 9�=����� 4+�� �1 ������ ���- A���� ���6� �3��8

�� u �-�+� :�;�� �2B��M 9��� ���6� 3�����+��h� :�� 4�� �1 ��

P� �1 �1�W ����1��,� 1.�8 4�>B� A���� ���6� M� �[1�� 4��10

)�O��� �������e��33 ��- �3����3��8 � `��� �15/1 � ��14/0

<>�R��� ��+ b�B�� ����S� ���6� �2B��M 9���0) �= ,� �1

��� �=��W)/1 ���6� .>� �1 �� ���G� ��R � (�+ ���� ~�B-�.

9�= l�+ �� ��+ �{��� ���;� �1 �0���1 4��_>=4 ��7 �1 3��� ��

��,� �h�� 4�>= .

3-5- ���%��=H �6�E� *�#�� S��

G�h�� �15 �C� � �CD� H���8��� :��C0 5 3�C-����� ��C+ C,�

� ���6� �2B��M 9���1 ,� ���� Y 8� 9�C�� ���C6� �1 H���8� 5�

) �C1h� �[1�� 8� �� ���>B�1 ( �C1 C,� �C�� � �C+ �C���6� � ���C6�

.�+ ��,�7� �1h� :�� 9�[W 3�C>= ��CY :��C0 8� �C�5 C,����

) �[1�� 9�[W ����X1 (�1 �8���� %41/6 3�-� 4�� � ,� ���1�� �=�

8� le�X �1h� �[1�� �� P� 9���� 5�67� 4��l1�P /0��. ,� �

S1��4 - �\74 Pd *1% � b��#�61 c 8��$) G(� b�efI +6 2g�� ���h(%_

Source Sum of squares df Mean square F-value P value prob. Significance Regression 3128294 11 284390 26.16 0.000 * Linear 1124265 4 169177 15.56 0.000 * Pressure 15656 1 109078 10.04 0.003 * amplitude 209616 1 250447 23.04 0.000 * Time 29410 1 208173 19.15 0.000 * %GF 869583 1 148869 13.70 0.001 * Square 1097543 2 392997 36.16 0.000 * Amplitude * Amplitude 51514 1 227734 20.95 0.000 * %GF*%GF 1046029 1 693607 63.81 0.000 * Interaction 906487 5 181297 16.68 0.000 * Pressure*Amplitude 80120 1 80120 7.37 0.010 * Pressure*Time 19317 1 36915 3.40 0.074 * Amplitude*Time 506367 1 514768 47.36 0.000 * Amplitude*%GF 96657 1 96657 8.89 0.005 * Time*%GF 204025 1 204025 18.77 0.000 * Residual error 358692 33 10869 Pure error 225614 22 10255 Total 3486986 44 S = 104.257 PRESS = 727787

R-Sq = 89.71% R-Sq(pred) = 79.13% R-SQ(ADJ) = 86.28%

L��8- ����� �6?(�� *�/�� ,�? ���$ G(� �\74 Pd *1% � L ��) +6

5002500-250-500

99

90

50

10

1

Residual

Pe

rce

nt

20001750150012501000

500

250

0

-250

-500

Fitted Value

Re

sid

ua

l

4002000-200-400

16

12

8

4

0

Residual

Fre

qu

en

cy

50454035302520151051

500

250

0

-250

-500

Observation Order

Re

sid

ua

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for f max

Page 7: 0 1 2 345 %˙ (6%786tumechj.tabrizu.ac.ir/article_6116_66bbb6554569a5b... · c, ˝1 51˝[˛ 9 ˝+˜0 astm ˝e, ˜˛ 9˝= ˇ˜ > 8 ˝2, 8 ˝e, ˝1 + 3˝- 1 l+ ˇ˘ [13 ] d5868 9 ˝cc+˜0

|�;

� �9

����

�D�

�1

�E[

;�

@c �

bc

9��

�P �

��

339

L��9- �6?(��T-Student �� ,�? ���$ 1% � L ��) +6

S1��5 - ��+$#K �/* S�� ���#+�6

K#��+$ (bar) ��5& (µm) G�M)�6 ��6? (s) *����(� N��+ (%)�5 � e� 86 (N �M@61 *1% � ) (N) � �4) *1% � (%) �=H

١ ۵/١ ٢٧ ۴/٠ ٣٠ ۶٢/١٢۵۵ ٧۵/١١٩٧ ۶/۴ ٢ ۵/٢ ٨/٠ ٣٠ ٧ ٢٠۵/١٩۴١ ١۴/١٨١٧ ۴١/۶ ٣ ۵/١ ٢/١ ٣٣ ٢٠ ۶٣/١١١٢ ٠۵/١٠۵۴ ٢۶/۵ ۴ ٨/٠ ٣٠ ٢ ١٠ ۴٩/١٩٠١ ١٢/١٨٠۵ ٠۶/۵ ۵ ۵/٢ ٢/١ ٣٣ ٨ ١٠۴/١٢٩۴ ٩١/١٢١٣ ٢۵/۶

5-7� �� d %*

� ������� V��W 9�� 1 ��+ G�h�� 9�= �,�1 �1 �0�� �1

=�U :�;�� �� �= )�0 <= 9�� ��� ��X �� 4�@��� �@� �8�?���

�= ���� l�@7�� .>� �1DOE ^��� !,�� Z[, )�� � le�X �8

:�+

1- R����� :��0 8� �{��� ��+ �� 3��� �� ���� 3��C= )�CO��� �C����

�� S� 4�-�1 1 �� )�0 G��7,�� ���*M vC� 3�8� �3�C�8 � ���C6�

� �-�+ A���� ��- `��� �1 ������ �C=9 9�CO1 �C[6�8� CQ� 3�RC��

.����� ��P 9��*MS�

2- H�� 4�1 8�- H�C��� �C���� ��C=- 4�C-�1 9���� 3�C�8 S]C�� C1

G��7,� ,� .

3- ���C6� RC��� .���,��� 9���+�0 3��8 ���- 9�=����� H��R �

3�RC�� � ���*CM �C� �E��S� �= )�0 9=�U �E��1 �-�+ A����

= )�0 b��c.�=� �� H��R � �� �

4- G�Ch�� �����C�� J�C-���8� RC��� �= )�0 9=�U �,�1 ��,�1

9���+�0 3��8M��5�67� 4�� �� ��+4/0 3��C= )�O��� ������ ����S

33 9���/2���C- � 3����5/1 �C-�+ A�C��� ���C6� ���C110 �Ce��

)�� LCC,�� ��CC+ 9���CC+�0 ��8�?��CC� 9�CC= ���>����CC+ b�CCB��

=�CCU b�CC�c 3�RCC�� 4�CC>� .���CC,��� 4�CC-�1� 9G��7CC,�

�--�-. +�� ��=��W�� �+1

6- i�6%� [1] Beheshti, M.H., Rezadoost, A.M., Rainforced Plastics (Composits), Iran polymer & petrochemical Institute, 2005. [2] Chawla K.K., Composite materials, Springer-Verlag, New York, pp. 58-66, 1986.

[3] Mazumdar S.K., Composites manufacturing, Materials, Product, and Process Engineering, by CRC Press LLC, 2002.

]4[ ��@�c�>,� ��O�� :�, �G�, H���� �w�Y -� ��= �8�?���1385. [5] Taylor N.S., and Watson M.N.,. Welding techniques for plastics and composites, Joining and Materials, pp. 70–73, 1988. [6] Dai X.Y., Bates P.J., Mechanical properties of vibration welded short- and long-glass-fiber-reinforced polypropylene, Composites, Part A, 39,pp. 1159–1166, 2008. [7] Payeganeh G.H., Mostafa Arab N.B., Dadgar Asl, Y., Ghasemi F.A., and Saeidi Boroujeni M., Effects of friction stir welding processs parameters on appearance and strength of polypropylene composite welds, International Journal of the Physical Science, Vol.6(19), pp.4595-4601, 2011.

]8[ �9�>X� �9��= ����[e� 9���+�0���� 9�=������S�� �1h� l�@7�

= 9�� ��� )�0 ������� V��W 1 �+�-s� ���� 3�����4@���� �@� �8�?��� <

��+�� �,��+��� ���0���/+�1� �1� ��2-���. �1391

[9] Yousef pour A., Hojjati M., Immarigeon J.P, Fusion bonding/welding of thermoplastic composites. J. Journal of Thermoplastic Composite Materials, Vol 17(4), pp. 303–41, 2004. [10] Benatar A., and Gutowski T.G. Ultrasonic welding of PEEK graphite APC-2 composites, Polymer Engineering and Science, Vol. 29(23), pp. 1705–1721, 1989.

]11[ �<�=�1� ���P�1 :�, �:�� �@0 �3�/� ��0� ��= .�,m� 9���+�01384.

[12] Standard test method for tensile strength of Plastic, Annual book of ASTM standard, D 638, 2002. [13] Standard test method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP), Annual book of ASTM standard, D 5868, 2002. [14] S. Montgomery D. C, Design and analysis of experiments, Wiley, J, & Sons, 2ed Edition, New York, 1984. [15] Nikoi R., Sheikhi M. M., Bani Mostafa Arab, N., Experimental Analysis of Effects of Ultrasonic Welding on Weld Strength of Polypropylene Composite Samples, IJE TRANSACTIONS C: Aspects, Vol. 28, No. 3 pp. 447-453, 2015.