10 MATEMATICOS PERSONAJES

16
Leonardo de Pisa Leonardo de Pisa, Leonardo Pisano o Leonardo Bigollo (c. 1170 - 1250 ), también llamado Fibonacci, fue un matemático italiano , famoso por haber difundido en Europa el sistema de numeración indo-arábigo actualmente utilizado, el que emplea notación posicional (de base 10, o decimal) y un dígito de valor nulo: el cero ; y por idear la sucesión de Fibonacci . El apodo de Guglielmo (Guillermo), padre de Leonardo, era Bonacci (simple o bien intencionado). Leonardo recibió póstumamente el apodo de Fibonacci (por filius Bonacci, hijo de Bonacci). Guglielmo dirigía un puesto de comercio en Bugía (según algunas versiones era el cónsul de Pisa ), en el norte de África (hoy Bejaia , Argelia ), y de niño Leonardo viajó allí para ayudarlo. Allí aprendió el sistema de numeración árabe. Consciente de la superioridad de los numerales árabes, Fibonacci viajó a través de los países del Mediterráneo para estudiar con los matemáticos árabes 1 más destacados de ese tiempo, regresando cerca de 1200. En 1202 , a los 32 años de edad, publicó lo que había aprendido en el Liber abaci (abaci en el sentido de aritmética y no del ábaco instrumento). Este libro mostró la importancia del nuevo sistema de numeración aplicándolo a la contabilidad comercial, conversión de pesos y medidas , cálculo , intereses , cambio de moneda , y otras numerosas aplicaciones. En estas páginas describe el cero , la notación posicional , la descomposición en factores primos , los criterios de divisibilidad . El libro fue recibido con entusiasmo en la Europa ilustrada , y tuvo un impacto profundo en el pensamiento matemático europeo. Leonardo fue huésped del Emperador Federico II , que se interesaba en las matemáticas y la ciencia en general. En 1240 , la República de Pisa lo honra concediéndole un salario permanente (bajo su nombre alternativo de Leonardo Bigollo). Leonardo de Pisa

Transcript of 10 MATEMATICOS PERSONAJES

Page 1: 10 MATEMATICOS PERSONAJES

Leonardo de PisaLeonardo de Pisa, Leonardo Pisano o Leonardo Bigollo (c. 1170 - 1250), también llamado Fibonacci, fue un matemático italiano, famoso por haber difundido en Europa el sistema de numeración indo-arábigo actualmente utilizado, el que emplea notación posicional (de base 10, o decimal) y un dígito de valor nulo: el cero; y por idear la sucesión de Fibonacci.

El apodo de Guglielmo (Guillermo), padre de Leonardo, era Bonacci (simple o bien intencionado). Leonardo recibió póstumamente el apodo de Fibonacci (por filius Bonacci, hijo de Bonacci). Guglielmo dirigía un puesto de comercio en Bugía (según algunas versiones era el cónsul de Pisa), en el norte de África (hoy Bejaia, Argelia), y de niño Leonardo viajó allí para ayudarlo. Allí aprendió el sistema de numeración árabe.

Consciente de la superioridad de los numerales árabes, Fibonacci viajó a través de los países del Mediterráneo para estudiar con los matemáticos árabes 1 más destacados de ese tiempo, regresando cerca de 1200. En 1202, a los 32 años de edad, publicó lo que había aprendido en el Liber abaci (abaci en el sentido de aritmética y no del ábaco instrumento). Este libro mostró la importancia del nuevo sistema de numeración aplicándolo a la contabilidad comercial, conversión de pesos y medidas, cálculo, intereses, cambio de moneda, y otras numerosas aplicaciones. En estas páginas describe el cero, la notación posicional, la descomposición en factores primos, los criterios de divisibilidad. El libro fue recibido con entusiasmo en la Europa ilustrada, y tuvo un impacto profundo en el pensamiento matemático europeo.

Leonardo fue huésped del Emperador Federico II, que se interesaba en las matemáticas y la ciencia en general. En 1240, la República de Pisa lo honra concediéndole un salario permanente (bajo su nombre alternativo de Leonardo Bigollo).

Leonardo de Pisa

Leonardo de Pisa, "Fibonacci"

Nacimientoa. 1170

Pisa, Italia

Fallecimientoa. 1250

Page 2: 10 MATEMATICOS PERSONAJES

Familia BernoulliLa familia Bernoulli son una familia de matemáticos y físicos suizos procedentes de la ciudad de Basilea, que irrumpió en el mundo científico a finales del siglo XVII.

El fundador de esta familia fue Jacob el viejo, nacido en Amberes (Bélgica), un hugonote que se trasladó a Basilea en 1622 por motivos de persecución religiosa. Se casó tres veces y sólo tuvo un hijo, Nikolaus. Éste se casó y tuvo una docena, de los cuales cuatro llegaron a edad adulta; dos de ellos se convirtieron en matemáticos de primer orden: Jacob, nacido en 1654, y Johann, nacido en 1667. Ambos estudiaron la teoría del cálculo infinitesimal de Leibniz y desarrollaron aplicaciones de la misma.

La familia Bernoulli produjo muchos artistas y científicos notables, en particular un gran número de matemáticos famosos del siglo XVIII:

Jacob Bernoulli (1654–1705; también conocido como James o Jacques), matemático que dio nombre a los números de Bernoulli.

Nicolaus Bernoulli (1662–1716), pintor y regidor de Basilea. Johann Bernoulli (1667–1748; también conocido como Jean) matemático suizo que

adoptó de forma temprana el cálculo infinitesimal. Nicolau I Bernoulli (1687–1759) matemático suizo. Nicolau II Bernoulli (1695–1726) matemático suizo; investigó las curvas, las

ecuaciones diferenciales y la probabilidad. Daniel Bernoulli (1700–1782) desarrolló el principio de Bernoulli la paradoja de

San Petersburgo. Johann II Bernoulli (1710–1790; también conocido como Jean) matemático y físico

suizo. Johann III Bernoulli (1744–1807; también conocido como Jean) geógrafo,

astrónomo y matemático germano-suizo. Jacob II Bernoulli (1759–1789; también conocido como Jacques) físico y

matemático ruso-suizo.

Page 3: 10 MATEMATICOS PERSONAJES

Pierre de FermatPierre de Fermat (Beaumont-de-Lomagne, Francia, 17 de agosto de 1601;1 Castres, Francia, 12 de enero de 1665) fue un jurista y matemático francés apodado por Eric Temple Bell con el sobrenombre de «príncipe de los aficionados

Fermat fue junto con René Descartes uno de los principales matemáticos de la primera mitad del siglo XVII.

Descubrió el cálculo diferencial antes que Newton y Leibniz, fue cofundador de la teoría de probabilidades junto a Blaise Pascal e independientemente de Descartes, descubrió el principio fundamental de la geometría analítica. Sin embargo, es más conocido por sus aportaciones a la teoría de números en especial por el conocido como último teorema de Fermat, que preocupó a los matemáticos durante aproximadamente 350 años, hasta que fue demostrado en 1995 por Andrew Wiles ayudado por Richard Taylor.

Fermat es uno de los pocos matemáticos que cuentan con un asteroide con su nombre, (12007) Fermat. También se le ha dado la denominación de Fermat a un cráter lunar de 39 km de diámetro.

Biografía

La mansión del siglo XV donde nació es en la actualidad un museo. La escuela más antigua y prestigiosa de Toulouse se llama Pierre de Fermat y en ella se imparten clases de ingeniería y comercio. Está situada entre las diez mejores de Francia para clases preparatorias. Cabe destacar que Fermat estudió y analizó las matemáticas en sus tiempos libres ya que él tenía otra profesión.

Obra matemática

Espiral de FermatArtículo principal: Espiral de Fermat

También conocida como espiral parabólica, es una curva que responde a la siguiente ecuación en coordenadas polares:

Es un caso particular de la espiral de Arquímedes.

Page 4: 10 MATEMATICOS PERSONAJES

Leonhard EulerLeonhard Paul Euler (pron. AFI: [ˈɔʏlɐ] en alemán, AFI: [ˈojler] en español) (Basilea, Suiza, 15 de abril de 1707 - San Petersburgo, Rusia, 18 de septiembre de 1783), conocido como Leonhard Euler, fue un matemático y físico suizo. Se trata del principal matemático del siglo XVIII y uno de los más grandes y prolíficos de todos los tiempos.

Vivió en Rusia y Alemania la mayor parte de su vida y realizó importantes descubrimientos en áreas tan diversas como el cálculo o la teoría de grafos. También introdujo gran parte de la moderna terminología y notación matemática, particularmente para el área del análisis matemático, como por ejemplo la noción de función matemática. Asimismo se le conoce por sus trabajos en los campos de la mecánica, óptica y astronomía.

Euler ha sido uno de los matemáticos más prolíficos, y se calcula que sus obras completas reunidas podrían ocupar entre 60 y 80 volúmenes. Una afirmación atribuida a Pierre Simon Laplace expresa la influencia de Euler en los matemáticos posteriores: «Lean a Euler, lean a Euler, él es el maestro de todos nosotros.»

En conmemoración suya, Euler ha aparecido en la serie sexta de los billetes de 10 francos suizos, así como en numerosos sellos postales tanto suizos como alemanes y rusos. El asteroide (2002) Euler recibió ese nombre en su honor.

Notación matemática

Euler introdujo y popularizó varias convenciones referentes a la notación en los escritos matemáticos en sus numerosos y muy utilizados libros de texto. Posiblemente lo más notable fue la introducción del concepto de función matemática,1 siendo el primero en escribir f(x) para hacer referencia a la función f aplicada sobre el argumento x. Esta nueva forma de notación ofrecía más comodidad frente a los rudimentarios métodos del cálculo infinitesimal existentes hasta la fecha, iniciados por Newton y Leibniz, pero desarrollados basándose en las matemáticas del último.

También introdujo la notación moderna de las funciones trigonométricas, la letra e como base del logaritmo natural o neperiano (el número e es conocido también como el número de Euler), la letra griega Σ como símbolo de los sumatorios y la letra para hacer referencia a la unidad imaginaria. El uso de la letra griega π para hacer referencia al cociente entre la longitud de la circunferencia y la longitud de su diámetro también fue popularizado por Euler, aunque él no fue el primero en usar ese símbolo.

Page 5: 10 MATEMATICOS PERSONAJES

Gottfried LeibnizGottfried Wilhelm Leibniz, a veces von Leibniz1 (Leipzig, 1 de julio de 1646 - Hannover, 14 de noviembre de 1716) fue un filósofo, lógico, matemático, jurista, bibliotecario y político alemán.

Fue uno de los grandes pensadores de los siglos XVII y XVIII, y se le reconoce como "El último genio universal". Realizó profundas e importantes contribuciones en las áreas de metafísica, epistemología, lógica, filosofía de la religión, así como a la matemática, física, geología, jurisprudencia e historia. Incluso Denis Diderot, el filósofo deísta francés del siglo XVIII, cuyas opiniones no podrían estar en mayor oposición a las de Leibniz, no podía evitar sentirse sobrecogido ante sus logros, y escribió en la Enciclopedia: "Quizás nunca haya un hombre leído tanto, estudiado tanto, meditado más y escrito más que Leibniz... Lo que ha elaborado sobre el mundo, sobre Dios, la naturaleza y el alma es de la más sublime elocuencia. Si sus ideas hubiesen sido expresadas con el olfato de Platón, el filósofo de Leipzig no cedería en nada al filósofo de Atenas."2 De hecho, el tono de Diderot es casi de desesperanza en otra observación, que contiene igualmente mucho de verdad: "Cuando uno compara sus talentos con los de Leibniz, uno tiene la tentación de tirar todos sus libros e ir a morir silenciosamente en la oscuridad de algún rincón olvidado." La reverencia de Diderot contrasta con los ataques que otro importante filósofo, Voltaire, lanzaría contra el pensamiento filosófico de Leibniz. A pesar de reconocer la vastedad de la obra de éste, Voltaire sostenía que en toda ella no había nada útil que fuera original, ni nada original que no fuera absurdo y risible.

Obra

Leibniz escribió principalmente en tres idiomas: latín escolástico (ca. 40%), francés (ca. 35%) y alemán (menos del 25%). Durante su vida publicó muchos panfletos y artículos académicos, pero sólo dos libros filosóficos, De Ars combinatoria y la Théodicée. Publicó numerosos panfletos, con frecuencia anónimos, en nombre de la Casa de Brunswick, entre los que se destaca "De jure suprematum", una importante consideración sobre la naturaleza de la soberanía. Otro libro sustancial apareció póstumamente: su Nouveaux essais sur l'entendement humain (Nuevos ensayos sobre el entendimiento humano), el cual había evitado publicar tras la muerte de John Locke. Hasta 1895, cuando Bodemann completó su catálogo de los manuscritos y la correspondencia de Liebniz, no se esclareció la enorme extensión de su Nachlass (legado): aproximadamente 15 000 cartas a más de 1000 destinatarios, además de 40 000 ítems adicionales, sin contar que muchas de dichas cartas tienen la extensión de un ensayo. Gran parte de su vasta correspondencia, en particular las cartas fechadas después de 1685, permanecen inéditas, y mucho de lo que se ha publicado lo ha sido apenas en décadas recientes. La cantidad, la variedad y el desorden de los escritos de Leibniz son el resultado predecible de una situación que él describió de la siguiente manera:

Page 6: 10 MATEMATICOS PERSONAJES

Carl Friedrich GaussJohann Carl Friedrich Gauss  (Gauß) (?·i) (Brunswick, 30 de abril de 1777 – Gotinga, 23 de febrero de 1855), fue un matemático, astrónomo, geodesta, y físico alemán que contribuyó significativamente en muchos campos, incluida la teoría de números, el análisis matemático, la geometría diferencial, la estadística, el álgebra, la geodesia, el magnetismo y la óptica. Considerado «el príncipe de las matemáticas» y «el matemático más grande desde la antigüedad», Gauss ha tenido una influencia notable en muchos campos de la matemática y de la ciencia, y es considerado uno de los matemáticos que más influencia ha tenido en la Historia. Fue de los primeros en extender el concepto de divisibilidad a otros conjuntos.

Gauss fue un niño prodigio, a pesar de su condición de ser de una familia campesina de padres analfabetos; de él existen muchas anécdotas acerca de su asombrosa precocidad. Hizo sus primeros grandes descubrimientos mientras era apenas un adolescente en el bachillerato y completó su magnum opus, Disquisitiones arithmeticae a los veintiún años (1798), aunque fue publicado en 1801. Fue un trabajo fundamental para que se consolidara la teoría de los números y ha moldeado esta área hasta los días presentes.

Contribuciones a la Teoría del Potencial

El Teorema de la divergencia de Gauss, de 1835 y publicado apenas en 1867, es fundamental para la teoría del potencial y la física. Coloca en un campo vectorial la integral del volumen para la divergencia de un campo vectorial en relación con la integral de superficie del campo vectorial alrededor de dicho volumen.

Page 7: 10 MATEMATICOS PERSONAJES

David HilbertDavid Hilbert (23 de enero de 1862, Königsberg, Prusia Oriental – 14 de febrero de 1943, Gotinga, Alemania) fue un matemático alemán, reconocido como uno de los más influyentes del siglo XIX y principios del XX. Estableció su reputación como gran matemático y científico inventando o desarrollando un gran abanico de ideas, como la teoría de invariantes, la axiomatización de la geometría y la noción de espacio de Hilbert, uno de los fundamentos del análisis funcional. Hilbert y sus estudiantes proporcionaron partes significativas de la infraestructura matemática necesaria para la mecánica cuántica y la relatividad general. Fue uno de los fundadores de la teoría de la demostración, la lógica matemática y la distinción entre matemática y metamatemática. Adoptó y defendió vivamente la teoría de conjuntos y los números transfinitos de Cantor. Un ejemplo famoso de su liderazgo mundial en la matemática es su presentación en 1900 de un conjunto de problemas que establecieron el curso de gran parte de la investigación matemática del siglo XX.

En la pugna por demostrar correctamente algunos de los errores cometidos por Einstein, en la teoría general de la relatividad, David Hilbert se adelantó a las correcciones de Einstein, sin embargo nunca quiso otorgarse el mérito.

El teorema de finitud

El primer trabajo de Hilbert sobre funciones invariantes le llevó en 1888 a la demostración en su famoso teorema de finitud. Veinte años antes, Paul Gordan había demostrado el teorema de la finitud de generadores para formas binarias usando un complejo enfoque computacional. Los intentos de generalizar este método a funciones con más de dos variables fallaron por la enorme dificultad de los cálculos implicados. Hilbert se dio cuenta de que era necesario seguir un camino completamente diferente. Como resultado, demostró el teorema fundamental de Hilbert: mostrar la existencia de un conjunto finito de generadores, para las invariantes cuánticas en cualquier número de variables, pero de forma abstracta. Esto es, demostró la existencia de dicho conjunto, pero no de forma algorítmica sino mediante un teorema de existencia.

Hilbert envió sus resultados a los Mathematische Annalen. Gordan, el experto en teoría de invariantes para la Mathematische Annalen, no fue capaz de apreciar la naturaleza revolucionaria del teorema de Hilbert y rechazó el artículo, criticando la exposición porque era insuficientemente comprensiva. Su comentario fue:

Esto es teología, ¡no matemática!

Klein, por otro lado, reconoció la importancia del trabajo y se aseguró de que fuese publicado sin alteraciones. Animado por Klein y los comentarios de Gordan, Hilbert extendió su método en un segundo artículo, proporcionando estimaciones sobre el grado máximo del conjunto mínimo de gene

Page 8: 10 MATEMATICOS PERSONAJES

Augustin Louis Cauchy (París, 21 de agosto de 1789 - Sceaux, 23 de mayo de 1857) fue un matemático francés.

Cauchy fue pionero en el análisis matemático y la teoría de grupos de permutaciones, contribuyendo de manera medular a su desarrollo. También investigó la convergencia y la divergencia de las series infinitas, ecuaciones diferenciales, determinantes, probabilidad y física matemática.

Obra

En 1814 publicó la memoria de la integral definida que llegó a ser la base de la teoría de las funciones complejas. Gracias a Cauchy, el análisis infinitesimal adquiere bases sólidas.

Cauchy precisa los conceptos de función, de límite y de continuidad en la forma actual o casi actual, tomando el concepto de límite como punto de partida del análisis y eliminando de la idea de función toda referencia a una expresión formal, algebraica o no, para fundarla sobre la noción de correspondencia. Los conceptos aritméticos otorgan ahora rigor a los fundamentos del análisis, hasta entonces apoyados en una intuición geométrica que quedará eliminada, en especial cuando más tarde sufre un rudo golpe al demostrarse que hay funciones continuas sin derivadas, es decir: curvas sin tangente.

Page 9: 10 MATEMATICOS PERSONAJES

John Forbes Nash (vivo)John Forbes Nash Jr. (Bluefield, 13 de junio de 1928) es un matemático estadounidense que recibió el Premio Nobel de Economía en 1994 1 por sus aportes a la teoría de juegos y los procesos de negociación, junto a Reinhard Selten y John Harsanyi. La película Una mente maravillosa (2001) está basada en su vida.

Nash, Una mente maravillosa

Sylvia Nasar publicó en 1999 la novela A beautiful mind y dos años más tarde se estrenó la película Una mente maravillosa (2001), dirigida por Ron Howard y protagonizada por Russell Crowe. Basada en la vida de John Nash, la película ganó cuatro Oscar, incluyendo la categoría de mejor película. La película no es una biografía exacta; hay ciertas diferencias entre lo real y lo ficticio. Como mencionó el propio Nash: "Tiene errores y licencias, incluso en los lugares de rodaje; por ejemplo, no se rodó en Princeton, que es donde yo estudié, aunque sí aparece un edificio como si fuera Princeton". Sin embargo, reconoce que "lo positivo fue que supo llamar la atención en todo el mundo sobre la esquizofrenia".

Periodo universitario

En la Universidad de Princeton impartían clases Albert Einstein y John von Neumann, algo que motivó su ansia por destacar y obtener cierto reconocimiento. Inventó un juego «matemáticamente perfecto» (en el cual se basó posteriormente Hex) y en 1949 escribió un artículo titulado Puntos de equilibrio en juegos de n-personas,3 en el que definía el equilibrio de Nash. Con 21 años se doctoró con una tesis de menos de treinta páginas sobre juegos no cooperativos, bajo la dirección de Albert W. Tucker. Consiguió inmediatamente reconocimiento entre el resto de los especialistas y poco después comenzó a trabajar para la RAND, una institución de la Fuerza Aérea de los Estados Unidos dedicada a la investigación estratégica.

Page 10: 10 MATEMATICOS PERSONAJES

Grigori PerelmánGrigori "Grisha" Yákovlevich Perelmán (en ruso: Григорий Яковлевич Перельман), nacido el 13 de junio de 1966 en Leningrado, URSS (actualmente San Petersburgo, Rusia), es un matemático ruso que ha hecho históricas contribuciones a la geometría riemanniana y a la topología geométrica. En particular, ha demostrado la conjetura de geometrización de Thurston, con lo que se ha logrado resolver la famosa conjetura de Poincaré, propuesta en 1904 y considerada una de las hipótesis matemáticas más importantes y difíciles de demostrar.

En agosto de 2006 se le otorgó a Perelmán la Medalla Fields por "sus contribuciones a la geometría y sus ideas revolucionarias en la estructura analítica y geométrica del flujo de Ricci". La Medalla Fields es considerada el mayor honor que puede recibir un matemático. Sin embargo, él declinó tanto el premio como asistir al Congreso Internacional de Matemáticos.

El 18 de marzo de 2010, el Instituto de Matemáticas Clay anunció que Perelmán cumplió con los criterios para recibir el primer premio de los problemas del milenio de un millón de dólares, por la resolución de la conjetura de Poincaré. Tras rechazar dicho premio, declaró:

“No quiero estar expuesto como un animal en el zoológico. No soy un héroe de las matemáticas. Ni siquiera soy tan exitoso. Por eso no quiero que todo el mundo me esté mirando.”

Conjeturas de geometrización y de Poincaré

Hasta 2002, Perelmán era más conocido por su trabajo en teoremas de comparación en geometría riemanniana. Entre sus notables logros estaba la demostración de la conjetura de Soul.

El problemaArtículo principal: Conjetura de Poincaré

La conjetura de Poincaré, propuesta por el matemático francés Henri Poincaré en 1904, era el problema abierto más famoso de la topología. En términos relativamente sencillos, la conjetura indica que si una variedad tridimensional cerrada es suficientemente similar a una esfera en el sentido de que cada bucle en la variedad se puede transformar en un punto, entonces se considerará que es realmente sólo una esfera tridimensional. Por algún tiempo se ha sabido que el resultado análogo es cierto en dimensiones mayores; sin embargo, el caso de variedades tridimensionales ha resultado ser el más difícil de todos porque, hablando coloquialmente, cuando se manipula topológicamente una variedad tridimensional, hay muy pocas dimensiones para mover "regiones problemáticas" fuera del camino sin interferir con algo más.

En 1999, el Instituto Clay anunció los Problemas Premiados del Milenio: un premio de un millón de dólares por la demostración de alguna de las conjeturas, incluida la de Poincaré. Era aceptado por todos que una demostración exitosa de la conjetura de Poincaré constituiría un hito en la historia de las matemáticas, comparable a la demostración de Andrew Wiles del Último Teorema de Fermat o incluso de mayor alcance.

Page 11: 10 MATEMATICOS PERSONAJES

La demostración de Perelmán

En una 2-esfera, cualquier lazo puede transformarse hasta convertirse en un punto de su superficie. ¿Caracteriza esta condición la 2-esfera? La respuesta es sí, y ha sido conocida por mucho tiempo. La conjetura de Poincaré hace la misma pregunta, pero más difícil de visualizar: en la 3-esfera. Grigori Perelmán comprobó que la respuesta es afirmativa.

La idea de Hamilton había atraído mucha atención pero nadie había logrado demostrar que el proceso no se "colgaría" desarrollando "singularidades"... hasta que los artículos de Perelmán bosquejaron un programa para superar estos obstáculos. De acuerdo con Perelmán, una modificación del flujo de Ricci estándar, llamado flujo de Ricci con cirugía, puede remover sistemáticamente regiones singulares a medida que se desarrollan, de manera controlada.

Se sabe que las singularidades (incluyendo las que se producen, hablando vagamente, luego de que el flujo se haya dado durante una cantidad infinita de tiempo) deben ocurrir en muchos casos. Sin embargo, los matemáticos esperan que, asumiendo que la conjetura de geometrización sea cierta, cualquier singularidad que se desarrolle en un tiempo finito esencialmente se está "apretando" a lo largo de ciertas esferas que corresponden a la descomposición en primos de la 3-variedad. Si esto es así, cualesquiera singularidades de "tiempo infinito" deben resultar de ciertas piezas colapsantes de la descomposición JSJ. El trabajo de Perelmán demuestra aparentemente esta afirmación y así demuestra la conjetura de geometrización.