31. salazar julio fr

11
XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014 CARACTERIZACIÓN FOTOMÉTRICA DE LÁMPARAS LED EN FUNCIÓN DE LA TEMPERATURA Julio C. Salazar R. - [email protected] Manfred Horn M. [email protected] Laboratorio de Fotometría, Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima RESUMEN. Se presenta el estudio de la respuesta fotométrica y radiométrica en función de la temperatura de un Led blanco, marca LUXEON XC-3W disponible a granel en el mercado, este tipo de Led no dispone de información o características técnicas de fabricación. Se ha cuantificado el corrimiento espectral de los picos del Led en función de la corriente e indirectamente de la temperatura. Palabras-clave: Led, Iluminancia 1. INTRODUCCIÓN Los consumidores de productos de iluminación tácitamente esperan que los productos de iluminación adquiridos consuman poca energía, tengan una duración aceptable, un rendimiento de acuerdo con las normas técnicas y características proporcionadas por el producto. Los estudios que se realiza en los equipos y sistemas de iluminación nos permiten racionalizar el uso de electricidad y aumentar la eficiencia energética del producto. En los Leds, la colorimetría, la distribución espectral de la luz, la intensidad de la irradiancia, vida útil, etc. dependen fuertemente de la temperatura de la unión. 2. METODOLOGÍA Se ha construido una caja negra para el soporte de muestras, sensor del luxómetro, fibra óptica, así como también los seguros de acceso de las tapas extremas y las conexiones eléctricas. Esta unidad ha sido planificada para operar de modo versátil para diferentes tipos de lámparas Led. Fig. 1. Esquema experimental. El sistema de calefacción o refrigeración, según sea el caso, utiliza 2 pares de dispositivos Peltier. Cada par está formado por 2 elementos Peltier conectados eléctricamente en serie, luego se colocan los pares espacial o geométricamente en paralelo. Una fuente de tensión con dos salidas independientes de 12 Vdc alimenta cada par; una de estas salidas es monitoreada y administrada a través de un controlador digital de temperatura que usa como referencia la temperatura de la placa o platina de aluminio la cual está en contacto térmico (thermal matching) con el Led que se desea estudiar. La misma fuente proporciona la tensión para el funcionamiento del ventilador del disipador. La

Transcript of 31. salazar julio fr

Page 1: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

CARACTERIZACIÓN FOTOMÉTRICA DE LÁMPARAS LED EN

FUNCIÓN DE LA TEMPERATURA

Julio C. Salazar R. - [email protected]

Manfred Horn M. – [email protected]

Laboratorio de Fotometría, Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima

RESUMEN. Se presenta el estudio de la respuesta fotométrica y radiométrica en función de la temperatura de un Led

blanco, marca LUXEON XC-3W disponible a granel en el mercado, este tipo de Led no dispone de información o

características técnicas de fabricación.

Se ha cuantificado el corrimiento espectral de los picos del Led en función de la corriente e indirectamente de la

temperatura.

Palabras-clave: Led, Iluminancia

1. INTRODUCCIÓN

Los consumidores de productos de iluminación tácitamente esperan que los productos de iluminación adquiridos

consuman poca energía, tengan una duración aceptable, un rendimiento de acuerdo con las normas técnicas y

características proporcionadas por el producto.

Los estudios que se realiza en los equipos y sistemas de iluminación nos permiten racionalizar el uso de

electricidad y aumentar la eficiencia energética del producto.

En los Leds, la colorimetría, la distribución espectral de la luz, la intensidad de la irradiancia, vida útil, etc. dependen

fuertemente de la temperatura de la unión.

2. METODOLOGÍA

Se ha construido una caja negra para el soporte de muestras, sensor del luxómetro, fibra óptica, así como también

los seguros de acceso de las tapas extremas y las conexiones eléctricas. Esta unidad ha sido planificada para operar de

modo versátil para diferentes tipos de lámparas Led.

Fig. 1. Esquema experimental.

El sistema de calefacción o refrigeración, según sea el caso, utiliza 2 pares de dispositivos Peltier. Cada par está

formado por 2 elementos Peltier conectados eléctricamente en serie, luego se colocan los pares espacial o

geométricamente en paralelo. Una fuente de tensión con dos salidas independientes de 12 Vdc alimenta cada par; una de

estas salidas es monitoreada y administrada a través de un controlador digital de temperatura que usa como referencia la

temperatura de la placa o platina de aluminio la cual está en contacto térmico (thermal matching) con el Led que se

desea estudiar. La misma fuente proporciona la tensión para el funcionamiento del ventilador del disipador. La

Page 2: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

temperatura es medida en el eje de simetría de la placa de aluminio, exactamente debajo del pequeño disipador

adherido al Led (no se muestra en la Fig. 1).

Fig. 2. Diagrama experimental

3. CORRIMIENTO DE LA LONGITUD DE ONDA MÁXIMA CON LA TEMPERATURA

El incremento excesivo de temperatura en los dispositivos Leds afecta la distribución espectral de la radiación

emitida, la cual es modificada tanto en la forma de la distribución espectral como con el corrimiento de manera

significativa de la distribución espectral.

Para para Leds basados en GaAsP, el desplazamiento se da en la dirección de mayor longitud de onda y para Leds

basados en GaInN (ejemplo, para los Leds azul), el corrimiento es hacia longitudes de onda más cortas. Para Leds

típicos, este cambio es aproximadamente

(1)

4. MEDICIONES DE LAS CARACTERÍSTICAS FOTOMÉTRICAS Y RADIOMÉTRICAS EN FUNCIÓN

DE LA TEMPERATURA DE LOS LEDS BLANCOS DE POTENCIA LUXEON XC- 3W

En las uniones p-n, al aplicárseles una polarización directa, ocurre una recombinación de huecos y electrones lo

que dará a lugar que parte de esa energía transferida se convierta en luz y otra parte en calor. Para los casos de diodos de

Ge y Si, el mayor porcentaje de energía se desprende en forma de calor y en pequeña proporción en forma de luz en el

rango infrarrojo. Para los Leds del tipo que usamos ocurre que la energía luminosa emitida nos proporciona una fuente

de luz intensa en el rango visible. El Led, al ser un dispositivo de unión p-n, tendrá las características de polarización

directa similar a las de un diodo.

Figura 3. Curva característica I-V correspondiente al Led Luxeon XC-3W

Page 3: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

Utilizando el diagrama experimental de la Fig. 2, obtenemos la curva característica I vs V, típica de un diodo como

se puede ver en la Fig. 3. El Led solamente está adherido a su propio pequeño disipador básico que contiene los

contactos de alimentación y medición.

Observaciones en la medición de la curva I-V de la Fig. 3 del Led Luxeon XC-3W:

- En 2,4 Vdc se inicia débilmente la emisión de luz.

- En 3 Vdc la temperatura del disipador adherido al pack del Led alcanza aproximadamente (al tacto), una temperatura

de 40 ºC.

- A 3,5 Vdc apenas se puede tocar el disipador. T 80 ºC.

- Con 4,3 Vdc el empaque empieza a emanar gases y humear.

- Cuando el voltaje es apenas mayor que 4,6 Vdc la intensidad de luz radiada empieza a decaer rápidamente y el Led

colapsa.

Examinemos en la Fig. 4 la parte lineal de la curva característica I-V de la fig. 3. Con él encontraremos el

potencial de conducción o de disparo VT (Threshold voltage: tensión umbral) a partir de la cual pequeños incrementos

en la tensión producirán grandes cambios en la corriente.

Figura 4. Determinación de la tensión umbral del Led Luxeon XC-3W.

Si sólo consideramos los 12 puntos experimentales que se encuentran alineados, la ecuación de ajuste lineal nos

proporciona la tensión umbral VT 2,82 V. Recordemos que VT = 0,7 V para el Si y VT = 0,3 V para el Ge.

Respecto de la Fig. 5:

Los dispositivos Peltier (TEC: Thermoelectric cooler) nos proporcionan la factibilidad de regular la temperatura y

realizar las mediciones a temperaturas constantes a lo largo de un intervalo deseado y razonable.

Esto es cierto excepto en el rango de bajas temperaturas donde es muy difícil mantener la temperatura, por ejemplo a

0ºC cuando se incrementa representativamente la corriente.

Debido a esa dificultad no se han realizado mediciones a una sola baja temperatura constante sino en el rango de 1

a 7ºC, siendo por ello no menos interesante e importante medir y visualizar el comportamiento del Led en ese rango

Como era de esperarse la Iluminancia se incrementa hasta cierto punto y luego empieza a decrecer y más rápidamente

cuando la temperatura del medio es tan alta como 100 ºC.

En la Fig. 5 se puede cuantificar el máximo de iluminancia para cada una de estas curvas a temperatura constante

excepto para la curva del intervalo 1º C 7º C, donde no se percibe la disminución de la iluminancia, puesto que

existe un gradiente mayor de temperatura entre el Led y el disipador (del conjunto de dispositivos Peltier) hacia donde

es posible mantener, todavía, una aceptable transferencia de calor sin afectar visiblemente la iluminancia debido a que

los procesos no radiativos producidos por el aumento de temperatura no se han incrementado representativamente como

en las otras curvas de 25 ºC a 100 ºC.

Por otra parte podemos especular acerca de la tendencia (por ejemplo, con una aproximación lineal) de la

disminución de la iluminancia respecto del incremento a temperaturas mayores que 100 ºC, a partir de la tendencia de

los máximos de iluminancia de los intervalos de 25 ºC a 100 º C.

Page 4: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

Figura 5. Iluminancia en función de la corriente y a diferentes temperaturas.

Figura 6. Iluminancia en función de la temperatura a corrientes constantes.

Page 5: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

De la Figura 6, se observa que para corrientes constantes por debajo de aproximadamente 230 mA (y de las

estimaciones hechas a partir de la Fig. 4 para tensiones menores que VF = 3 Vdc;), las iluminancias serán pequeñas y el

aumento de temperatura les afectará poco.

Al aumentar los valores de las corrientes constantes (en el rango de 0,40 A hasta 1,10 A) aumentará la

iluminancia, la cual a su vez se verá disminuida con respeto del aumento de la temperatura del medio producida por los

TECs. Para valores más grandes de corrientes constantes (en el rango de 1,20 A a 1,50 A) y en los mismos rangos de

temperatura, los cambios serán mucho más dramáticos en lo que respecta a la disminución de la iluminancia.

Si a partir del gráfico de la Fig. 6, las tendencias mostradas por cada curva de iluminancia a corrientes constantes

respecto de la temperatura, las aproximamos a un ajuste lineal, obtenemos la curva correspondiente que se muestra en la

Fig. 7, la cual representa el comportamiento del gradiente de la iluminancia respecto de la temperatura en función de la

corriente.

Figura 7. Gradiente de la Luminancia/Temperatura en función de la corriente

En la Fig. 7 podemos observar 3 zonas notables donde se producen los cambios consecutivos en el

comportamiento del gradiente en mención respecto de la corriente.

- La primera zona: si tomamos los 5 primeros puntos experimentales; los ajustamos linealmente y obtenemos una

pendiente de 2,5 (u.a./ºC / A). (Con R2 = 0,9977)

- La segunda zona, los siguientes 4 puntos experimentales, los que ajustamos linealmente y obtenemos una pendiente

de 3,2 (u.a./ºC / A). (Con R2 = 0,9948)

- La tercera zona, los últimos 4 puntos consecutivos, los ajustamos linealmente y obtenemos una pendiente de 5,8

(u.a./ºC / A). (Con R2 = 0,9975)

Este tipo de comparaciones nos permiten cuantificar de manera aproximada la tasa de cambio de la luminancia por

grado de temperatura y debido a la corriente.

- Así podemos cuantificar que la mencionada tasa de cambio entre la tercera zona, (corrientes altas a partir de 1,2 A)

respecto de la primera zona (de 0,05 A hasta 0,6 A) es de aproximadamente 2,3.

- La tasa de cambio entre la tercera zona y la segunda (de 0,8 A a 1,1 A) es de aproximadamente 1,8.

- La tasa de cambio entre la segunda zona y la primera es de aproximadamente 1,3.

En conclusión, en este caso, obviamente que el cambio del gradiente es menor entre la segunda y la primera zona y

en la frontera se encuentra el funcionamiento apropiado del Led que nos ocupa y esto es en 0,7 A.

En el gráfico de la Fig. 8, cuando se incrementa la corriente cada 0,1 A a partir de la tensión VF aplicada al Led

para cada temperatura constante, llegamos a un punto común de V y I donde la resistencia total del Led es de 3 ,

cuando la tensión de polarización directa es VF = 3,9 Vdc e IF = 1,3 A para todos los casos de temperatura. Antes de esos

valores la resistencia aumenta y después la resistencia total del Led, disminuye.

Page 6: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

Figura 8. Corriente vs Voltaje a diferentes temperaturas

Figura 9. Eficacia en función de la corriente a diferentes temperaturas

De la Fig. 9 observamos que la eficacia siempre es menor mientras mayor sea la temperatura de funcionamiento

del Led. El comportamiento fenomenológico en este caso es similar, pero no igual para todas las temperaturas, es decir,

la eficacia disminuye más rápidamente respecto de la corriente para una temperatura de 100 º C que para una de menor

magnitud debido al incremento de los procesos no radiativos que aumentan con la temperatura en desmedro de los

procesos de recombinación radiantes.

Respecto de la Fig. 10, al igual que en el gráfico de la Fig. 5, se observa un comportamiento similar de la

iluminancia respecto de la potencia eléctrica consumida o suministrada, puesto que la potencia es proporcional a la

corriente. De igual forma, la iluminancia decrece al incrementarse la temperatura. Por otra parte, los mismos criterios

utilizados en la Fig. 5, pueden usarse en este caso para realizar extrapolaciones de iluminancia respecto de la potencia

eléctrica.

Page 7: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

Fig. 10. Iluminancia en función de la potencia eléctrica.

El gráfico de la Fig. 11 muestra que la eficacia respecto de la potencia eléctrica consumida disminuye más

rápidamente a temperaturas mayores. Esto se ve claramente si se compara la disminución de la eficacia a 100 ºC

respecto de la eficacia de 1 7 ºC o respecto de 25 ºC en todo el rango de potencia eléctrica.

Obviamente que a mayor potencia consumida o suministrada al Led, parte de ésta se estará convirtiendo en fotones y

otra en calor.

Figura 11. Eficacia en función de la potencia a diferentes temperaturas

5. CORRIMIENTO ESPECTRAL

Se ha utilizado una esfera integradora Labsphere, modelo LMS-400 de 1 m de diámetro, un espectrómetro

Labsphere modelo CDS 1100, un espectrómetro Ocean Optics Red Tide USB650, Luxómetro y sensor: LUTRON LX-

1108, elementos Peltier, accesorios y complementos. Con la Esfera Integradora Labsphere se han realizado mediciones

espectrales con corrientes IF de 400 mA, 600 mA, 800 mA, 1000 mA y 1200 mA sin ningún tipo de refrigeración ni

control de temperatura adicional que la proporcionada por la temperatura de la masa de la Esfera Integradora y el calor

Page 8: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

generado por el semiconductor del Led Luxeon XC-3W. Como se mencionó anteriormente, el empaque del Led está

soldado a un disipador pequeño, básico y contenedor de los contactos de alimentación y medición.

No se han realizado mediciones con corrientes mayores a 1200 mA debido a que el calor generado por el

semiconductor excedía fácilmente la temperatura de fusión de la soldadura en los contactos [60/40 (Sn/Pb) = 188 ºC].

El tiempo de integración utilizado en el software del espectrómetro de la esfera integrante fue 500 ms con una

repetición de 3 escaneos espectrales para obtención de la señal promedio.

De igual manera, el sistema proporciona una hoja de resultados espectrométricos los cuales cuantifican una serie

de parámetros. Los picos en el rango azul están claramente definidos (pico y centro del pico) más no en el caso del pico

con centro aproximado en 550 nm, el cual no es simétrico. Sin embargo el software me indica el centroide del pico y el

pico dominante.

Con estos datos se examina lo que ocurre al aumentar la temperatura de manera indirecta puesto que no la estamos

midiendo, pero sabemos que se incrementa al aumentar la corriente, hasta el punto de fundición de los contactos

eléctricos

En las Figs. 12 y 13 se observa con facilidad como el pico azul se desplaza hacia longitudes de onda más largas. El

pico alrededor de 550 nm no muestra un comportamiento evidente de corrimiento pero si una resaltante reducción del

ancho de banda en su base. A 400 mA se tiene un ancho de base de (175 ± 2) nm y con 1200 mA se tiene (107 ± 3) nm.

La base del ancho de banda se ha reducido en 68 nm debido al incremento de los procesos no radiativos que han

reducido la emisión de fotones e incrementado la temperatura. Este fenómeno se puede cuantificar en relación al flujo

emitido más no respecto de la temperatura.

Figura 12. Flujo espectral del Led con IF = 400 mA, calibrado con el patrón incandescente IL2

Figura 13. Flujo espectral del Led con IF = 1200 mA, calibrado con el patrón incandescente IL2

Page 9: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

De la data de resultados espectrales podemos graficar la evolución del pico azul ≈ en 450 nm en la Fig. 43 y del

amarillo verdoso ≈ en 550 nm en la Fig. 15.

En la Fig. 14, para el pico azul se observa que con el aumento de 800 mA (desde 400 mA a 1200 mA) se ha

producido un desplazamiento del orden de (11 ± 2) nm y para el centroide del mismo, el desplazamiento ha sido de

(12 ± 2) nm.

En la Fig. 15 tanto el pico amarillo verdoso centroide como el dominante, se desplazan hacia longitudes de onda

más cortas al incrementarse la corriente en 800 mA (desde 400 mA a 1200 mA). Este corrimiento es de menor magnitud

para el centroide. Para el pico dominante el desplazamiento es de (50 ± 2) nm y para el centroide del pico el corrimiento

es de (14 ± 2) nm.

Los corrimientos en los gráficos de las Figs. 14 y 15, son debidos al incremento de temperatura y la consecuente

adición continua de los procesos no radiativos de recombinación electrón hueco en la zona de agotamiento del

semiconductor.

Figura 14. Corrimiento espectral del pico azul en función de la corriente del Led Luxeon XC-3W

Figura 15. Corrimiento espectral del pico amarillo verdoso en función de la corriente del Led Luxeon XC-3W

Page 10: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

6. FACTOR FWHM

Otro de los parámetros indicadores que proporciona la hoja de resultados espectrales es el factor FWHM para el

pico azul cuya evolución la representamos en la Fig. 16 de la cual podemos implicar que a medida que aumenta la

corriente, el FWHM se incrementa, esto es, el ancho de banda crece siguiendo un comportamiento aproximadamente

cuadrático.

Figura 16. FWHM en función de la corriente

7. CONCLUSIONES:

- Se ha mostrado que el Led utilizado es un diodo con características de funcionamiento similares y cuyos rangos de

funcionamiento y finalidad son diferentes. Para el Led blanco Luxeon XC-3W, VT = 2,8 Vdc.

- Se ha determinado el gradiente de la luminancia/temperatura en función de la corriente para el Led XC-3W.

- Los gráficos elaborados describen el comportamiento de la iluminancia respecto de la potencia eléctrica, la eficacia

respecto de la corriente y la eficacia respecto de la potencia eléctrica entre otros.

- Utilizando el espectrómetro y esfera integradora Labsphere, se ha realizado el estudio del flujo espectral, la posición e

intensidad de los picos y el FWHM respecto de la corriente e indirectamente de la temperatura máxima permitida por

las soldaduras de las conexiones del Led.

- La iluminancia decae con el incremento de la corriente y la temperatura debido al aumento de los procesos no

radiativos de recombinación que reducen la eficiencia de conversión de energía en un Led.

- La recombinación no radiativa que tiene lugar en el Led es del tipo SRH (Shockley-Read-Hall) mediada por defectos

y la recombinación Auger a través de los fonones de la red del semiconductor del Led.

- Con el espectrómetro portátil Red Tide USB650 de Ocean Optics, calibrado con el espectrómetro Labsphere modelo

CDS 1100, se han realizados registros confiables de la distribución espectral de la radiación visible del Led blanco

Luxeon XC-3W bajo diferentes condiciones de corriente y temperatura, adicionalmente se obtuvo un desplazamiento

del pico azul, con resultados análogos a los obtenidos con el espectrómetro Labsphere.

AGRADECIMENTOS

Los autores desean agradecer al Concytec, por su apoyo económico para la realización del presente trabajo

8. REFERENCIAS:

CIE-127: 2007. Technical Report – Measurement of LEDS. 2nd. Ed.

Clemens J. M. Lasance • András Poppe Editors. Series Editor: G. Q. Zhang. 2014. Thermal Management for LED

Applications. Solid State Lighting Technology and Application Series. Springer Verlag. ISBN 978-1-4614-5091-

7 (eBook). Springer Science+Business Media New York

Boylestadt Nashelsky. Electrónica: Teoría de circuitos y dispositivos electrónicos. Octava edición.

Page 11: 31. salazar julio   fr

XXI Simposio Peruano de Energía Solar y del Ambiente (XXI-SEPES), Piura, 10-144.11.2014

PHOTOMETRIC CHARACTERIZATION OF LED LAMPS IN FUNCTION OF TEMPERATURE

Abstract. This paper presents the study of the photometric and radiometric response as function of the temperature of a

white Led LUXEON XC-3W available in bulk in the market, this type of Led has no information or technical

manufacturing characteristics.

It has quantified the spectral shift of peaks as a function of led current and indirectly of the temperature.

Key words: Led, Iluminance