02 02 Will Schmidt Presentation

31
<Title of Presentation> By: <Author Name>, <Organization> <Date> <Title of Presentation> By: <Author Name>, <Organization> <Date> 17 th INTERNATIONAL CONFERENCE & EXHIBITION ON LIQUEFIED NATURAL GAS (LNG 17) ARCTIC LNG PLANT DESIGN: TAKING ADVANTAGE OF THE COLD CLIMATE William P. Schmidt Air Products and Chemicals, Inc. 17 April 2013 17 th INTERNATIONAL CONFERENCE & EXHIBITION ON LIQUEFIED NATURAL GAS (LNG 17)

description

b

Transcript of 02 02 Will Schmidt Presentation

Page 1: 02 02 Will Schmidt Presentation

<Title of Presentation>

By: <Author Name>, <Organization>

<Date>

<Title of Presentation> By: <Author Name>, <Organization>

<Date>

17th INTERNATIONAL CONFERENCE & EXHIBITION

ON LIQUEFIED NATURAL GAS (LNG 17)

ARCTIC LNG PLANT DESIGN:

TAKING ADVANTAGE OF THE COLD

CLIMATE

William P. Schmidt

Air Products and Chemicals, Inc.

17 April 2013

17th INTERNATIONAL CONFERENCE & EXHIBITION ON

LIQUEFIED NATURAL GAS (LNG 17)

Page 2: 02 02 Will Schmidt Presentation

2 LNG-17 17 April 2013

“Are Today’s Proven Baseload LNG Liquefaction Processes Acceptable for Cold Climates?”

To Answer:

Current & future baseload LNG locations

LNG liquefaction processes

Characteristics of arctic climates

How each process performs in arctic climates

Summary

Page 3: 02 02 Will Schmidt Presentation

3 LNG-17 17 April 2013

Air Products Baseload LNG Trains

Tropical

Desert

Page 4: 02 02 Will Schmidt Presentation

4 LNG-17 17 April 2013

Industry Arctic Plants

Page 5: 02 02 Will Schmidt Presentation

5 LNG-17 17 April 2013

Industry Arctic Plants

In

Development

Page 6: 02 02 Will Schmidt Presentation

6 LNG-17 17 April 2013

MRV

Mixed Refrigerant (MR)

MRL

C3 Pre-cooling

C3

Natural

Gas

LNG

Heat

Rejection

Precool

Temperature

AP-C3MRTM Process

Page 7: 02 02 Will Schmidt Presentation

7 LNG-17 17 April 2013

LNG

Natural

Gas

MRV

MRL

Cold Mixed

Refrigerant (CMR)

Warm Mixed

Refrigerant (WMR)

Precool

Temperature

AP-DMRTM Process

Page 8: 02 02 Will Schmidt Presentation

8 LNG-17 17 April 2013

What Makes an Arctic Location Different?

Periods with Very Short and Very Long Daylight

Extreme winds

Winter precipitation does not melt until summer

– Ice accumulation from sea spray and fog

Sea contains ice and may freeze over

– Problem for shipping

It’s Cold!

– Cold cooling medium for process heat sink

– Cold air to gas turbine drive

Page 9: 02 02 Will Schmidt Presentation

9 LNG-17 17 April 2013

-50

-40

-30

-20

-10

0

10

20

30

40

50

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Tem

pera

ture

(°C

)

Borneo

Qatar

Yamal

Yearly Air Temperature Trend

Avg Daily T

High-Low T

Page 10: 02 02 Will Schmidt Presentation

10 LNG-17 17 April 2013

Yearly Seawater Temperature Trend

-50

-40

-30

-20

-10

0

10

20

30

40

50

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Tem

pera

ture

(°C

)

Borneo

Qatar

Yamal

Ice Covered Ice Free Ice

Covered

Page 11: 02 02 Will Schmidt Presentation

11 LNG-17 17 April 2013

-40

-20

0

20

40

60

80

Pro

ces

s T

C)

Air Cooling Seawater Cooling

Process Temperatures Yearly Range

Borneo Qatar Yamal

Process T = Cooling T + ΔTApproach

Page 12: 02 02 Will Schmidt Presentation

12 LNG-17 17 April 2013

Case Study Arctic Climate

Compare two LNG Liquefaction Processes

– AP-C3MRTM and AP-DMRTM

Generic Arctic Location, Ambient -20°C to +22°C

Compressors

– 2 x Frame 7 Mechanical Drive Gas Turbine

– Each GT drives 50% compression string

– Design compressors at average T

• Rate for other conditions

Air Cooling

Page 13: 02 02 Will Schmidt Presentation

13 LNG-17 17 April 2013

Case Study Arctic Climate (cont)

Unlimited Feed Rate

– Maximize LNG using all available gas turbine power

Page 14: 02 02 Will Schmidt Presentation

14 LNG-17 17 April 2013

LNG Production depends on

– How much power is available

– How effectively the power is used

What is Effect of Cold Ambient?

Page 15: 02 02 Will Schmidt Presentation

15 LNG-17 17 April 2013

What is Effect of Cold Ambient?

SP

kWLNG

Spec

Av ail

P

PLNG LNG = production (t/hr) PAvail =Available power (kW) PSpec = Liquefier spec power (kWh/tonne)

Colder air T raises LNG production by

– Increasing PAvail

– Improving (lowering ) PSpec

Page 16: 02 02 Will Schmidt Presentation

16 LNG-17 17 April 2013

0

1

2

3

4

5

6

7

8

9

-20 -10 0 10 20 30

Pro

du

cti

on

(m

tpa

)

Ambient Temperature (°C)

Baseline

Gas Turbine

Total Increase = 75%

½ Gas Turbine

½ Spec Power

DMR Production

Page 17: 02 02 Will Schmidt Presentation

17 LNG-17 17 April 2013

0

1

2

3

4

5

6

7

8

9

-20 -10 0 10 20 30

Pro

du

cti

on

(m

tpa

)

Ambient Temperature (°C)

C3MR Production

Baseline

Gas Turbine

Total Increase = 45%

¾ Gas Turbine

¼ Spec Power

Page 18: 02 02 Will Schmidt Presentation

18 LNG-17 17 April 2013

0

1

2

3

4

5

6

7

8

9

-20 -10 0 10 20 30

Pro

du

cti

on

(m

tpa

)

Ambient Temperature (°C)

C3MR vs. DMR Air Cooled Arctic Case Study

Page 19: 02 02 Will Schmidt Presentation

19 LNG-17 17 April 2013

C3MR for Colder Ambient T

-80

-60

-40

-20

0

20

40

60

-20 -15 -10 -5 0 5 10 15 20 25

Pro

cess

T (

°C)

Ambient T (°C)

Feed T

C3 Precool T

C3Precooling

Load

Keeps C3 compressor suction P above

vacuum

C3 compressor recycles

Page 20: 02 02 Will Schmidt Presentation

20 LNG-17 17 April 2013

DMR for Colder Ambient T

-80

-60

-40

-20

0

20

40

60

-20 -15 -10 -5 0 5 10 15 20 25

Pro

cess

T (

°C)

Ambient T (°C)

Feed T

DMR Precool T

DMR

Precooling Load

Page 21: 02 02 Will Schmidt Presentation

21 LNG-17 17 April 2013

C3MR and DMR for Colder Ambient T

-80

-60

-40

-20

0

20

40

60

-20 -15 -10 -5 0 5 10 15 20 25

Pro

cess

T (

°C)

Ambient T (°C)

Feed T

C3 Precool T

DMR Precool T

DMR

Precooling Load

C3Precooling

Load

Page 22: 02 02 Will Schmidt Presentation

22 LNG-17 17 April 2013

So what have we learned?

For winter-to-summer temperature range, compare arctic to tropical/desert climate

– Ambient air: very wide for arctic

– Seawater: similar or smaller

Air cooled

– For moderate air T range, C3MR and DMR produce equal LNG

• Approx 30°C for this case study

– With large air T range, DMR produces more LNG than C3MR

• Based on 3 key assumptions

Page 23: 02 02 Will Schmidt Presentation

23 LNG-17 17 April 2013

3 Key Assumptions

1. Plant is air cooled

2. Available refrigeration power limits production

– Entire value chain can process extra feed

– Gas fields, pipeline, slug catcher, AGRU, dehydration, storage, carriers . . .

– Additional CAPEX used only part of year

3. Customers’ needs match plant production

– Vary seasonally

– Supply and demand are synchronized

If all three are true, then DMR liquefaction will produce more yearly LNG

Page 24: 02 02 Will Schmidt Presentation

24 LNG-17 17 April 2013

C3MR vs. DMR Yearly Production Range Seawater Cooled Arctic Case Study

0

1

2

3

4

5

6

7

8

9

-20 -10 0 10 20 30

Pro

du

cti

on

(m

tpa)

Seawater Temperature (°C)

DMR Production

C3MR Production

Seawater Yearly Temperature Range

Year Round Production

C3MR = DMR

Page 25: 02 02 Will Schmidt Presentation

25 LNG-17 17 April 2013

C3MR vs. DMR - Fixed Feed Yearly Production Range Air Cooled Arctic Case Study

Year Round Production

C3MR = DMR 0

1

2

3

4

5

6

7

8

9

-20 -10 0 10 20 30

Pro

du

cti

on

(m

tpa)

Ambient Temperature (°C)

DMR Production

C3MR Production

Page 26: 02 02 Will Schmidt Presentation

26 LNG-17 17 April 2013

Where does each process produce most annual LNG?

Climate

Cooling Media

Air Seawater

Constant

Feed

Variable Feed

(Inc >~30%)

Constant

Feed

Variable Feed

(Inc >~30%)

Tropical

Desert

Arctic AP-DMRTM

>

AP-C3MRTM

Page 27: 02 02 Will Schmidt Presentation

27 LNG-17 17 April 2013

Where does each process produce most annual LNG?

Climate

Cooling Media

Air Seawater

Constant

Feed

Variable Feed

(Inc >~30%)

Constant

Feed

Variable Feed

(Inc >~30%)

Tropical

Desert AP-DMRTM = AP-C3MRTM

Arctic AP-DMRTM

>

AP-C3MRTM

Page 28: 02 02 Will Schmidt Presentation

28 LNG-17 17 April 2013

DMR and C3MR – Other Factors

Type of precooling equipment

– Coil Wound Heat Exchanger (DMR) vs. Kettle evaporators (C3MR)

Equipment Count & Footprint

Operating considerations

Experience and reference list

CAPEX

These are very project specific, and must be evaluated for each project

Page 29: 02 02 Will Schmidt Presentation

29 LNG-17 17 April 2013

Arctic compared to desert and tropical climates

– Colder - gives more production

– Ambient air T range: wide summer-to-winter

– Seawater T range: similar summer-to-winter

When selecting liquefaction process for arctic, DMR produces same LNG as C3MR, unless:

– Air Cooling with wide T variation, and

– Excess value chain capacity installed, and

– Extra production can be sold seasonally

Summary

Page 30: 02 02 Will Schmidt Presentation

30 LNG-17 17 April 2013

Conclusion

Both AP-C3MRTM and AP-DMRTM

are viable liquefaction processes

for arctic climates

Page 31: 02 02 Will Schmidt Presentation

Thank you

tell me more www.airproducts.com