dioxinasrua.ua.es/dspace/bitstream/10045/28720/1/IV_Reunion... · 2016-06-09 · ciemat p02:...

193

Transcript of dioxinasrua.ua.es/dspace/bitstream/10045/28720/1/IV_Reunion... · 2016-06-09 · ciemat p02:...

  • http://web.ua.es/dioxinas

    IV REUNIÓN NACIONAL DE DIOXINAS, FURANOS Y

    COMPUESTOS ORGÁNICOS PERSISTENTES RELACIONADOS

  • Copyright © 2013 Universidad de Alicante IV REUNIÓN NACIONAL DE DIOXINAS, FURANOS Y COMPUESTOS ORGÁNICOS PERSISTENTES RELACIONADOS Edición:

    Juan A. Conesa Ignacio Aracil Departamento de Ingeniería Química Universidad de Alicante Ap. 99 E-03080 Alicante

    Diseño de la portada: Mª Francisca Gómez-Rico Impresión y encuadernación:

    Imprenta Universidad de Alicante Depósito Legal: A 286-2013

  • COMITÉS

    COMITÉ LOCAL ORGANIZADOR

    Coordinador responsable: Juan A. Conesa Ferrer - Catedrático de Universidad

    Rafael Font Montesinos - Catedrático de Universidad

    Ignacio Martín Gullón - Catedrático de Universidad

    Andrés Fullana Font - Titular de Universidad

    Julia Moltó Berenguer - Ayudante Doctora

    Mª Francisca Gómez-Rico Núñez de Arenas - Contratada Doctora

    Ignacio Aracil Sáez - Ayudante Doctor

    Pilar Blasco Alemany- Técnico unidad de Espectrometría de Masas

    Nuria Ortuño García - Investigadora

    María Muñoz Fernández - Investigadora

    Ana Isabel Moreno Caballero - Investigadora

    Mª Ángeles Garrido López - Investigadora

    Mª Dolores Rey Martínez - Investigadora

    COMITÉ CIENTÍFICO

    Esteban Abad Holgado, IDAEA-CSIC, Barcelona

    Gerardo Fernández Martínez, SAI Universidad de A Coruña, A Coruña

    Mª José González Carlos, IQOG-CSIC, Madrid

    Daniel Gorri Cirella, Universidad de Cantabria, Santander

    Begoña Jiménez Luque, IQOG-CSIC, Madrid

    Jordi Díaz Ferrero, Instituto Químico de Sarriá, Barcelona

    Jose L. Domingo Roig, Universitat Rovira i Virgili, Tarragona

  • LA UNIVERSIDAD DE ALICANTE Y ALREDEDORES

    La Universidad de Alicante tiene alrededor de 30000 estudiantes españoles y más de 2000

    procedentes de otras universidades con las que se tienen diferentes programas de intercambio.

    En esta Universidad se puede estudiar Ingeniería Química, Química, Biología y hasta 39

    grados distintos.

    La ciudad de alicante tiene una población cercana a los 340000 habitantes, y la ciudad vecina

    de Elche, a 24 km de distancia, unos 230000. La provincia de Alicante, dentro de la Comunidad

    Valenciana, es amplia y diversa desde varios puntos de vista: geografía, clima, economía…

    Existen varios sectores industriales como el textil, cuero, juguete, papel, comida (helados,

    chocolates, turrones), cerámico, cemento y otros como mueble, productos metálicos y papel.

    En estos momentos el sector terciario también juega un papel importante en la economía

    alicantina.

    Diversos departamentos de la Universidad de Alicante han orientado su investigación a las

    demandas de la provincia, a través de contratos con empresas y también con financiación

    pública. El Departamento de Ingeniería Química ha trabajado y continúa haciéndolo en

    diversos sectores conectados con la industria, como son el sector de cemento, plásticos,

    tratamiento de aguas,… Desde hace varios años se vienen realizando estudios de procesos de

    tratamiento de residuos, incluyendo compostaje, vertido, briquetado, pirólisis, gasificación y

    combustión. Se estudian los procesos de producción de contaminantes, desde los más ligeros

    (gases como óxidos de carbono o gases ácidos) a los más pesados (PAHs, PCBs, PCDD/Fs,

    PCBzs, PCPhs, PBDD/Fs, PBBzs, PBPhs,…). Entre los residuos estudiados podríamos

    nombrar residuos plásticos de polietileno, PVC, policloropreno, neumáticos usados, residuos de

    automóviles…, biomasas como residuos de podas, cáscaras de frutos, lodos de depuradora,

    residuos sólidos urbanos y combustible derivado de residuos…, residuos electrónicos y

    eléctricos… Asimismo, se han estudiado las emisiones de contaminantes que se producen en

    procesos de combustión de gasolinas y gasóleos en diversas circunstancias.

    FECHAS Y LUGARES DE CELEBRACIÓN DE REUNIONES PREVIAS

    Lugar Año

    I Reunión Madrid 2001

    II Reunión A Coruña 2007

    III Reunión Santander 2011

    IV Reunión Alicante 2013

  • PROGRAMA DE SESIONES

    MIÉRCOLES 26 DE JUNIO DE 2013

    9 – 11h Registro y recogida de documentación

    11:00 h Ceremonia de inauguración a cargo de la excelentísima Vicerrrectora de Investigación de la Universidad de Alicante, Dª Amparo Navarro Faure

    Sesión 1: DISTRIBUCIÓN GLOBAL DE LOS COPs Moderadores: Esteban Abad/ Julia Moltó

    11:30 h Conferencia Plenaria PL1: OLD SINS THROW LONG SHADOWS: PCBS - 40 YEARS AFTER RESTRICTIONS IN SWITZERLAND - STILL AN ENVIRONMENTAL PROBLEM? Markus Zennegg Swiss Federal Laboratories for Materials Science and Technology, Switzerland

    12:20 h L01: PRELIMINARY DATA ON GLOBAL DISTRIBUTION OF DIOXIN-LIKE COMPOUNDS IN THE OCEANIC ATMOSPHERE DURING THE MALASPINA CIRCUMNAVIGATION Morales L, Martrat MG, Parera J, Abalos M, Dachs J, Abad E IDAEA-CSIC

    12:40 h L02: EVALUACIÓN DE LA PRESENCIA DE COP EN AIRE EN EL PERIODO 2008-2011. RESULTADOS DEL PLAN NACIONAL DE VIGILANCIA AMBIENTAL DE COP Sanz P, De la Torre A, Navarro I, Martínez MA CIEMAT

    13:00 h L03: PCDD/FS, DIOXIN-LIKE PCBS Y PBDES EN AIRE. RESULTADOS PRELIMINARES DEL PROGRAMA NACIONAL ESPAÑOL DE VIGILANCIA DE CONTAMINANTES ORGANICOS PERSISTENTES PARA EL CONVENIO DE ESTOCOLMO. Roscales JL, Muñoz-Arnanz J, Morales L, Abad E, Jiménez B IQOG-CSIC

    13:30 h Comida

  • Sesión 2: EXPOSICION A COPs. REGULACIÓN, POLÍTICA Y GESTION DEL CICLO DE VIDA Moderadores: Begoña Jiménez/ Ignacio Aracil

    15:30 h Conferencia Plenaria PL2: FLAME RETARDANTS IN THE ENVIRONMENT: AN OVERVIEW Mehran Alaee Water Science and Technology Directorate, Environment Canada, Canada

    16:20 h L04: THE EFFECT OF 2,4-DICHLOROPHENOXYACETIC ACID (2,4-D) ON PCDD/F EMISSIONS FROM OPEN BURNING OF BIOMASS Muñoz M, Gullet B, Touati A, Font R Universidad de Alicante

    16:40 h L05: COMPUESTOS ORGÁNICOS PERSISTENTES EN AIRE DOMÉSTICO DE PAÍSES EUROPEOS De la Torre A, Sanz P, Navarro I, Ramos B, Martínez MA CIEMAT

    17:00 h Coffee break

    17:30 h Sesión de pósters

    18:00 h L06: DIOXINAS, FURANOS Y PCB SIMILARES A DIOXINAS EN AIRE AMBIENTE DE CATALUÑA Díaz-Ferrero J, Hernández I, González-Sabaté L Instituto Químico de Sarriá (IQS)

    18:20 h L07: PRELIMINARY CHARACTERIZATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN ATMOSPHERIC PM10 OF AN URBAN AREA (CIUDAD REAL) IN CENTRAL-SOUTHERN SPAIN. Villanueva F, Tapia A, ALbaladejo J Universidad de Castilla la Mancha (UCLM)

  • JUEVES 27 DE JUNIO DE 2013

    Sesión 3: METODOLOGÍAS ANALÍTICAS Y CONTROL DE CALIDAD Moderadores: Mª Ángeles Martínez/ Andrés Fullana

    09:15 h Conferencia plenaria PL3: RECENT ADVANCES IN BLOOD ANALYSES FOR POPS Jean-François Focant University of Liege-Center for Analytical Reseach and Technology, Belgium

    10:00 h L08: TIME CONTROLLED CRYOGENIC ZONE COMPRESSION (T-CZC) GC-HRMS – A NOVEL TOOL FOR TARGET ANALYSIS AT ULTRA TRACE LEVELS Krumwiede D, Mehlmann H, Focant JF, Patterson Jr. D, D´Silva K Thermo Fisher

    10:20 h L09: DESARROLLO DE UN MÉTODO ROBUSTO, SELECTIVO Y SENSIBLE PARA EL ANÁLISIS DE DIOXINAS EN ALIMENTACIÓN Y MEDIOAMBIENTE MEDIANTE GC/MS/MS TQ Bueno C, López J, Pérez M Bruker

    10:40 h L10: STUDY OF GC-APCI/MS/MS(TQ) CAPABILITIES FOR THE DETERMINATION OF DIOXINS AND DIOXIN-LIKE PCB IN FOOD AND ENVIRONMENTAL SAMPLES Ábalos M, Sauló J, Abad E, Beltran J, Nácher-Mestre J, Cherta L, Portoles T, Hernández F, van Bavel B Universitat Jaume I de Castellón

    11:00 h Coffee break

    11:30 h Sesión de pósters

    12:00 h L11: COMPREHENSIVE SOLUTIONS AND TECHNICAL WORKFLOWS FOR THE ANALYSIS ON ENVIRONMENTAL POLLUTANTS Rivero JJ, Morales J Agilent

    12:20 h L12: ANÁLISIS DE DECHLORANE PLUS Y COMPUESTOS RELACIONADOS (DECHLORANE 602, 603 Y 604) EN ACEITES Díaz-Ferrero J, Pijuan Ll, Martí R Instituto Químico de Sarriá (IQS)

    12:40 h L13: ADVANCES IN ATMOSPHERIC PRESSURE GAS CHROMATOGRAPHY (APGC) FOR THE ANALYSIS OF PERSISTENT ORGANIC POLLUTANTS (POPS); BACKGROUND AND APPLICATIONS Cortés MA, Gledhill A, Dunstan J Waters

    13:00 h L14: MAGNETIC SECTOR HIGH RESOLUTION GC/MS: LATEST TECHNICAL DEVELOPMENTS FOR INCREASED ANALYTICAL FLEXIBILTY AND PRODUCTIVITY Mehlmann H, Krumwiede D, D'Silva K Thermo Fisher

    13:30 h Comida

  • Sesión 4: FORMACIÓN, FUENTES E INVENTARIOS DE DIOXINAS Y COMPUESTOS RELACIONADOS Moderadores: Adrián de la Torre/ Rafael Font

    15:20 h L15: ANÁLISIS CINÉTICO Y ESTUDIO DE LA EMISIÓN DE CONTAMINANTES DURANTE LA DESCOMPOSICIÓN TÉRMICA DE CIRCUITOS IMPRESOS CONSIDERANDO EL EFECTO DE LA PRESENCIA DE METALES Ortuño N, Conesa J A, Moltó J, Font R Universidad de Alicante

    15:40 h L16: FORMACIÓN DE PCDD/Fs A PARTIR DE CLOROFENOLES MEDIANTE LAS ENZIMAS LIGNINA- Y MANGANESO-PEROXIDASA RELACIONADAS CON COMPOSTAJE Muñoz M, Gomez-Rico MF, Font R Universidad de Alicante

    16:00 h L17: ANÁLISIS DE CONTAMINANTES EN LA COMBUSTIÓN DE RESIDUOS DE MUEBLES Moreno AI, Font R Universidad de Alicante

    16:20 h Coffee break

    17:00 h L18: ASSESSMENT OF PCDD/F AND DL-PCB EMISSIONS FROM CLINKER KILN STACK USING ALTERNATIVE FUELS Rivera-Austrui J, Martinez K, Adrados M.A, Abalos M, Rivera J, Abad E IDAEA-CSIC

    17:20 h L19: ESTUDIO DE LA GENERACIÓN DE PCDD/Fs DURANTE EL PROCESO DE COMPOSTAJE Garrido MA, Muñoz M, Font R Universidad de Alicante

    17:40 h L20: CHANGES IN PCDD/FS CONCENTRATION DURING THE ADVANCED OXIDATION TREATMENT OF LANDFILL LEACHATES Vallejo M, San Román MF, Ortiz I Universidad de Cantabria

    20:00 h Recogida en autobús

    20:30 h Cena de gala en el Castillo de Santa Bárbara

    00:00 h Fuegos artificiales

  • VIERNES 28 DE JUNIO DE 2013

    Sesión 5: ALIMENTACIÓN HUMANA Y ANIMAL. TOXICOLOGÍA Y SALUD Moderadores: Belén Gómara/ Mª José González

    09:15 h Conferencia plenaria PL4: WIDE RANGE OF ASPECTS RELATED TO POPS IN THE FOOD CHAIN: FROM CONTRIBUTIONS OF THE EU-RL/NRL FOR DIOXINS AND PCBS IN FEED AND FOOD NETWORK TO HUMAN BIOMONITORING OF POPS Rainer Malisch European Union Reference Laboratory (EU-RL) for Dioxins and PCBs in Feed and Food, Germany

    10:00 h L21: WHITE STORKS DO NOT DELIVER BABIES, BUT THEY DO DELIVER GOOD NEWS ON REDUCTION OF LEGACY POPS IN SPAIN Muñoz-Arnanz J, Abad E, Morales L, Jiménez B IQOG-CSIC

    10:20 h L22: SIXTEEN YEAR OF PCDD/FS AND PCBS BIOLOGICAL MONITORING IN MATARÓ. A POPULATION-BASED COHORT STUDY (1995-2012) Parera J, Martrat MG, Serra-Prat M, Palomera E, Adrados MA, Saulo J,Matioli L, Abalos M, Rivera J, Abad E IDAEA-CSIC

    10:40 h L23: CONCENTRACIONES DE PCBs EN SUERO DE LA POBLACIÓN ADULTA ESPAÑOLA Huetos O, Cervantes M, Aragonés N, Esteban M , Bartolomé M, Ruiz-Moraga M, Pérez-Gómez B, Calvo E, Castaño A Instituto de Salud Carlos III

    11:00 h Coffee break

    11:40 h L24: POLYCHLORINATED DIBENZO-p-DIOXINS, DIBENZOFURANS AND BIPHENYLS, AND CHLORINATED PARAFFINS IN GULL EGGS (Laurus michahellis) FROM SPANISH NATIONAL PARKS Santos FJ, Olmos J, Morales L, Martrat MG, Cristale J, Abad E, Bertolero A, Lacorte S Universidad de Barcelona

    12:00 h L25: DESARROLLO DE UN MÉTODO ANALÍTICO PARA EL ANÁLISIS DE PCBs SIMILARES A DIOXINAS Y PCDD/Fs EN MUESTRAS DE PEQUEÑO VOLUMEN DE SUERO SANGUÍNEO DE PACIENTES CON PROBLEMAS DE FERTILIDAD. Moltó J, Paul R, Ortuño N, Moragues I, Aizpurua J, Gómez-Torres MJ Universidad de Alicante

    12:20 h L26: PROBABILISTIC ASSESSMENT OF THE DIETARY EXPOSURE OF THE POPULATION OF THE REGION OF VALENCIA TO DIOXINS Millán-Yunta ME, Pardo-Marín O, Yusà-Pelechà V Public Heath Laboratory of Valencia (LSPV)

    12:40 h INTERVENCIÓN DE DÑA. CRISTINA PERDIGUERO ARENAS Jefa de Servicio de la S.G. de Economía Pesquera de la Secretaría General de Pesca (Ministerio de Agricultura, Alimentación y Medio Ambiente)

    13:15 h ACTO DE CLAUSURA. PRESENTACIÓN CONGRESO INTERNACIONAL DIOXIN 2014

    13:30 h Comida

  • SESIÓN DE PÓSTERS

    P01: CARRYOVER OF PERFLUORINATED COMPOUNDS FROM WASTE-AMENDED SOILS TO PLANTS Navarro I, De la Torre A, Sanz P, Porcel MA, Carbonell G, Martínez MA CIEMAT P02: TRANSFERENCIA DE CONTAMINANTES ORGÁNICOS EMERGENTES MEDIANTE LA VALORIZACIÓN AGRÍCOLA DE RESIDUOS: LODOS DE EDAR Y COMPOST DE RSU Navarro I, De la Torre A, Sanz P, Porcel MA, Carbonell G, Martínez MA CIEMAT P03: ANALYTICAL METHODOLOGY SET UP FOR THE ANALYSIS OF DIOXINS AND FURANS IN ANIMAL FEED AND FEED ADDITIVES Gomez S, Gorri D, Irabien A Universidad de Cantabria P04: DETERMINATION OF PBDEs AND NOVEL BFRs BY GC-QqQ(MRM) García-Bermejo A, Mohr S, Herrero L, González MJ, Gómara B IQOG-CSIC P05: PRESENCE OF ORGANOCHLORINE PESTICIDES IN FOOD ANIMALS FAT SAMPLES Castillo M, Carbonell E, Pastor MC, Gonzalez C, Millan E Laboratorio de Salud Pública de Valencia P06: VARIABILIDAD ESPACIAL Y TEMPORAL DE LOS NIVELES DE HAPs EN CANTABRIA Ruiz S, Fernández-Olmo I, Irabien A Universidad de Cantabria P07: DETERMINATION OF PERSISTENT HALOGEN HYDROCARBONS IN EUROPEAN EEL (ANGUILLA ANGUILLA) BY GAS CHROMATOGRAPHY COUPLED TO MASS SPECTROMETRY Romero-González R, Fernández-Moreno JL, Hernández-Torres ME, Valera-Talavera N, Martínez-Vidal JL, Garrido-Frenich A Universidad de Almería P08: BROMINATED FLAME RETARDANTS (BFRS) IN HONEY SAMPLES FROM SPAIN Mohr S, García-Bermejo A, Herrero L, Gómara B, Costabeber IH, González MJ IQOG-CSIC

  • P09: FRACCIONAMIENTO DE COP EN AIRE URBANO: FASE GAS Y FASE PARTICULADA Barbas B, De La Torre A, Sanz P, Navarro I, Martínez MA CIEMAT P10: APPLICATION OF MS.3 SYSTEMS FOR EVALUATING THE TRANSFER OF EMERGING POLLUTANTS FROM AMENDED AGRICULTURAL SOILS TO EARTHWORMS De la Torre A, Navarro I, Sanz P, Pro J, Fernández C, Carbonell G, Martínez MA CIEMAT P11: SEASONAL OCCURRENCE OF AIRBORNE PCDD/Fs, PCBs AND PCNs NEAR A WASTE INCINERATOR: ASSESSING HEALTH RISKS Nadal M, Vilavert L, Schuhmacher M, Domingo JL Universitat Rovira i Virgili de Tarragona P12: TEMPORAL EVOLUTION OF PCDD/Fs IN BREAST MILK OF WOMEN LIVING NEAR A HAZARDOUS WASTE INCINERATOR Schuhmacher M, Kiviranta H, Ruokojärvi R, García F, Nadal M, Domingo JL Universitat Rovira i Virgili de Tarragona P13: DE NOVO SYNTHESIS OF BROMINATED DIOXINS AND FURANS BY THERMOGRAVIMETRY Ortuño N, Conesa JA, Molto J, Font R Universidad de Alicante P14: EFFECT OF THE METAL IN THE PRODUCTION OF POLLUTANTS DURING THE DECOMPOSITION OF TWO TYPES OF ELECTRIC WIRES Conesa JA, Egea S, Moltó J, Ortuño N, Font R Universidad de Alicante P15: DETERMINATION OF PCDD/F, PCBS AND PBDE IN SWISS SEWAGE SLUDGE Muñoz M, Zennegg M, Gerecke A Universidad de Alicante P16: ELIMINACIÓN DE COMPUESTOS VOLÁTILES SULFURADOS MEDIANTE NANOPARTÍCULAS DE HIERRO Calderón B, Fullana A, Aracil I Universidad de Alicante

  • P17: EFFECT OF DIESEL PARTICLE FILTERS AND FUEL ON DIESEL ENGINE PCDD/F EMISSIONS Rey MD, Zennegg M, Haag R, Honegger P, Bürki S, Czerwinski J, Heeb NV Universidad de Alicante P18: ANALYSIS OF HALOGENATED COMPOUNDS IN LANDFILL GAS Rey MD, Font R, Aracil I Universidad de Alicante P19: ESTUDIO DE LAS EMISIONES GENERADAS DURANTE LA COMBUSTIÓN INCONTROLADA DE RESIDUOS NO METÁLICOS DE AUTOMÓVILES FUERA DE USO Edo M, Font R, Fullana A, Aracil I Universidad de Alicante

  • INFORMACIÓN GENERAL

    SEDE

    Hotel Meliá Alicante

    Plaza del Puerto, 3

    Alicante 03001

    España

    FECHAS

    26-28 Junio 2013

    SECRETARÍA TÉCNICA

    NUESTRO PEQUEÑO MUNDO VIAJES, S.L.

    Dirección: Avda. Estación, 5 Local 14

    03003 Alicante

    Tel.: 965130228

    Fax: 965229907

    e-mail: [email protected]

    CERTIFICADOS DE ASISTENCIA Y/O PONENCIA-COMUNICACIÓN

    Se entregarán bajo petición.

    mailto:[email protected]

  • PONENCIAS

  • CONFERENCIAS PLENARIAS

  • OLD SINS THROW LONG SHADOWS: PCBs – 40 YEARS AFTER

    RESTRICTIONS IN SWITZERLAND – STILL AN ENVIRONMENTAL

    PROBLEM?

    Zennegg M1, Schmid P

    1, Vermeirssen E

    2,3, Tremp J

    4

    1Swiss Federal Laboratories for Materials Testing and Research (Empa), Dübendorf

    Switzerland; 2Swiss Federal Institute of Aquatic Science and Technology, Dübendorf,

    Switzerland; 3Ecotox Centre, Swiss Centre for Applied Ecotoxicology Eawag/EPFL, Dübendorf

    Switzerland; 4Federal Office of the Environment (FOEN), Bern, Switzerland

    e-mail: [email protected] Introduction In 1972, more than 40 years ago, Switzerland banned the application of polychlorinated biphenyls(PCB) in open systems. Further use in closed systems like transformers and condensers was only possible under an exemption clause which was then repealed in 1983. Since 1986, production, import, and use of PCB are completely banned in Switzerland. Nevertheless, several hundred tons of PCB are still present from older applications such as joint sealants

    1, anti-corrosion coatings, industrially contaminated locations and disposal sites. From

    these and other diffuse reservoirs PCB can enter the environment via atmospheric deposition, waste water, and runoff

    2. In urban areas PCB air concentrations are higher compared to

    background locations, showing that PCB are emitted in cities from long-lived applications to the atmosphere

    3,4.Due to the ban of PCB and the continuous elimination of PCB containing

    electrical equipment as well as ongoing improvement of waste water treatment, incineration and recycling processes, PCB levels in the Swiss environment have continuously decreased

    5-8.

    Nevertheless, in 2007 analyses of fish from the river Saane revealed extraordinary high levels of dioxin-like PCB (dl-PCB). Several fish species from this river exceeded by far the maximum level of 8 pg WHO-TEQ/g fresh weight (fw) set by the European Union

    9. A maximum of 97 pg

    WHO-TEQ/g fw was observed in a single fish sample. The former disposal site of La Pila was identified as the responsible point source for the PCB contamination of the river. La Pila was used as a landfill for domestic and industrial waste from 1952 to 1975. The landfill coversroughly 2 hectares and has a volume of approximately 195'000 m

    3. Wastes are

    heterogeneously distributed and can be found downto a depth of 20 meters. The amount of PCB was estimated to be more than 20 tons. Solid samples taken at several spots of the landfill revealed PCB levels of more than 1000 mg/kg

    10. Based on the above mentioned findings and

    due to increasing political pressure the Federal Office of the Environment (FOEN) initiated a nationwide survey to obtain an overview of the PCB contamination of Swiss rivers and lakes. Hitherto unknown diffuse and point sources should be detected and identified by the monitoring of fish, water, and sediment. This data shall serve as a basis for immediate actions to protect humans, wildlife and the environment from the exposure to PCB. Materials and Methods Samples: Fish and sediment samples were taken by the responsible cantonal authorities, and analyses were carried out by contract laboratories or by Empa. PCB and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) were determined in fish, water and sediment. For the identification of unknown PCB point sources in contaminated rivers a method based on the use of polydimethylsiloxane(PDMS) passive samplers was developed

    11,12.

    PL1

    mailto:[email protected]

  • Methods: All available data on PCB and PCDD/F in fish and sediment from Swiss lakes and rivers were collected resulting in 1300 data sets from the last 20 years. The compilation was published by the Swiss Federal Office of the Environment

    13.

    PDMS passive samplers were exposed in the PCB contaminated rivers for two to four weeks and then transported to the laboratory for analysis. After spiking with

    13C12-labelled PCBs the

    passive samplers were solvent extracted with methanol for 24 hours. The extracts were concentrated and cleaned up using acid treatment and chromatography on activated silica gel. Quantitative determination of PCB was carried out usinggas chromatography high resolution mass spectrometry (GC/HRMS) at a mass resolution of 10’000. Results and Discussion On the basis of PCB levels in fish, the Swiss water bodies were classified into three categories. The first category was defined as water bodies with PCB background contamination corresponding to levels below 4 pg WHO-TEQ/g fw (50% of the maximum level of 8 pg WHO-TEQ/g fw). The second category containing water bodies with levels of 4 to 8 pg WHO-TEQ/g fw in fish was defined as water bodies with diffuse to higher PCB load. In these water bodies, older individuals or fat rich fish species already may exceed the maximum level of 8 pg WHO-TEQ/g fw. The third category was defined as water bodies with high PCB contamination. In water bodies of this category, most fish species clearly exceed the permitted maximum level. The highest PCB concentrations of up to 329pg WHO-TEQ/g fw were found in fish from the river Saane downstream of the above mentioned landfill of La Pila

    14. Similarly high PCB levels up to

    60 pg WHO-TEQ/g fw were detected in various fish species from the rivers Birs and Rhine close to Basel

    13. While the responsible source for the PCB contamination of the river Saane was

    known, the former landfill site La Pila, it remained unknown in case of the PCB contaminated river Birs. Therefore, a screening program was initiated in 2010 aimed at the identification of possible PCB point sources in the catchment of the river Birs. Polydimethylsiloxane (PDMS) passive samplers

    15 deployed at 15 locations for approximately four weeks proved an excellent

    tool to identify the PCB source. Fig. 1 shows dl-PCB and PCDD/F levels in fish from the river Birs in Northwestern Switzerland measured in 2008 and 2009 in single and pooled samples of various fish species. The maximum level of 8 pg WHO-TEQ/g fw was clearly exceeded by almost 50% of the samples, most of them taken downstream of the barrage of Choindez. The highest value measured was 56 pg WHO-TEQ/g fw. In Fig. 2 the results from the PDMS passive sampler campaign are shown. A very similar trend,as noted in fish,was observed for the passive samplers. Highest concentrations were found close to Choindez highlighting this site as possible origin of the PCB contamination. Further analyses conducted with a closer grid of passive samplers in the vicinity of Choindez confirmed the first findings. An old industrial site in Choindez, producing cast iron pipes, was suspected to be responsible for the higher PCB input into the river Birs. Detailedinvestigations ofthisindustrial area brought to light, that PCB contaminated iron was used for the production of new cast iron pipes. Water from the river Birs was used to cool down exhaust gases from the iron melting procedure.This cooling water was not sufficiently cleaned and discharged into the river Birs intermittently. Inthis way highly PCB contaminated water entered into the river and led to the contamination of fish and sediment.

  • Figure 1: Concentrations of dl-PCB and PCDD/F in fish from the river Birsandother nearby rivers. Manually introduced trend curve (blue), highlighting the steep increase after Choindez.

    Figure 2: Sum of indicator PCB detected in the PDMS passive samplers exposed in the catchment area of the river Birs. Steep increase in PCB concentration after Choindez is visible.

    flow

    direction

    flow

    direction

  • Conclusions: Most of the Swiss water bodies can be categorized as background contaminated with PCB. However, there are still some PCB hot spots present in Switzerland. Two of them are the rivers Saane and Birs. In order to complete the overview on the PCB contamination of the Swiss aquatic environment, data gaps of several rivers and lakes should be closed in order to identify and eliminate activepoint sources. To this end, old landfills, former industrial production sites, and metal recycling plants (e.g. car and metal shredding) should be tracked. Special care has also to be taken in the demolition of buildings with suspected PCB legacies in building materials and electrical equipment. Furthermore, attention should be paid to dismantling, replacement, and recycling of steel constructions protected with PCB containing anti-corrosion coatings. Especially in recycling or deposition of old electrical equipment, PCB may still be released to the environment. The landfill of La Pilaor the old industrial site of Choindez areonly two cases of many, showing clearly that old sins throw long shadows. After 40 years of restrictions ofthe use of PCB in Switzerland these old persistent organic pollutants are still a cause of concern. Therefore, based on today's knowledge on classical and emerging persistent organic pollutants a proper handling and disposal of contaminated wastes deserves top priority. Acknowledgements We are indebted to Loïc Constantin, Marin Huser, Ueli Ochsenbein, Daniel Urfer, and the cantonal authorities of Berne, Fribourg and Jura for helpful discussions and information. References 1. Kohler, M., Tremp, J., Zennegg, M., Seiler, C., Minder-Kohler, S., Beck, M., Lienemann, P.,

    Wegmann, L., Schmid, P., Environ. Sci. Technol., 2005; 39: 1967-1973. 2. Schmid, P., Kohler, M., Gujer, E., Zennegg, M., Lanfranchi, M., Chemosphere, 2007; 67: 16-

    21. 3. Gasic, B., MacLeod, M., Klanova, J., Scheringer, M., Ilic, P., Lammel, G., Pajovic, A., Breivik,

    K., Holoubek, I., Hungerbühler, K., Environ. Pollut., 2010; 158: 3230-3235. 4. Gasic, B., Moecke, C., Macleod, M., Brunner, J., Scheringer, M., Jones, K.C., Hungerbuhler,

    K., Environ. Sci. Technol., 2009; 43: 769-776. 5. Zennegg, M., Kohler, M., Hartmann, P.C., Sturm, M., Gujer, E., Schmid, P., Gerecke, A.C.,

    Heeb, N.V., Kohler, H.-P.E., Giger, W., Chemosphere, 2007; 67: 1754-1761. 6. Bogdal, C., Schmid, P., Kohler, M., Müller, C.E., Iozza, S., Bucheli, T.D., Scheringer, M.,

    Hungerbühler, K., Environ. Sci. Technol., 2008; 42: 6817-6822. 7. Bogdal, C., Schmid, P., Zennegg, M., Anselmetti, F.S., Scheringer, M., Hungerbühler, K.,

    Environ. Sci. Technol., 2009; 43: 8173-8177. 8. Schmid, P., Gujer, E., Zennegg, M., Studer, C., Chemosphere, 2003; 53: 129-136. 9. European Union. Available from:

    http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:032:0034:0038:EN:PDF. 10. Cantonal authority of Fribourg. Available from:

    http://www.fr.ch/pila/de/pub/untersuchungen/deponie.htm. 11. Greenwood, R., Mills, G.A., Vrana, B., Allan, I., Aguilar-Martínez, R., Morrison, G., Chapter 9

    Monitoring of priority pollutants in water using chemcatcher passive sampling devices, in Comprehensive Analytical Chemistry, G.M. R. Greenwood and B. Vrana, Editors. 2007, Elsevier. p. 199-229.

    12. Seethapathy, S., Górecki, T., Analytica Chimica Acta, 2012; 750: 48-62. 13. Schmid, P., Zennegg, M., Holm, P., Pietsch, C., Brühschweiler, B., Kuchen, A., Staub, E.,

    Tremp, J. Available from: www.umwelt-schweiz.ch/uw-1002-d. 14. Cantonal authority of Fribourg. Available from:

    http://www.fr.ch/pila/files/pdf45/2012.08.29_resultats_analyses_poissons_de.pdf. 15. Rusina, T.P., Smedes, F., Koblizkova, M., Klanova, J., Environ. Sci. Technol., 2009; 44: 362-

    367.

    http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:032:0034:0038:EN:PDFhttp://www.fr.ch/pila/de/pub/untersuchungen/deponie.htmhttp://www.umwelt-schweiz.ch/uw-1002-dhttp://www.fr.ch/pila/files/pdf45/2012.08.29_resultats_analyses_poissons_de.pdf

  • FLAME RETARDANTS IN THE ENVIRONMENT: AN OVERVIEW

    Alaee M

    Water Science and Technology Directorate, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6, Canada

    Email: [email protected]

    Flame retardants (FR) are materials added or applied to a material to increase the fire resistance of that product. The idea of flame retardant materials dates back to 450 BC when the Egyptians used alum to reduce the flammability of wood. Advances in polymer science over the past 50 years have led to the introduction of a large number of polymers with different properties and applications. As a result, we are surrounded by a wide variety of petroleum based polymers in clothing, furniture, electronics, vehicles and computers. In order to protect consumers from the hazards of fire several jurisdictions have introduced flammability standards such as TB 117 implemented by the State of California. As a result, the chemical industry has introduced several chemicals to meet these requirements. To date, more than 200 chemicals are registered in commerce as flame retardants and these are divided into four major groups: inorganic, halogenated organic, organophosporus and nitrogen based which account for 50%, 25%, 20% and >5% of the annual production, respectively. In recent years most environmental investigations have focused on halogenated organic flame-retardants which are either chlorinated or brominated. PBBs were the first group of organic flame retardants introduced in the early 1970’s. In 1974 after the Michigan incident the production and use of PBBs was banned in some jurisdictions and restricted in several others. By the late 1970’s polybrominated diphenyl ethers (PBDEs) were detected in several environmental matrices including fish eating birds and marine mammals in samples collected from the Baltic Sea, North Sea and Arctic Ocean. In 1998, Norén and Meironyté caught the attention of the scientific community when they showed that the concentration of PBDEs in breast milk had doubled every 5 years over the previous 25 years. Since then, additional studies not only confirmed their findings but also showed an uneven distribution of PBDEs in breast milk samples indicating different exposure routes than that of classical POPs were involved. This led to the discovery of household dust as an alternate route of exposure. Results from these investigations have led to ban the use and production of PBDEs in several countries. This in turn has led to the introduction of new BFRs such as decabromodiphenyl ethane, and an increase in the use of other chlorinated and phosphorus based flame retardants such as Dechlorane Plus, chlorinated paraffins, tributyl phosphate (TBP), and triphenyl phosphate (TPhP). In this presentation an overview of previous studies on flame retardants along with major milestones and novel methods on how to identify new flame retardants in environmental matrices will be presented.

    PL2

    mailto:[email protected]

  • RECENT ADVANCES IN BLOOD ANALYSES OF POPs

    Brasseur C, L’Homme B, Focant JF

    CART, Organic and Biological Analytical Chemistry, Department of Chemistry, University of Liège, Allée du 6 août B6c, 4000 Liège, Belgium.

    e-mail: [email protected] Introduction

    Biological monitoring (biomonitoring) can be defined as the assessment of internal dose exposure by measuring a toxicant (or its metabolites or reaction products) in human blood, urine, saliva, adipose, or other tissue. This approach is usually preferred over environmental monitoring for assessing human exposure because the later only provides data on the amount of toxicants that have been released and to which a population might have been exposed at different levels.

    1 By-passing the exposure assessment step by directly measuring internal doses

    via analysis of biological specimens thus reduces the number of uncertainties in assessing health effects of toxicants.

    2

    Persistent bioaccumulative toxicants are highly lipophilic compounds that have long biological half-lives and are retained in adipose tissues. Equilibration of the lipophilic toxicants takes place between the lipids in adipose tissue and blood.

    3 The primary matrix used for biomonitoring of

    persistent toxicants is blood and, more specifically, serum - typically, 5-75mL of whole blood are sampled from patients. Even if much less invasive than the classical surgical abdominal fat removals that were performed in the 1980’s, the venipunction of several milliliters of whole blood for analytical purpose is still badly perceived by patients. Therefore, minimizing sample sizes and enlarging the list of measured analytes is important. Recent advances are continuously made in both directions.

    Firstly, efforts are made to develop and miniaturize an analytical strategy based on cryogenic zone compression (CZC)

    4 of chromatographic signals for the analysis of selected POPs (PCB-

    153 and DDE) in 20µL whole blood. The method can be considered as (almost) non-invasive since samples are simply prepared by pricking the heel or the finger to collect a few drops of blood on a high purity cotton filter paper and let it dry to form a dried-blood spot (DBS).

    5 The

    procedure can partially be automatized using micro-extraction by packed sorbent (MEPS) for sample preparation and a GC×GC high-resolution (HR) time-of-flight (TOF) mass spectrometer (MS) for fast analysis. MEPS extraction, which is the key part of the development, lead to good quality spectra without further clean up. The miniaturization is significant, with total amount of solvent reduced to 500µL.

    Secondly, strategies have been developed to separate and measure unusual flame retardants6

    in regular volumes of serum. We used GC-HRMS analysis to detect and quantify Dechlorane Plus (DP), Dechlorane (Dec) 602, Dec 603, Dec 604 and Chlordene Plus (CP) with isotopic dilution, as well as Mirex and PBDEs. The aim was to provide an overview of the contamination pattern of these compounds in human, and especially in a region of the world where levels have not yet been estimated.

    Material and methods

    For low volume samples QC serum samples were used. 13

    C-labeled DDE and PCB-153 at 10pg/µL each were used as internal standards (IS). The recovery standard was a solution of 13

    C-labeled PCB-80 at 20pg/µL. Standards of indicator PCBs (#28, 52, 101, 138, 153, 180, 209)

    PL3

  • were used for calibration. Solvents (formic acid, methanol, hexane, dichloromethane and acetone) were all GC grade. Syringes and sorbent for MEPS analysis were provided by SGE. Filter papers used for DBS were provided by Perkin Elmer. They were prepared by pipeting a finite amount of serum or blood. They are then dried in air for several hours, stored at room temperature in zip-closing plastic bags and then extracted using various solvents. Measurements were carried out on a JEOL AccuTof T100GC. The GC oven (Agilent 6890) was equipped with a Zoex ZX1 - LN2 Cooled Loop Modulation GC x GC System. The

    1D GC column

    was an Restek Rxi-XLB (30 m x 0.25 mm ID x 0.25 µm df). The 2D GC column was an Restek

    Rxi-17 (1.5 m x 0.25 mm ID x 0.25 µm df). The instrument was operated either in negative chemical ionization (NCI) mode or electron ionization (EI) mode. A recording interval of 0.04s (25Hz) and a detector voltage of 2300V were used. The mass accuracy of the instrument was ensured by frequent single point calibration checks.

    For measuring emerging flame retardants, French human serum samples (n=48) were used. All standards were from Cambridge Isotope Laboratories or Wellington Laboratories. Others chemicals and solvents used were of analytical grade. Sample sizes of 10g were extracted using solid-phase extraction (SPE) on non-endcapped C18 cartridges (1g/6mL). Samples were analyzed with a high resolution sector mass spectrometer Thermo MAT95 XL connected by a heated transfer line (275°C) to a CE Trace gas chromatograph (ThermoQuest) equipped with a A2000S autosampler (Thermo). The GC column was a Phenomenex ZB-5 (15m x 0.25mm I.D., 0.25 µm df). The ion source temperature was 250°C and Electron Impact (EI) ionization was performed with 70eV. The HRMS instrument was operated in the selected ion monitoring (SIM) mode. Two ions were monitored for both native and labeled isotope ratio check. Calibration stability was ensured by injecting both low and high levels points of the calibration curve every 20 samples. Both instrumental and procedural blanks were monitored.

    Results and Discussion

    Measurement of PCB-153 and DDE in DBS

    Two calibration curves were recorded: for DDE and for PCB-153, and the working zone ranged from 50fg to 10pg. 6 calibration points (triplicates) gave a R

    2 of 0.99842 for PCB-153 and

    0.96821 for DDE.

    MEPS were performed automatically on a CTC autosampler. Practically, the sorbent (0.5-2mg) is included inside the needle of the syringe and can be used many times for different samples before being replaced. Solvents and samples are pumped and released sequentially through the sorbent in the syringe (several times if needed). The sequence was developed and optimized during this study and consists in 6 steps as illustrated in Figure 1. Liquid serum samples were extracted with good success in 20 minutes. This method has shown recoveries of 40% and cleaner spectrums than with LLE. In addition, extractions were automatized and were less subject to environmental contamination than liquid-liquid extraction since all solutions remain in capped vials or in the MEPS syringe. The total volume of solvent required for the extraction was as low as 500 µL. MEPS sorbents are designed to be used several times but should rather be considered as disposable since they are subject to carry over and therefore require proper and time consuming washings between uses.

    The use of CZC allows a gain in intensity of about 10 times between modulated and non modulated peaks at 25Hz and 2Hz acquisition rate, respectively. The instrumental limit of detection (iLOD) was 20fg/µL for PCB-153 (S/N=11), and 2pg/µL for DDE (S/N=10) using M+2 ion. We reached iLOD of 40fg/µL for DDE (S/N=10) using chlorine ion. Typical levels in blood are respectively 100ng/g fat and 20ng/g fat for PCB-153 and DDE. In 20µL DBS, we thus need an iLOD in the order of 10pg and 2pg for those compounds. We can assume we would be able to quantify those targets in most real samples. Figure 2 shows NCI mass chromatograms of targets compounds and

    13C labeled isotopes for quantification for samples extracted by the

    MEPS procedure. PCB-153 was quantified on the basis of the molecular ion and DDE was

  • quantified either on the basis of molecular ion or chlorine ion. In this case, DDE can be identified using the two tR provided by GC×GC. Accuracy was always below 10% relative error.

    Figure 1: Scheme of DBS analysis by CZC-HRTOFMS

    Figure 2: Chromatogram of CZC-HRTOFMS signals for isotope dilution measurement of PCB-153 and DDE

    Blanks levels were found in the range of 2-10pg/20µL DBS when using MEPS extraction whereas typical natural contamination levels were in the range of 10-50pg/20µL DBS. We therefore reach the limit where blanks levels are in the same order than natural samples. It is however important to say that no average blank value was taken into account but each individual sample was analyzed with its own paired blank for more accuracy.

    Measurement of flame retardants in serum

    Levels of DP, Dec 602, Dec 603, Dec 604, CP, and Mirex of general French population are reported in Table 1 with their LOQs. Figure 3 shows the level distribution for each analyte and compares to levels of PBDEs.

    ME

    PS

    Sample

    Dilution with formic acid 20%

    Sample

    ME

    PS

    Loading 50 times

    on C18 column

    ME

    PS

    Wash 4 times with water (4x100µL)

    ME

    PS

    Hexane/DCM

    70:30

    Collect

    Elution with

    2x25µL organic mixture (5µL/s)

    Cleaning/ conditioning with water and methanol

    Native DDE

    Labeled DDE

    Native hx-PCB

    Labeled hx-PCB

  • Table 1: LOQs and average levels of analytes in human serum (ng/g fat)

    Figure 3: Distribution of analyte concentrations

    LOQ Detection Mean Median Min Max SD

    frequency (%)

    Mirex 0.03 100 1.40 1.06 0.14 4.30 0.93

    Syn -DP 0.08 75 0.34 0.22 nd 2.30 0.42

    Anti -DP 0.16 94 1.20 0.89 nd 5.09 1.12

    Total DP - - 1.40 1.20 nd 7.04 1.40

    Dec 602 0.04 100 0.64 0.44 0.15 4.21 0.63

    Dec 603 0.4 90 2.61 2.01 nd 12.10 2.63

    CP 0.08 92 0.20 0.16 nd 0.71 0.16

    Σ5 Dechloranes - - 6.24 5.21 1.33 20.09 4.16

    PBDE 47 0.75 100 2.06 1.56 < LOQ 8.72 1.80

    PBDE 99 0.27 100 0.49 0.27 < LOQ 4.69 0.68

    PBDE 100 0.15 100 0.34 0.26 < LOQ 1.57 0.26

    PBDE 153 0.05 100 1.39 1.14 0.46 5.83 0.97

    PBDE 154 0.02 58 0.05 0.04 nd 0.26 0.06

    Σ5 PBDEs - - 4.32 3.46 1.63 15.02 2.99

  • This study is the first report of dechloranes compounds in European human serum. DP as well as others related dechloranes were detected, while no production source has been identified yet in Europe. The hypothesis of long term transport has to be considered. A specific pattern of contamination was found, and Dec 603 was reported with high levels, compared to others biota samples that have been analyzed from Europe. The results demonstrated that bioaccumulation properties should be taken in consideration additionally to contamination and exposure when evaluating risk for human.

    Conclusions

    Those results demonstrate the feasibility of analyzing selected POPs in small sample amount including human dried-blood spots. More data on levels of Dechloranes in human are needed.

    References 1. Sexton K et al. Am Sci, 2004; 92: 38-45. 2. Pirkle JL et al. J Expos Anal Environ Epidem, 1995; 5: 405-424. 3. Patterson DG et al. Arch Environ Contam Toxicol 1988; 17: 139-143. 4. Patterson DG et al. J Chromatogr A, 2011; 1218: 3274–3281. 5. Turner RC and Holman RR. Lancet, 1978; 312: 712. 6. Feo ML et al. Anal Bioanal Chem, 2012; 404: 2625-2637.

  • WIDE RANGE OF ASPECTS RELATED TO POPS IN THE FOOD CHAIN: FROM CONTRIBUTIONS OF THE EU-RL/NRL FOR DIOXINS AND PCBS IN

    FEED AND FOOD NETWORK TO HUMAN BIOMONITORING OF POPS

    Malisch R1, Kotz A

    1,Kypke K

    1, Tritscher A

    2, Magulova K

    3, Fiedler H

    4

    1 State Institute for Chemical and Veterinary Analysis of Food, Bissierstrasse 5, D-79114

    Freiburg, Germany, in its function asEU Reference Laboratory for Dioxins and PCBs in Feed and Food and as WHO / UNEP Reference Laboratory for POPs in Human Milk

    2 WHO GEMS / Food Programme, Food Safety and Zoonoses, World Health Organization,

    1211 Geneva 27, Switzerland 3 United Nations Environment Programme (UNEP), Stockholm Convention Secretariat,

    International Environment House, CH-1219 Châtelaine, Geneva, Switzerland 4 United Nations Environment Programme (UNEP), Division of Technology, Industry and

    Economics, Chemicals Branch, chemin des Anémones 11-13, CH-1219 Châtelaine (GE), Switzerland

    Based on Regulation (EC) No 882/2004, in 2006 Community Reference Laboratories were designated for feed and food and for animal health and live animals (COMMISSION REGULATION (EC) No 776/2006). In cooperation with its network, the EU Reference Laboratory for Dioxins and PCBs in Feed and Food contributed to a number of aspects. Selected examples will illustrate the range of aspects: (1) Analysis: (2) Interlaboratory Studies and Proficiency Tests (PTs) and discussion of results at workshops (3) Amendment of legislation: (4) Commission Support Since 1987 the World Health Organization (WHO) has carried out global surveys on the concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs) in human milk. The first WHO-coordinated exposure study took place in 1987-1988, the second round in 1992-1993 and the third round in 2000-2003. These studies fulfil important requirements for biomonitoring as requested by the Stockholm Convention on Persistent Organic Pollutants (signed in 2001 and entered into force in 2004). The objective of this Stockholm Convention is to protect human health and environment from POPs by reducing or eliminating their releases into the environment. For the evaluation of the effectiveness, human milk was chosen as one of the two core matrices to be monitored under the Stockholm Convention. Therefore, it was agreed to expand the studies for inclusion of the Stockholm Convention POPs and to perform the WHO human milk surveys in close collaboration with United Nations Environment Programme (UNEP) and the Stockholm Convention Secretariat. Thus, the fourth round in 2005–2007 and the since 2008 following continuous studies were organized as joint WHO/UNEP studies. A comprehensive protocol was developed for collection of representative samples, handling and analysis samples. 69 countries participated between 2000 and 2012 submitting 174 pooled (= mixed representative) samples. 15 countries participated twice in this period, two countries in triplicate.Large global and regional differences with respect to contamination of human milk with different POPs were found. Time trends can be derived for countries with repeated participation

    PL4

  • over time. Selected results will be presented to give an overview of the complex picture. References 1 Environmental Health Series No 34 (1989): Levels of PCBs, PCDDs, and PCDFs in breast milk, WHO Regional Office for Europe, Copenhagen, Denmark. 2 Environmental Health in Europe No. 3 (1996): Levels of PCBs, PCDDs and PCDFs in human milk: Second round of WHO-coordinated exposure study, WHO Regional Office for Europe, Copenhagen, Denmark 3 WHO (2000)Quality Assessment of Levels of PCBs, PCDDs and PCDFs in Human Milk andBlood Plasma – fourth round of WHO-coordinated study (2000), EUR/00/5020352, WHO Regional Office for Europe, Copenhagen, Denmark. 4 Rainer Malisch and FX Rolaf van Leeuwen (2003) Results of the WHO-coordinated exposure study on the levels of PCBs, PCDDs and PCDFs in human milk, Organohalogen Compounds 64: 140 – 143 5 Malisch, R. and van Leeuwen, F.X.R. (2002) Third round of WHO-coordinated exposure study: Analysis of PCDDs, PCDFs and PCBs in human milk, Organohalogen Compounds, Vol. 56, 317-320 6 WHO protocol Fouth WHO-Coordinate Survey of Human Milk for Persistent Organic Pollutants in Cooperation with UNEP Guidelines for Developing a National Protocol, Revised 1 October 2007, Department of Food Safety and Zoonoses, World Health Organization, Geneva http://www.who.int/foodsafety/chem/POPprotocol.pdf 7 UNEP, Status report on the human milk survey conducted jointly by the Secretariat of the Stockholm Convention and the World Health Organization, Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants, Fourth meeting, Geneva, 4–8 May 2009, UNEP/POPS/COP.4/INF/31 8 Rainer Malisch, Karin Kypke, Alexander Kotz, Kerstin Wahl, Nicole Bitomsky, Gerald Moy, Seongsoo Park, Angelika Tritscher, Seoung Yong Lee, Katarina Magulova and Heidelore Fiedler(2010) WHO/UNEP-coordinated exposure study (2008-2009) on levels of Persistent Organic Pollutants (POPs) in human milkwith regard to the Global Monitoring Plan, Organohalogen Compounds 72: 1766-1769 9 Rainer Malisch, Karin Kypke, Alexander Kotz, Kerstin Wahl, Nicole Bitomsky, Gerald Moy, Seongsoo Park, Angelika Tritscher, Seoung Yong Lee, Katarina Magulova and Heidelore Fiedler (2011) Levels of HCH, endosulfan, chlordane, nonachlor, S-421, musk xylene and musk ketone in human milk of WHO/UNEP-coordinated exposure study for determination of POPs (2008-2010) with regard to the Global Monitoring Plan, Organohalogen Compounds 73:1023-1025 10 Hoogenboom LAP, Talidda A, Reeuwijk NM, Traag WA, Kotz A, Malisch R, Moy G, Tritscher A, Lee SL, Magulova K, Fiedler H (2011) Are Elevated Dioxin Levels in Milk of Women from Ivory Coast and Congo due to the use of Clay During Pregnancy? Organohalogen Compounds 73:1026-1029

    http://www.who.int/foodsafety/chem/POPprotocol.pdf

  • COMUNICACIONES ORALES

  • PRELIMINARY DATA ON GLOBAL DISTRIBUTION OF DIOXIN-LIKE COMPOUNDS IN THE OCEANIC ATMOSPHERE DURING THE MALASPINA

    CIRCUMNAVIGATION

    Morales L1, Martrat MG

    1, Parera J

    1, Abalos M

    1, Dachs J

    1, Abad E

    1

    1Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del

    Agua (IDAEA) del Consejo Superior de Investigaciones Científicas (CSIC)

    e-mail: [email protected] Introduction The Stockholm Convention defines Persistent Organic Pollutants (POPs) as organic chemical substances that possess toxic properties, resist degradation, bioaccumulate and are transported far away from their place of release. Some of the most toxic POPs included in the Stockholm Convention are the polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), commonly known as dioxins as well as dioxin-like polychlorinated biphenyls (dl-PCBs). Although being included in the Stockholm Convention, global distribution of these pollutants is scarce

    1,

    especially in the oceans. Oceans play an important role in controlling the environmental transport of PCDD/Fs and dl-PCBs. The oceanic atmosphere is the environmental compartment that constitutes the most important vector for the transport of POPs to marine waters

    2. Up to

    now, no much information has been reported in the literature regarding the presence of dioxins and dl-PCBs in the oceanic atmosphere. Only a few studies reports data from the Atlantic Ocean

    3,4. In this study, our expectations are to assess as for the first time a global atmospheric

    oceanic background of PCDD/Fs and dl-PCBs, carried out in the framework of the Malaspina Expedition 2010. This project is structured around an oceanographic circumnavigation campaign whereby samples throughout the world’s oceans were obtained. The Malaspina Expedition 2010 pursues a series of multiple goals articulated around a frontier interdisciplinary research programme with two main objectives: Assess the impact of the global change on the ocean and explore the ocean’s biodiversity on a global scale. The project is structured around a set of horizontal and thematic blocks. In particular, block 4 is focused in atmospheric deposition and organic pollutants. The overall objective of this block is to quantify atmosphere-ocean exchange processes of nutrients, organic matter and pollutants in the ocean and make a new contribution to knowledge of long-distance transport of organic pollutants. Materials & Methods The circumnavigation expedition consisted on 7 months sampling campaign (December 2010- July 2011) on board of the oceanographic vessel Hespérides (CSIC-Spanish army) over 7 transects as follows: Cadiz – Rio de Janeiro – Cape Town – Perth – Sidney – Auckland – Honolulu – Cartagena de Indias – Cartagena. Air samples were collected using high volume sampler for 24-48 h (approx. 900 m

    3).

    Air samples consisted of 2 parts: Particulate phase collected with quartz fiber filter (QFF) and the gas phase collected by polyurethane foams (PUFs) according to the US EPA TO-9A Method

    5. Filter samples were stored in a freezer and PUFs samples in a refrigerator till the

    analysis. Extraction and clean-up of PCDD/Fs and dl-PCBs were performed following the US

    L1

  • EPA 1613 Method for PCDD/Fs and US EPA Method 1688 for dl-PCBs. Instrumental analysis was based on the use of High Resolution Gas Chromatography coupled to High Resolution Mass Spectrometry (HRGC-HRMS) from Thermo Fisher Scientific, Milan, IT. Samples were quantified by the isotopic dilution method. The criteria for ensuring the quality of the data included control blanks. Sampling blanks were taken in the boat and process blanks were periodically performed covering the whole methodology. In most cases, analytes kept below LOD or were not detected. Only traces of the highest chlorinated compounds and some of the ubiquitous dl-PCBs were sometimes quantified, but always in lower levels that the ones found in the samples. Results and discussion Preliminary data were achieved in 20 different locations globally distributed over 3 different oceans: Atlantic Ocean, Pacific Ocean and Indian Ocean. Samples were collected nearby the coast and offshore. As expected, very low levels were obtained for both dioxins and PCBs. For PCDD/Fs, individual concentrations were in the range 0,1-18 fg/m

    3 while for PCBs values were

    in the range 3 - 3400 fg/m3. Particular attention was paid on dioxins, since values were very

    close to the blanks and the congener distribution is dominated by high chlorinated compounds and sporadically tetra- and penta- and hexa- chlorinated congeners. Moreover, no differences were observed between gas and particulate phase. On the contrary, remarkable higher concentrations were determined for PCBs in comparison with dioxins. Furthermore, significant differences were observed between gas and particulate phases (Figure 1).

    Fig.1 dl-PCBs concentrations (fg/m

    3)

    Regarding the distribution of dioxins over the oceans it should be pointed out difficulties due to the low number of samples and the low levels achieved. Despite this drawback, as a first approach it can be seen that eventually higher concentrations were found in Atlantic Ocean, followed by Indian Ocean and Pacific Ocean. It is interesting to highlight that in the case of Indian Ocean, levels of dioxins were very low. However, these levels were higher nearby the coast comparable to those found in the Atlantic Ocean.

  • Fig.2 OCDD/F global distribution (fg/m

    3)

    On the other hand, PCBs showed similar fingerprint in all sites with the exception of PCB-81, PCB-126 and PCB-169 which in some cases remained below detection limit (Figure 3). Similarly to dioxins, Atlantic Ocean presented highest levels followed by Indian and Pacific Oceans. Only one sample from the Indian Ocean presented the highest levels which will be re-evaluated in near future analysis.

    Fig.3 PCB-189 global distribution (fg/m

    3)

    Conclusions Up to now, atmospheric ocean samples (particulate and gas phase) from Atlantic, Pacific and Indian Oceans have been collected and analyzed for dioxins and PCBs in a singular circumnavigation study as for the first time. Very low levels were achieved for all target compounds, whereas PCBs presented highest concentrations in comparison to those found for dioxins which in many cases were very close to the limit of detection. As expected, PCBs were mostly present in the gas phase in comparison particulate phase. In this regard, difficult to draw a final conclusion for dioxins, due to the low levels present in the analyzed samples. As a first approach, dioxins showed fifty percent partition between particulate and gas phases. At this point we can conclude that this study gives important information never before reported providing the PCDD/Fs and dl-PCBs atmospheric background concentrations in the global atmosphere. Acknowledgements The authors thank the Science and innovation Ministry of Spain who has financed the study with the Program Consolider-Ingenio 2010 (CSD2008-00077). We would like to thank all the crew

    180°0'0"

    180°0'0"

    180°0'0" 160°0'0"E

    160°0'0"E

    140°0'0"E

    140°0'0"E

    120°0'0"E

    120°0'0"E

    100°0'0"E

    100°0'0"E

    80°0'0"E

    80°0'0"E

    60°0'0"E

    60°0'0"E

    40°0'0"E

    40°0'0"E

    20°0'0"E

    20°0'0"E

    0°0'0"

    0°0'0"

    20°0'0"W

    20°0'0"W

    40°0'0"W

    40°0'0"W

    60°0'0"W

    60°0'0"W

    80°0'0"W

    80°0'0"W

    100°0'0"W

    100°0'0"W

    130°0'0"W

    130°0'0"W

    160°0'0"W

    160°0'0"W

    90°0'0"

    80°0'0"N 80°0'0"N

    70°0'0"N 70°0'0"N

    60°0'0"N 60°0'0"N

    50°0'0"N 50°0'0"N

    40°0'0"N 40°0'0"N

    30°0'0"N 30°0'0"N

    20°0'0"N 20°0'0"N

    10°0'0"N 10°0'0"N

    0°0'0" 0°0'0"

    10°0'0"S 10°0'0"S

    20°0'0"S 20°0'0"S

    30°0'0"S 30°0'0"S

    40°0'0"S 40°0'0"S

    50°0'0"S 50°0'0"S

    60°0'0"S 60°0'0"S

    70°0'0"S 70°0'0"S

    80°0'0"S 80°0'0"S

    OctaClfg/m3

    6.3

    OCDD

    OCDF

    180°0'0"

    180°0'0"

    160°0'0"E

    160°0'0"E

    140°0'0"E

    140°0'0"E

    120°0'0"E

    120°0'0"E

    100°0'0"E

    100°0'0"E

    80°0'0"E

    80°0'0"E

    60°0'0"E

    60°0'0"E

    40°0'0"E

    40°0'0"E

    20°0'0"E

    20°0'0"E

    0°0'0"

    0°0'0"

    20°0'0"W

    20°0'0"W

    40°0'0"W

    40°0'0"W

    60°0'0"W

    60°0'0"W

    80°0'0"W

    80°0'0"W

    100°0'0"W

    100°0'0"W

    130°0'0"W

    130°0'0"W

    160°0'0"W

    160°0'0"W

    180°0'0"

    90°0'0"

    80°0'0"N 80°0'0"N

    70°0'0"N 70°0'0"N

    60°0'0"N 60°0'0"N

    50°0'0"N 50°0'0"N

    40°0'0"N 40°0'0"N

    30°0'0"N 30°0'0"N

    20°0'0"N 20°0'0"N

    10°0'0"N 10°0'0"N

    0°0'0" 0°0'0"

    10°0'0"S 10°0'0"S

    20°0'0"S 20°0'0"S

    30°0'0"S 30°0'0"S

    40°0'0"S 40°0'0"S

    50°0'0"S 50°0'0"S

    60°0'0"S 60°0'0"S

    70°0'0"S 70°0'0"S

    80°0'0"S 80°0'0"S

    PCB-189 fg/m3

    50

    PCB189

  • and Malaspina participants who helped us collecting all the samples. We also would like to thank Jordi Sauló and Karell Martínez for HRGC/HRMS assistance. Literature cited 1. Bogdal C, Abad E, Abalos M, van Bavel B, Hagberg J, Scheringer M, Fiedler H. Trends in

    Analytical chemistry, 2013; 46:150-161. 2. Jurado E, Lohmann R, Meijer S, Jones K, Dachs J. Environmental Pollution, 2004; 128:149-

    162. 3. Nizzetto L, Lohmann R, Gioia R, Dachs J, Jones K. Environment Science and Technology,

    2010; 44:6978-6984. 4. Lohmann R, Ockenden WA, Shears J, Jones K. Environment Science and Technology,

    2001; 35:4046-4053. 5. Method TO-9A. Determination of polychlorinated, polybrominated and

    brominated/chlorinated dibenzo-p dioxins and dibenzofurans in ambient air. In Compendium of methods for determination of Toxic Organic Compounds in ambient air, EPA/625/R-96/010b, 2nd ed.; U.S. Environmental Protection Agency: Washington, DC, 1999

  • EVALUACIÓN DE LA PRESENCIA DE COP EN AIRE EN EL PERIODO 2008-

    2011. RESULTADOS DEL PLAN NACIONAL DE VIGILANCIA AMBIENTAL

    DE COP

    Sanz P, De la Torre A, Navarro I, Martínez MA

    Grupo de Contaminantes Orgánicos Persistentes, Departamento de Medio Ambiente, CIEMAT,

    Avda. Complutense 40, E-28040 Madrid

    [email protected]

    Introducción

    El presente trabajo muestra los resultados obtenidos por el Grupo de Contaminantes Orgánicos

    Persistentes del CIEMAT, dentro del Plan Nacional de Vigilancia de COP establecido por el

    Ministerio de Ministerio de Agricultura, Alimentación y Medio Ambiente, en 2007 en el marco

    del Plan Nacional de Aplicación (PNA) del Convenio de Estocolmo1 e incluye la descripción de

    las campañas de muestreo así como el análisis de los datos obtenidos en el periodo 2008-

    2011. El objetivo principal del Plan Nacional de Vigilancia de COP es el establecimiento de un

    sistema de vigilancia de las concentraciones ambientales de COP, que permita caracterizar la

    situación actual y la evolución a lo largo del tiempo para evaluar la eficacia de las medidas

    adoptadas. De esta manera, se dispondrá de un conjunto de métodos armonizados en un plan

    estable para la recopilación de datos comparables sobre la presencia de COP y aportará

    información sobre su trasporte regional, cumpliendo así las obligaciones del convenio y del

    PNA en materia de vigilancia.

    Materiales y Métodos

    De acuerdo con las sugerencias y propuestas elaboradas por el Global Monitoring Plan, GMP2,

    el trabajo de vigilancia ambiental se ha realizado considerando el aire como primera matriz de

    interés porque presenta tiempos de respuesta muy cortos para los cambios producidos en la

    emisión atmosférica y es un medio relativamente bien mezclado. Además es una entrada a la

    cadena alimenticia y un medio de transporte global.

    L2

  • El estudio se ha llevado a cabo desplegando muestreadores de aire pasivos, (passive air

    samplers PAS), en puntos remotos, indicativos de concentraciones de fondo (siete estaciones

    de la red EMEP/VAG/CAMP gestionada por la AEMET) y en cuatro zonas urbanas. Este tipo de

    captadores se basa en la difusión de las sustancias presentes en la atmósfera a un volumen o

    matriz de sustancia adsorbente limpia (espuma de poliuretano, PUF). El contaminante

    muestreado es posteriormente extraído y purificado para finalmente proceder al análisis de los

    compuestos de interés3, que da una estimación de las concentraciones en el volumen de aire

    muestreado a lo largo del periodo de tiempo establecido.

    Desde el verano de 2008 hasta el otoño de 2011 se han realizado 13 campañas de muestreo,

    desplegándose cuatro PAS durante periodos de tres meses, coincidentes con las cuatro

    estaciones del año. En cada una de estas campañas, tres de los captadores se han utilizado

    para la determinación del contenido de dioxinas y furanos con TEF, PCB similares a dioxinas y

    PCB marcadores y PBDE, mientras que el cuarto ha estado destinado al muestreo de

    pesticidas organoclorados (DDT y metabolitos, α-, β-, y γ-HCH y HCB). Adicionalmente, se

    tomó un blanco de campo en cada una de las campañas y de las estaciones de muestreo. Se

    han analizado un total de 123 muestras para cada uno de los contaminantes considerados. El

    Sistema de Gestión de Calidad desarrollado en el Laboratorio del Grupo de Contaminantes

    Orgánicos Persistentes del CIEMAT se ha aplicado a todos los análisis (ISO 9001:2008,

    ES12/12224).

    Con objeto de establecer las diferencias en los niveles de contaminación entre las localidades

    muestreadas se ha realizado un análisis estadístico de los datos, utilizando para ello el

    software SPSS Statistics 17.0, y se ha obtenido información tanto de forma global como para

    las localizaciones remotas y urbanas, de forma independiente.

    Resultados y Discusión

    Los datos globales (estaciones EMEP y ciudades; n=123) presentan el siguiente patrón de

    concentraciones: TDDT (pg/m3) > THCH (pg/m

    3) ≈ HCB (pg/m

    3) > TPCB (pg/m

    3) > TPBDE

    (pg/m3) >> TPCDD/F (fg/m

    3). Sin embargo, se ha comprobado, ver Figura 1, que este patrón

    varía cuando se consideran las muestras obtenidas en zonas urbanas (TDDT (pg/m3) > THCH

    (pg/m3) ≈ TPCB (pg/m

    3) > HCB (pg/m

    3) > TPBDE (pg/m

    3) >> TPCDD/F (fg/m

    3) y en estaciones

    EMEP de forma independiente (TDDT (pg/m3) ≈ HCB (pg/m

    3) > THCH (pg/m

    3) > TPCB (pg/m

    3)

    > TPBDE (pg/m3) >> TPCDD/F (fg/m

    3).

  • Figura 1. Diagramas de cajas y bigotes obtenidos en función del tipo de localización (EMEP o zona

    urbana). (Log_X = 1 + log (1+ X), donde X es la concentración en pg/m3).

    Se han encontrado diferencias estadísticamente significativas entre las concentraciones de

    TPCDD, TPCDD/F, TnoPCB, TmoPCB, TmPCB, TPCB, TPBDE, THCH, TDDT, asociadas a

    puntos remotos (EMEP) y urbanos. Estas diferencias se deben a los niveles más altos que

    presentan las zonas urbanas con respecto a las localizaciones remotas.

    Adicionalmente se han evaluado las posibles variaciones en los perfiles y patrones de los

    compuestos analizados, entre las diferentes localidades. Para ello se han calculado los perfiles

    y patrones medios (13 campañas; n=13) en cada localidad considerada y aquellos

    correspondientes a los dos tipos de localizaciones estudiadas (EMEP, n= 78 ; ciudades, n= 45).

    En todos los casos se ha observado un patrón de congéneres común: OCDD/F> HpCDD/F

  • >HxCDD/F, TmPCB>TmoPCB>>TnoPCB, BDE 209>>BDE 47≈ BDE 99, γ-HCH > α-HCH >> β-

    HCH y DDE>DDD>>DDT.

    Aunque la representatividad de las series temporales es baja debido al número de campañas

    realizadas, se ha observado una tendencia cíclica en las concentraciones de THCH y HCB. Las

    concentraciones medias de THCH aumentan de primavera a verano y disminuyen de otoño a

    invierno, mientras que en el caso del HCB el aumento ocurre de otoño a invierno,

    disminuyendo de primavera a verano.

    Se han comparado los niveles de concentración de COP encontrados en el presente estudio

    con aquéllos procedentes de la Red Mundial de Muestreo Pasivo de COP en aire (GAPS), los

    cuales quedan recogidos en el Anexo I (Aire) del Primer Informe Regional de Vigilancia de

    COP4. Esta comparación resulta factible ya que en dicha Red también se utilizan sistemas de

    muestreo pasivos (matriz adsorbente PUF) y se realizan campañas de muestreo trimestrales.

    Estas coincidencias metodológicas confieren a los datos de la Red GAPS un carácter único

    para poder realizar una adecuada comparación con los datos obtenidos en la Red Española de

    Vigilancia de COP.

    La Tabla 1 compara los niveles de concentración (pg/m3) de los analitos para los que existen

    datos en ambos estudios: TPBDE (suma de BDE 47, 99 y 100), TPCB (48 congéneres sin

    especificar en GAPS y 22 en CIEMAT), THCH (suma de α- y γ- HCH), y TDDE/T (suma de pp’-

    DDE y pp’-DDT). Como se puede observar, los niveles de TPBDE, THCH y TDDE/T son del

    mismo orden de magnitud en ambos casos. Los datos obtenidos para TPBDE, THCH, TPCB y

    TDDT en este estudio presentan diferencias estadísticamente significativas (p

  • sin embargo, para la mayor parte de las familias de compuestos analizados se han encontrado

    concentraciones superiores en el caso de las zonas urbanas, si bien estas diferencias no

    siempre resultaron significativas. Igualmente, las principales diferencias en la abundancia

    relativa de los congéneres analizados se deben a campañas puntuales o localizaciones

    geográficas específicas.

    Agradecimientos

    Este trabajo ha sido financiado por el Ministerio de Agricultura, Alimentación y Medio Ambiente

    (Encomienda de Gestión para la Vigilancia de COP en algunas matrices y zonas de interés).

    Los autores quieren expresar su agradecimiento a los Responsables de la Agencia Estatal de

    Meteorología, cuyas estaciones de muestreo han sido facilitadas para la colocación de los

    muestreadores de aire. También agradecer a la empresa AFC Ingenieros SA su diligencia y

    buena disposición para la concertación de las fechas de los muestreos.

    References

    1. Plan Nacional de Aplicación del Convenio de Estocolmo y del Reglamento 850/2004, sobre

    Contaminantes Orgánicos Persistentes. Ministerio de Medio Ambiente y Medio Rural y

    Marino, febrero 2007.

    2. Guidance on the Global Monitoring Plan for Persistent Organic Pollutant under the Stockholm

    Convention, UNEP 2007.

    3. Concejero MA, de la Torre A, Sanz P, Martínez. Organohalogen Compounds 2010; 72: 514-

    517.

    4. Global Monitoring Plan for Persistant Organic Pollutants. First Regional Monitoring

    Report.Western Europe and other States Group Region. Annex I: Air. April 2009.

  • Tabla 1. Comparación de los niveles de concentración (pg/m3) de TPBDE (suma de BDE 47, 99 y 100),

    THCH (suma de α- y γ- HCH), y TDDE/T (suma de pp’-DDE y pp’-DDT) en la Red GAPS y los obtenidos

    en este estudio. Media ± SD, (mediana), máximo-mínimo, n= muestras con valores > LOD / muestras

    totales.

    Red GAPS, 4 campañas

    (enero- diciembre 2005)

    CIEMAT, 13 campañas

    (junio 2008- diciembre 2011)

    TOTAL No urbanasa Urbanas TOTAL EMEP Urbanas

    TPBDEb 5,5 ± 6,2 5,9 ± 6,7 4,1 ± 3,4 1,1 ± 1,4 0,8 ± 1,2 1,7 ± 1,5

    (3,9) (3,9) (4,1) (0,6) (0,4) (1,3)

    0,02-24 0,3-24 0,02-10 0,02 - 8,8 0,03 - 8,8 0,02 - 5,8

    n=26/96 n=20/76 n=6/20 n=117/123 n=76/78 n=41/45

    TPCBc 203,8 ± 610,2 62,2± 109,3 720,2 ± 1186,9 26,3 ± 49,9 14,9 ± 37,98 46,2 ± 61,3

    (39) (29,5) (196) (10,4) (8,4) (33,8)

    2-4052 2-702 18-4052 0,12 - 328,8 0,12 - 325,2 1,3 - 328,8

    n=80/96 n=63/76 n=17/20 n=123/123 n=78/78 n=45/45

    THCHd 53,8 ± 110,9 29,7 ± 24,7 140 ± 215,9 25,2 ± 15,99 18,9 ± 11,1 35,7 ± 17,4

    (28) (22) (43,5) (22,5) (17,9) (33,8)

    1-710 1-119 12,1-710 0,06 - 85,02 0,06 - 56,6 9,05 - 85,02

    n=74/96 n=58/76 n=16/20 n=121/123 n=76/78 n=45/45

    TDDE/Te 72,1 ± 114, 5 62,4 ± 123,9 97,3 ± 83, 6 28,8 ± 56,03 16,7 ± 12,5 49,2 ± 87,3

    (21,2) (11) (60) (18,6) (14,5) (31,5)

    0,8-536 0,8-536 11-260 0,15 - 589,3 0,15 - 50,1 5,3 - 589,3

    n=55/96 n=40/76 n=15/20 n=121/123 n=76/78 n=45/45

    aAgrupa localizaciones rurales, polares, agrícolas y de fondo.b TPBDE= suma de BDE 47, 99 y 100. cTPCB = 48

    congéneres sin especificar en GAPS y 22 en CIEMAT. dTHCH= suma de α- y γ- HCH. e∑DDE/T= suma de

    pp’-DDE y pp’-DDT

  • PCDD/FS, DIOXIN-LIKE PCBS Y PBDES EN AIRE. RESULTADOS PRELIMINARES DEL PROGRAMA NACIONAL ESPAÑOL DE VIGILANCIA

    DE CONTAMINANTES ORGANICOS PERSISTENTES PARA EL CONVENIO DE ESTOCOLMO

    Roscales JL1, Muñoz-Arnanz J

    1, Morales L

    2, Abad E

    2, Jiménez B

    1

    1 Departamento de Análisis Instrumental y Química Ambiental. Instituto de Química Orgánica

    General del CSIC. (IQOG-CSIC). Juan de la Cierva 3, 28006 Madrid, España. e-mail: [email protected]

    2 Laboratorio de Dioxinas. Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-

    CSIC). Jordi Girona 18-26, 08034 Barcelona, España. Introducción El convenio de Estocolmo sobre contaminantes orgánicos persistentes (COP), es un tratado global con el objetivo de proteger la salud humana y del medio ambiente frente a estos compuestos. Los COP son contaminantes altamente tóxicos que permanecen en el medio durante largos periodos de tiempo, son bioacumulables y ubicuos gracias a su capacidad de transportarse a largas distancias. El convenio de Estocolmo, adoptado en 2001 y que entró en vigor en el 2004, obliga a los países que lo han ratificado a reducir o eliminar la emisión de COP al medio. España, como estado miembro, lo ratificó en el 2004

    1.

    El principal objetivo del Programa Español de Vigilancia de COP es establecer una red nacional de seguimiento capaz de caracterizar el estado actual y tendencias temporales de los COP con el objeto de evaluar la efectividad de las medidas adoptadas para reducir las emisiones de estos contaminantes

    2. El trabajo inicial se ha centrado en el seguimiento de COP en aire

    empleando metodologías de muestreo basadas en el empleo de captadores pasivos (PAS, Passive Air Sampling) en puntos seleccionados en el territorio nacional y cubriendo zonas urbanas y remotas. El Programa actualmente aprovecha redes existentes en España, como EMEP, gracias a una estrecha colaboración con la Agencia Estatal de Meteorología (AEMET). El Programa implementado pretende establecerse a largo plazo como una red estable para analizar la presencia de COP en aire y suelo así como ampliarse a otras matrices ambientales. Los dispositivos pasivos de muestreo de aire como las espumas de poliuretano (PUF) permiten llevar a cabo una evaluación semi-cuantitativa de los niveles atmosféricos de COP. Ventajas como su bajo coste y fácil manipulación, explican el uso que habitualmente tienes estos dispositivos en los estudios de monitorización que se llevan a cabo en aire

    3. Desde el año 2008

    y siguiendo las recomendaciones del Plan de Monitorización Global (GMP), España ha implementado un programa de monitorización de aires basado en el empleo de PAS. El presente estudio presenta niveles de PCDD/Fs, dioxin-like PCBs y PBDEs en aire durante los primeros cuatro años de seguimiento (2008-2012) en zonas urbanas y remotas seleccionadas dentro del territorio nacional. Material y Métodos Muestreo Las espumas de poliuretano empleadas como captadores pasivos se lavan inicialmente con disolventes de alta pureza. Para evitar fenómenos de contaminación se trasportan en contenedores de vidrio y se despliegan en los puntos de muestreo en sus correspondientes soportes de acero inoxidable. Los puntos de muestreo seleccionados para el presente estudio

    L3

  • corresponden a seis zonas remotas/rurales y cuatro zonas urbanas. En cada punto de muestreo se desplegaron 4 PUF en sus correspondientes soportes, que se recogieron cada tres meses, coincidiendo con el cambio de estación. Tras su recogida, los PUF se transportaron al laboratorio, para llevar a cabo las determinaciones analíticas. Tres de ellos, combinados, se emplearon para la cuantificación de PCDD/Fs y dioxin-like PCBs y el cuarto se empleó para llevar a cabo el análisis de PBDEs. Procedimiento analítico. La extracción de las muestras se llevó a cabo en Soxhlet, empleando como disolvente de extracción éter de petróleo durante 24 horas. La purificación se llevó a cabo en columnas multicapas empleando gel de sílice modificada con ácido o base. La separación e identificación de los 17 congéneres de PCDD/Fs y dioxin-like PCBs se llevó a cabo mediante cromatografía de gases acoplada a espectrometría de masas de alta resolución (HRGC-HRMS) empleando un equipo Trace GC (Thermo Fisher Scientific, Milan, Italy) acoplado a un espectrómetro de masas de alta resolución (DFS, Thermo Fisher Scientific, Bremen, Germany) operando en modo SIM a resolución 10.000. La cuantificación se llevó a cabo mediante la técnica de dilución isotópica. Los 14 congéneres de PBDEs se determinaron mediante cromatografía de gases acoplada a espectrometría de masas de baja resolución (HRGC-LRMS) empleando un equipo 6890 N acoplado a un cuadrupolo 5975 (Agilent, Palo Alto, CA) operando en modo SIM. Análisis de Datos La influencia del punto de muestreo (remoto o urbano), estación del año (invierno/otoño vs. verano/primavera) y año de muestreo se evaluó simultáneamente mediante un modelo de análisis lineal generalizado (GLM), empleando las concentraciones de PCDD/Fs, dioxin-likePCBs o PBDEs (transformadas logarítmicamente para ajustarlas a una distribución normal) como variable respuesta. El punto de muestreo y estación del año se consideraron como factores fijos y la secuencia temporal de las muestras se incluyó en el modelo como covariable. Resultados y Discusión En la Tabla 1 se presentan los resultados correspondientes al intervalo de concentraciones, media y mediana para las familias de POPs seleccionadas para este estudio. En particular, las PCDD/Fs presentaron los niveles más bajos, en el orden de los fg/m

    3. En todos los casos, los

    puntos de muestreo mostraron un efecto significativo en los niveles de los contaminantes estudiados, siendo los valores medios de concentración generalmente más altos en las zonas urbanas. Las concentraciones de COP en aire encontradas en el presente estudio se encuentran dentro de los intervalos publicados en otros estudios en zonas tanto urbanas como remotas

    4-6.

    Tabla 1. Intervalo, media y mediana de concentraciones de PCDD/Fs, dioxin-likePCBs y PBDEs en los puntos de muestreo urbanos y remotos seleccionados en este estudio durante el periodo 2008-2012.

    Punto de muestro

    Intervalo Mediana Media

    PCDD/Fs (fg/m3)

    Remoto 2,43 - 300 29,5 52,4 Urbano 30,1 – 995 110 233

    PCBs (fg/m3)

    Remoto 10,1 – 30.500 1.240 2.600 Urbano 95,9 – 35.100 5.230 7.940

    PBDEs (pg/m3)

    Remoto 0,01 - 464 2,56 26,1 Urbano 0,07 - 557 7,98 43,4

  • En el caso de las PCDD/Fs, la tendencia general durante el periodo de tiempo estudiado fue muy similar en zonas urbanas y remotas y no se encontraron tendencias temporales significativas (Figura 1a). Por el contrario, el análisis mediante GLM mostró que las concentraciones de dioxin-like PCBs, tanto en zonas urbanas como remotas, mostraron una tendencia decreciente significativa durante el periodo 2008-2012. La estación del año apareció en el modelo como un factor significativo para explicar la presencia de PCDD/Fs en aire. El perfil estacional de PCDD/Fs se caracterizó por presentar mayores concentraciones en otoño e invierno en comparación con las estaciones de primavera y verano. Este patrón fue particularmente notable en las zonas remotas comparadas con las urbanas, como muestra la Figura 1a. Este comportamiento ya se ha descrito previamente y podría estar asociado principalmente a la mayor actividad de combustión de los sistemas de calefacción durante los periodos fríos

    5. En el caso contrario, los dioxin-like PCBs mostraron los

    niveles más altos en primavera y verano en zonas urbanas y remotas. No obstante, el patrón no fue tan marcado como en el caso de las PCDD/Fs y de hecho la estación de muestreo no tuvo un efecto significativo en el modelo. Este hecho puede estar relacionado con el mayor grado de volatilización que esto compuestos experimentan bajo condiciones de temperaturas elevadas.

    Figura 1. Tendencias temporales de PCDD/Fs (1a) y dioxin-like PCBs (1b) en las zonas remotas y urbanas seleccionadas para este estudio durante el periodo 2008-2012. Las concentraciones totales de PBDEs en aire no mostraron tendencias temporales ni estacionales significativas. Como puede apreciarse en la Figura 2a el BDE-209 fue el congénere más abundante. El análisis de correlación mostró un aumento significativo de las concentraciones de este congénere durante el periodo 2008-2012 en zonas tanto urbanas como remotas (Figura 2b). Esta tendencia podría ser indicativa de la substitución progresiva en Europa de las formulaciones de penta- y octa-PBDEs (prohibidas en 2004) por las formulaciones de deca-PBDEs cuyo perfil está dominado por una mayor abundancia del BDE-209.

  • Figure 2. a) Porcentajes de contribución de los congéneres de PBDEs. b) Tendencias temporales de las concentraciones del BDE-209 durante el periodo 2008-2012 en las zonas remotas y urbanas seleccionadas en el presente estudio. Conclusiones Los resultados preliminares del presente estudio indican que las concentraciones de COP en aire en España, en general son más altas en zonas urbanas comparadas con las zonas remotas que se han estudiado. Las concentraciones de dioxin-like PCBs han descendido desde el 2008 al 2012, mientras que algunos congéneres de PBDEs (e.g. BDE-209) han aumentado durante el periodo de estudio. Aunque no se han observado tendencias temporales para las PCDD/Fs, si se han encontrados variaciones estacionales relacionadas con los periodos fríos (otoño/invierno) o templados (primavera/verano). Los programas de monitorización de COP a largo plazo son esenciales para mejorar el conocimiento sobre la distribución geográfica y estacional de estos contaminantes. Pero de manera más destacable, el mantenimiento de estos programas de vigilancia es absolutamente necesario para una evaluación adecuada del comportamiento y tendencia temporal de estos contaminantes orgánicos persistentes. Agradecimientos Los autores agradecen al Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA) y al proyecto CTQ2009-14777-CO2-O2 (MICINN) su apoyo económico.

    Referencias

    1. Stockholm Convention on Persistent Organic Pollutants; United Nations Environment Programme. http://chm.pops.int

    2. Jiménez B, Martínez, MA, Guardans, R, García, A. Organohalogen Compounds, 2009; 71: 002914.

    3. Harner T, Pozo K, Gouin T, Macdonald A-M, Hung H, Cainey J, Peters A. Environmental Pollution, 2006; 144:445-452.

    4. Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B. Environ. Sci. Technol., 2004; 38: 4474-4483.

    5. Cleverly D, Ferrario J, Byrne C, Riggs K, Joseph D, Hartford P. Environ. Sci. Technol., 2007; 41: 1537-1544.

    6. Pozo K, Harner T, Wania F. Environ. Sci. Technol., 2006; 40:4867-4873.

    http://chm.pops.int/

  • THE EFFECT OF 2,4-DICHLOROPHENOXYACETIC ACID (2,4-D) ON

    PCDD/F EMISSIONS FROM OPEN BURNING OF BIOMASS

    Muñoz M1, Gullet B

    2, Touati A

    3, Font R

    1

    1Departamento de Ingeniería Química, Universidad de Alicante, Spain;

    2 Office of Resear and

    Development, NRML, US EPA, RTP, NC 27711 USA; 3 ARCADIS US, Inc., PO Box 13109, RTP,

    NC 27709, USA. Introduction Combustion of biomass from agricultural practices and forest fires is believed to be a significant source of worldwide releases of polychlorinated dibenzodioxins and dibenzofurans (PCDD/F)

    1-

    3. Field sampling and laboratory simulations of open burning

    4-6 without addition of pesticide

    have measured PCDD/F emissions to the atmosphere. PCDD/F emissions during biomass burning may be attributed to thermal desorption of these adsorbed species from the waxy cuticle surrounding the leaf. A number of factors have been shown or postulated to affect PCDD/F emissions, including chloride content

    7, combustion conditions

    8, biomass fuel

    properties 9, 10

    , and the presence of pesticides adsorbed onto the leafy surfaces 11

    . Several studies reported high levels of organochlorine compounds in pine needles

    11, 12,

    including organochlorine pesticides 13-15

    . Formation of PCDD/F may also be tied to the combustive conversion of adsorbed pesticides or their trace byproducts. Precursors found in the soil

    4 such as the fungicide pentachlorophenol (PCP) and highly chlorinated phenoxyphenols

    (PCPPs) have also been implicated in PCDD/F formation, mainly OCDD, from the combustion process

    16, 17. The compound 2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used pesticide

    which has a chemical structure readily amenable to reaction to form PCDD/F. While combustive formation of PCDD/F from organochlorine pesticide precursors is possible, many pesticides, including 2,4-D, have impurities of PCDD/F in their formulations which could be released during combustion. Biomass samples spiked with pesticides and then burned yielded 35- to 270-fold higher values of PCDD/Fs in the ash as compared to the controls

    18.

    To understand the effect of leaf-surface pesticides on emissions of PCDD/F during biomass burns, nine combustion experiments simulating the open burning of biomass were conducted. Needles and branches of Pinus taeda (Loblolly pine) were sprayed with the pesticide 2,4-D at one and ten times the manufacturer’s recommended application concentration. The biomass was then dried overnight, burned in an open burn test facility, and emission samples were collected, analyzed, and compared against emission samples from burning untreated biomass. Blank tests and analysis of PCDD/F in the raw biomass were also performed. Materials and Methods Materials Locally available loblolly pine trees (Pinus taeda) were used as a biomass fuel for all the experiments. The pine forest floor was recreated with pine needles and duff collected from beneath the tree. Selection of 2,4-D, C8H6Cl2O3, CAS 94-75-7, for use in these experiments was based on its high volume of industry usage, its commercial availability, the presence of Cl in its composition, and its chemical structure. The 2,4-D was purchased from Ag Supply (CA, USA). Test Facility description Biomass was burned in an open burn test facility: an air-ventilated and enclosed facility used to simulate small-scale open burning conditions. It consists of a 2.9 x 3.5 m base and a sloped ceiling height of 2.8 m at the apex and 2.2 m at the walls. Fans and flow deflectors within the

    L4

  • test facility are used to enhance air circulation. Test material is placed on a burn pan atop an electronic balance for burn rate determination. Thermocouples were placed on different positions. The burn facility is equipped with a continuous emission monitor (CEM) system. Lines to the CEMs were positioned next to or at the exit duct to monitor carbon monoxide, carbon dioxide and oxygen. Flow measurements based on pressure drop were monitoring in real time. Test Procedure Approximately 8 kg of pine biomass and 1 m

    2 of duff material was collected. The biomass was

    sprayed with a hand sprayer and left overnight for drying outside under shelter. The pine biomass branches were sprayed with the manufacturer’s recommended concentration of the pesticide for woody plants and non-cropland biomass. This concentration, termed, C1, was increased ten-fold, termed C10, for the second test variable. The control biomass, C0, consisted of biomass that was sprayed with water only and went through the same drying and testing procedure as the pesticide-spiked samples. Emissions were gathered from three or four burns to create a single composite sample in an effort to collect sufficient sample to avoid non-detects for the PCDD/F congeners. Emission samples to characterize PCDD/F were collected with a high volume sampler (Tisch Environmental, TE-PNY1123 ACCUVOL) and PCDD/F were adsorbed in the filter and PUF. The PUF is pre-spiked with five isotopically-labeled tetra- through octa-CDD/F standard compounds prior to the sampling to determine the overall efficiency of sample collection and retention. The combined PUF and filter were Soxhlet-extracted overnight with toluene and then concentrated. The extract was cleaned and fractionated fractionated using an automated liquid chromatography multicolumn system (Power Prep Dioxin System, FMS Fluid Management Systems, Inc., Watertown, MA, USA). The final extract is analyzed by HRGC/HRMS using a Hewlett-Packard gas chromatograph 6890 Series equipped with a CTC Analytic Combi PAL autosampler (CTC Analytics, Zwingen, Switzerland) and coupled to a Micromass Premiere (Waters, Inc., Manchester, UK) double-focusing high resolution mass spectrometer. The 17 PCDD/F congeners were analyzed using the isotope dilution method

    19, modified by the use of different internal standards to those specified in the

    method. Internal standards of nine 13

    C12-labeled PCDDs and PCDFs were added to every sample prior to the extraction procedure, allowing quantification of the native PCDDs and PCDFs in the sample. Background and laboratory blank tests (sampling in the burn facility without combustion and laboratory procedure blank) were conducted to ensure that the sampling and analysis methods, potential facility contamination and ambient feed air were not biasing the tests with PCDD/F. Raw material and ashes were also analyzed. Results and discussion Emission factors were determined using the “carbon balance” method in terms of ng PCDD/F TEQ/ kg carbon burned (Cb) and also as Total PCDD/F values (ng/kg Cb). Experimental results are presented in Table 2 with emission factors expressed as ng TEQ/kg Cb or Total ng/kg Cb, and raw biomass and ash concentrations expressed as TEQ/kg Ci or Total ng/kg Ci where Ci is the initial carbon content of the as-gathered. All non-detects (NDs) of the 2,3,7,8-chlorine-substituted congeners were set to both zero and their detection limit (DL) due to the significant difference between the resulting TEQ values. Calculations of emission factors when ND = DL provides for an upper bound of the concentration and emission factor, while reporting data as ND=0 provides for a lower bound of the values. Regarding TEQ values, ANOVA analysis performed on data showed that the only significant differences were between C10 and all other conditions. Total PCDD/F values (sum of tetra- to octa- congeners) demonst