15. Dinamica Del Movimiento Rotacional

download 15. Dinamica Del Movimiento Rotacional

of 39

Transcript of 15. Dinamica Del Movimiento Rotacional

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    1/39

    A N G U L A R M O M E N T U M

    CHAPTER 11

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    2/39

    PRODUCTO VECTORIAL

    Existe instancias donde el producto de vectoresresultar ser otro vector. Anteriormente se observo que el producto de dos vectores

    tambin puede ser un escalar.

    Ello es denominado producto punto y es aplicado acircunstancias donde los vectores son paralelos.

    El producto vectorial de dos vectores esdenominado producto cruz y es aplicado acircunstancias donde los vectores sonperpendiculares.

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    3/39

    PRODUCTO VECTORIAL Y TORQUE

    El vector torque est enuna direccinperpendicular al plano

    formado por losvectores posicin yfuerza.

    t = rx F

    El torque es el productovectorial (o cruz) delvector posicin y delvector fuerza.

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    4/39

    DEFINICIN DE PRODUCTOVECTORIAL

    Dado para dos vectores, A y B

    El producto vectorial (cruz) de A y B es definidocomo un tercer vector, C.

    C es ledo como A cruz B

    La magnitud de C esAB sen q Donde, q es el ngulo entre A y B.

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    5/39

    EL PRODUCTO VECTORIAL

    El mduloAB senq esigual al rea delparalelogramo formado

    por los vectores A y B. La direccin de C es

    perpendicular al planoformado por los vectoresA y B.

    La mejor forma dedeterminar la direccines usando la regla de lamano derecha.

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    6/39

    PROPIEDADES DEL PRODUCTOVECTORIAL 1

    El producto vectorial no es conmutativo. El orden enla determinacin de la multiplicacin es importante.

    Tomando en cuenta el orden, recordar:

    A x B = - B x A

    Si A es paralelo a B (q = 0o or 180o), luego, A x B = 0 De la misma manera: A x A = 0

    Si A es perpendicular a B, luego |A x B| = AB

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    7/39

    PROPIEDADES DEL PRODUCTOVECTORIAL 2

    El producto vectorial obedece a la ley distributiva: A x (B + C) = A x B + A x C

    La derivada del producto cruz con respecto adeterminadas variables tales como t es:

    donde es importante para ejecutar lamultiplicacin el orden de A y B.

    d d d

    dt dt dt

    A B

    A B B A

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    8/39

    PRODUCTO VECTORIAL CONVECTORES UNITARIOS

    0

    i i j j k k

    i j j i k

    j k k j i

    k i i k j

    jiji

    Los signos son intercambiables en el producto cruz. A x (-B) = - A x B

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    9/39

    USANDO DETERMINANTES

    El producto cruz tambin puede ser expresadocomo:

    Desarrollando cada determinante se obtiene:

    y z x yx z

    x y z

    y z x yx z

    x y z

    A A A AA AA A A

    B B B BB BB B B

    i j k

    A B i j k

    y z z y x z z x x y y xA B A B A B A B A B A B A B i j k

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    10/39

    VECTOR TORQUE, EJEMPLO

    Dados los datos:

    Determine t = ?m)00.500.4(

    N)00.300.2(

    jir

    jiF

    [(4.00 5.00 )N] [(2.00 3.00 )m] [(4.00)(2.00) (4.00)(3.00)

    (5.00)(2.00) (5.00)(3.00)

    2.0 N m

    t

    r F i j i j

    i i i j

    j i i j

    k

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    11/39

    MOMENTO ANGULAR 1

    Considerando una partcula de masa mdeterminado por el vector posicin r y movindosecon cantidad de movimientop.

    Adicionando el trmino

    ( )

    d

    dt

    d

    dt

    d

    dt

    t

    t

    pr F r

    r

    p

    r p

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    12/39

    MOMENTO ANGULAR 2

    El momento angularinstantneo L de unapartcula relativa alorigen O es definidocomo el producto cruzde del vector posicinr y su cantidad de

    movimientoinstantneop de lapartcula. L = r xp

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    13/39

    TORQUE Y MOMENTO ANGULAR

    El torque es relativo al momento angular. De manera idntica como la fuerza se comporta

    en la cantidad de movimiento.

    Esto es la rotacin anlogo a la segunda ley

    de Newton. St y L deben ser medidos respecto a un mismo

    origen.

    Valido para sistemas de referencia inerciales.

    d

    dtt

    L

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    14/39

    MOMENTO ANGULAR 3

    The SI units of angular momentum are (kg.m2)/ s

    Both the magnitude and direction of L depend onthe choice of origin

    The magnitude of L = mvrsin f f is the angle between p and r The direction of L is perpendicular to the plane

    formed by r and p

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    15/39

    ANGULAR MOMENTUM OF A

    PARTICLE, EXAMPLE The vectorL = r x p is

    pointed out of thediagram

    The magnitude isL = mvrsin 90o = mvr sin 90o is used since v is

    perpendicular tor

    A particle in uniformcircular motion has aconstant angularmomentum about anaxis through the

    center of its path

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    16/39

    ANGULAR MOMENTUM OF A SYSTEM

    OF PARTICLES

    The total angular momentum of a system ofparticles is defined as the vector sum of the angularmomenta of the individual particles

    Ltot = L1 + L2+ + Ln =S

    Li Differentiating with respect to time

    tot ii

    i i

    d d

    dt dt t

    L L

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    17/39

    ANGULAR MOMENTUM OF A SYSTEM

    OF PARTICLES, CONT

    Any torques associated with the internalforces acting in a system of particles arezero

    Therefore,

    The net external torque acting on a system about

    some axis passing through an origin in an inertialframe equals the time rate of change of the totalangular momentum of the system about thatorigin

    totext

    ddt

    t L

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    18/39

    ANGULAR MOMENTUM OF A SYSTEM

    OF PARTICLES, FINAL

    The resultant torque acting on a system about anaxis through the center of mass equals the time rateof change of angular momentum of the systemregardless of the motion of the center of mass This applies even if the center of mass is accelerating,

    provided tand L are evaluated relative to the center ofmass

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    19/39

    ANGULAR MOMENTUM OF A

    ROTATING RIGID OBJECT Each particle of the

    object rotates in thexy plane about thez

    axis with an angularspeed of w

    The angularmomentum of an

    individual particle is Li= mi ri

    2w

    L and w are directedalong thez axis

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    20/39

    ANGULAR MOMENTUM OF A

    ROTATING RIGID OBJECT, CONT

    To find the angular momentum of the entire object,add the angular momenta of all the individualparticles

    This also gives the rotational form of NewtonsSecond Law

    2

    z i i i

    i i

    L L m r Iw w

    extzdL dI I

    dt dt

    wt

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    21/39

    ANGULAR MOMENTUM OF A

    ROTATING RIGID OBJECT, FINAL

    The rotational form of Newtons Second Lawis also valid for a rigid object rotating abouta moving axis provided the moving axis:

    (1) passes through the center of mass(2) is a symmetry axis

    If a symmetrical object rotates about a fixedaxis passing through its center of mass, the

    vector form holds: L = Iw where L is the total angular momentum measured

    with respect to the axis of rotation

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    22/39

    ANGULAR MOMENTUM OF A

    BOWLING BALL The momentum of

    inertia of the ball is2/5MR 2

    The angularmomentum of theball is Lz = Iw

    The direction ofthe angularmomentum is inthe positivezdirection

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    23/39

    CONSERVATION OF ANGULAR

    MOMENTUM

    The total angular momentum of a system isconstant in both magnitude and direction ifthe resultant external torque acting on the

    system is zero Net torque = 0 -> means that the system is

    isolated

    Ltot

    = constant orLi

    = Lf

    For a system of particles, Ltot = SLn = constant

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    24/39

    CONSERVATION OF ANGULAR

    MOMENTUM, CONT

    If the mass of an isolated systemundergoes redistribution, the moment

    of inertia changes The conservation of angular momentum

    requires a compensating change in theangular velocity

    Iiwi = Ifwf This holds for rotation about a fixed axis and forrotation about an axis through the center of mass of amoving system

    The net torque must be zero in any case

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    25/39

    CONSERVATION LAW SUMMARY

    For an isolated system -

    (1) Conservation of Energy:

    Ei = Ef

    (2) Conservation of Linear Momentum: pi = pf

    (3) Conservation of Angular Momentum:

    Li = Lf

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    26/39

    CONSERVATION OF ANGULAR

    MOMENTUM:

    THE MERRY-GO-ROUND The moment of inertia

    of the system is themoment of inertia of

    the platform plus themoment of inertia ofthe person Assume the person can

    be treated as a particle

    As the person movestoward the center ofthe rotating platform,the angular speed willincrease To keep L constant

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    27/39

    MOTION OF A TOP

    The only externalforces acting on thetop are the normal

    force n and thegravitational forceMg

    The direction of theangular momentum L

    is along the axis ofsymmetry

    The right-hand ruleindicates that t = r F= r

    M g is in thexyplane

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    28/39

    MOTION OF A TOP, CONT

    The direction of d L is parallel to that of t in part. Thefact that Lf= d L + Li indicates that the top precessesabout thez axis. The precessional motion is the motion of the symmetry axis

    about the vertical

    The precession is usually slow relative to the spinning motionof the top

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    29/39

    GYROSCOPE

    A gyroscope can beused to illustrateprecessional motion

    The gravitational forceMg produces a torqueabout the pivot, andthis torque is

    perpendicular to theaxle

    The normal forceproduces no torque

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    30/39

    GYROSCOPE, CONT

    The torque results in achange in angularmomentum d L in a

    direction perpendicularto the axle. The axlesweeps out an angle dfin a time interval dt.

    The direction, not the

    magnitude, of L ischanging

    The gyroscopeexperiences

    precessional motion

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    31/39

    GYROSCOPE, FINAL

    To simplify, assume the angular momentum due tothe motion of the center of mass about the pivot iszero Therefore, the total angular momentum is L = Iwdue to its

    spin

    This is a good approximation when wis large

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    32/39

    PRECESSIONAL FREQUENCY

    Analyzing the previous vector triangle, the rate atwhich the axle rotates about the vertical axis canbe found

    wp is the precessional frequencyp

    d Mgh

    dt I

    fw

    w

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    33/39

    GYROSCOPE IN A SPACECRAFT

    The angular momentumof the spacecraft aboutits center of mass is zero

    A gyroscope is set intorotation, giving it anonzero angularmomentum

    The spacecraft rotates inthe direction opposite tothat of the gyroscope

    So the total momentumof the system remains

    zero

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    34/39

    ANGULAR MOMENTUM AS A

    FUNDAMENTAL QUANTITY

    The concept of angular momentum is alsovalid on a submicroscopic scale

    Angular momentum has been used in the

    development of modern theories of atomic,molecular and nuclear physics

    In these systems, the angular momentumhas been found to be a fundamental

    quantity Fundamental here means that it is an intrinsic

    property of these objects

    It is a part of their nature

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    35/39

    FUNDAMENTAL ANGULAR

    MOMENTUM

    Angular momentum has discrete values

    These discrete values are multiples of afundamental unit of angular momentum

    The fundamental unit of angular momentum is h-bar

    Where his called Plancks constant2

    34 kg m1.054 102 sh

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    36/39

    ANGULAR MOMENTUM OF A

    MOLECULE Consider the

    molecule as a rigid

    rotor, with the twoatoms separated by afixed distance

    The rotation occurs

    about the center ofmass in the plane ofthe page with aspeed of

    CMI

    w

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    37/39

    CLASSICAL IDEAS IN SUBATOMIC

    SYSTEMS

    Certain classical concepts and models areuseful in describing some features of atomic andmolecular systems

    Proper modifications must be made A wide variety of subatomic phenomena can be

    explained by assuming discrete values of theangular momentum associated with a particular

    type of motion

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    38/39

    NIELS BOHR

    Niels Bohr was a Danish physicist

    He adopted the (then radical) idea of discreteangular momentum values in developing his theory

    of the hydrogen atom Classical models were unsuccessful in describing many

    aspects of the atom

  • 7/29/2019 15. Dinamica Del Movimiento Rotacional

    39/39

    BOHRS HYDROGEN ATOM

    The electron could occupy only those circular orbitsfor which the orbital angular momentum was equalto n

    where n is an integer

    This means that orbital angular momentum isquantized