A capítulo 2 expresiones algebraicas

54
Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo. GALILEO GALILEI EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS SU CLASIFICACIÓN Y SU CLASIFICACIÓN Y OPERACIONES OPERACIONES POR : ING. MARGARITA PATIÑO JARAMILLO ING. CARLOS ENRIQUE VILLA ARANGO

Transcript of A capítulo 2 expresiones algebraicas

Page 1: A capítulo 2 expresiones algebraicas

Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo.

GALILEO GALILEI

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS SU CLASIFICACIÓN Y OPERACIONESSU CLASIFICACIÓN Y OPERACIONES

POR : ING. MARGARITA PATIÑO JARAMILLO ING. CARLOS ENRIQUE VILLA ARANGO

Page 2: A capítulo 2 expresiones algebraicas

INTRODUCCIÓN A LA UNIDAD

En ocasiones has visto expresiones como la siguiente:a + b = b + a

Con ella representamos la propiedad conmutativa de la suma. Esta propiedad es cierta para cualquier par de números y por ello utilizamos letras en lugar de valores concretos.

En Matemáticas es frecuente utilizar expresiones que combine números y letras o solamente letras. Esto lo hacemos cuando, como en el caso anterior, expresamos relaciones que se dan para todos los números. También cuando desconocemos el valor de algún dato lo representamos con una letra hasta que lo hallamos. Y también cuando no conocemos el valor numérico de algún dato y hemos de escribir una expresión en la que interviene aunque no se trate de hallar su valor.

Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas. La parte de las Matemáticas que utiliza las expresiones algebraicas se llama Álgebra.

Page 3: A capítulo 2 expresiones algebraicas

COMPETENCIAS:

Utilizar adecuadamente las expresiones algebraicas, sus propiedades básicas y operaciones para resolver situaciones problema en distintos contextos.

Saber interpretar la información lingüística en su expresión numérica en un texto dado.

Dominar el uso de la calculadora como ayuda para la resolución de problemas matemáticos.

Utilizar adecuadamente las expresiones algebraicas, sus propiedades básicas y operaciones para resolver situaciones problema en distintos contextos.

Resuelve expresiones algebraicas utilizando las propiedades y operaciones algebraicas.En una situación específica: Realiza operaciones con polinomios.

Page 4: A capítulo 2 expresiones algebraicas

CONOCIMIENTOS PREVIOS

1. Para un buen desempeño con el tema de las expresiones algebraicas,

es necesario un buen dominio en las propiedades y operaciones

descritas en el capítulo de conjuntos numéricos.

2. Tener muy en cuenta la ley de los signos.

3. Tener buena habilidad y destreza en realización de cálculos en los que

intervienen operaciones con signos de agrupación.

Page 5: A capítulo 2 expresiones algebraicas

Para estudiar esta unidad, debes conocer los siguientes conceptos:

1. EXPRESIÓN ALGEBRAICA: Una expresión algebraica es una combinación de números y letras relacionados mediante operaciones aritméticas. Adición, sustracción, multiplicación, división y potenciación

3y – 2xy + 8

Expresión algebraica

términos

La expresión algebraica esta conformada por TÉRMINOS

Nuestra expresión Algebraica modelo está conformada por tres términos: (3y ), (-2xy), (8)

Entonces, UN TÉRMINO es una expresión algebraica que consta de un solo símbolo o de varios símbolos separados únicamente por la multiplicación o la división. Aquí no hay sumas ni restas para separarlos.

Page 6: A capítulo 2 expresiones algebraicas

• GRADO ABSOLUTO DE UN TÉRMINO:GRADO ABSOLUTO DE UN TÉRMINO: Se

denomina grado absoluto de un término

algebraico a la suma de los exponentes de su

factores literales:

3x3x33, este término es de grado tres

-5x-5x22yy33, es de grado 5, porque la suma de los

exponentes de sus factores literales es 2 + 3 =

5

• GRADO RELATIVOGRADO RELATIVO: Está dado por el

exponente de la variable considerada.

-5x-5x22yy3 3 : : Es de 2º grado con respecto a la

variable x.

-5x-5x22yy33: : Es de 3er grado con respecto a la

variable y.

Page 7: A capítulo 2 expresiones algebraicas

CLASIFICACIÓN DE LAS EXPRESIONES ALGEBRAICAS

MONOMIOS. POLINOMIO

Las expresiones Algebraicas se clasifican de acuerdo al número de términos que la componen en: MONOMIOS, BINOMIOS, TRINOMIOS Y POLINOMIOS

GRADO DE UN POLINOMIO

OPERACIONES CON POLINOMIOS:

SUMA Y RESTA

MULTIPLICACIÓN

DIVISIÓN

REGLADE RUFFINI

Page 8: A capítulo 2 expresiones algebraicas

MONOMIOS.Los monomios son expresiones algebraica de un solo término.

Ejemplos:

1) 7xy 2) –0,5xy 3) 4ab 4) -5xyz 5) 52abc 6) 3xz

Debes tener en cuenta que en un monomio hay:

1. un factor numérico que se llama coeficiente , que en los ejemplos

anteriores serían : 7 ,-0.5, 4 ,-5, 52, 3 respectivamente,

2. Una parte constituida por letras y sus exponentes que se llama parte

literal, como son xy, xy , ab, xyz para nuestros ejemplos anteriores.

Los monomios que tienen la misma parte literal se llaman monomios

semejantes, o simplemente términos semejantes, como son : 5xy2,

-7xy2, 3xy2.

Page 9: A capítulo 2 expresiones algebraicas

POLINOMIO

Un Polinomio es una expresión algebraica que consta de dos o más

términos algebraicos:

Ejemplos:

1) -7x2 + 4x – 5xy 3) 5a2 + 3ab - ab2 - 2

2) 6x4 - 5x3 + x2 + 4x + 9 4) 6x3 + 2x2 – x +1

De acuerdo a la cantidad de sumandos el polinomio recibe otras

denominaciones que son: Binomio y Trinomio:

Page 10: A capítulo 2 expresiones algebraicas

BINOMIO

Binomio: es un Polinomio que consta de dos términos.

Ejemplos:

1) 5x2y + 2x2y3 3) 4a2b + 4a3b3 5) 8m3n2 - 2mn2

2) -4x + 3y 4) 6x2y2z - 3xy 6) – 4x -2xy

Trinomio: es un Polinomio que consta de tres términos.

Ejemplos:

1) 5x + 6y + 3z 3) 4mn2 + 2m2n – 3mn 5) a2+b2 + 3ab3 + ab

2) –1 + ab + 3a2b 4) -3xy2z + 3x2y2z +x2y2z3 6) x3y2 + xy2 +3xy

TRINOMIO

Page 11: A capítulo 2 expresiones algebraicas

El grado de un polinomio está determinado por el término de mayor grado absoluto.

Ejemplo:

2x3y + 5xy2 - x z + 1 es de grado 4,

OBSERVA : el término 2x3y que es de grado 4.

El grado de un polinomio respecto de una variable es el mayor

exponente con que figura dicha variable . Así en el ejemplo anterior es de

grado 3 respecto de x , de grado 2 respecto de y, de grado 1 respecto de z

GRADO DE UN POLINOMIO

Page 12: A capítulo 2 expresiones algebraicas

Taller para identificar las características de las expresiones algebraicas

Page 13: A capítulo 2 expresiones algebraicas

OPERACIONES CON POLINOMIOS

Los Polinomios pueden sumarse, restarse, multiplicarse, dividirse y elevarse a cualquier potencia real.

Por ejemplo una SUMA de polinomios puede expresarse como:

2 3 2P(y) : 2y +y-1 y Q(y) : 3y + 4y - 5 Hallar :P(y) +Q(y)

Page 14: A capítulo 2 expresiones algebraicas

SUMA y RESTA

1. Solo se pueden sumar o restar TÉRMINOS SEMEJANTES.

2. La suma o resta de dos o más monomios semejantes es otro monomio

semejante a los anteriores y que tiene por coeficiente la suma o resta de

los coeficientes de cada monomio.

3. Si no son semejantes se deja la operación indicada YA QUE NO SE

PODRÁN SUMAR.

EJEMPLO 1: 4 b + b  = 5b EJEMPLO2: 7xy – 3xy = 4xy

EJEMPLO3: - 5xy2 – 3xy2 = - 8xy2

EJEMPLO4: 2x3y2 + 2xy =

4 + 1 = 5

Se asume, que si no existe un valor numérico (coeficiente) antes de la letra, se asume que vale uno (1)

No se pueden sumar, pues no se cuenta con términos semejantes

Page 15: A capítulo 2 expresiones algebraicas

2 3 2P(y) : 2y +y-1 y Q(y) : 3y + 4y - 5 Hallar :P(y) +Q(y)

La suma de dos o más polinomios puede realizarse sumando sus

términos semejantes. Esta operación puede hacerse en forma vertical o

en horizontal o fila.

Su representación sería como se presenta a continuación:

EJEMPLO: Sume los dos Polinomios siguientes

Primero ordenemos en forma descendente el polinomio P(y), con relación a la

variable y.

Como segundo paso, es conveniente disponer los polinomios en forma vertical

de tal manera que coincidan los términos semejantes de ambos polinomios, así

obtienes la siguiente presentación y podrás sumarlos más fácilmente:

P(y) +Q(y)

Page 16: A capítulo 2 expresiones algebraicas

:

2

3 2

3 2

P(y) : 2y + y-1

Q(y) : +3y + 4y - 5

P(y) +Q(y) 3y + 6y + y - 6

3 2(3x - 7x +2) + (7x +2x - 7)

EJEMPLO: Resuelve la siguiente suma de polinomios utilizando el método horizontal:

Para dar solución a este ejercicio, sigue los pasos que se describen a continuación:

1. Agrupa términos semejantes utilizando las propiedades conmutativa y asociativa de la adición.

3 23x +7x +(-7x +2x) + (2 +(-7))

Sigue

Page 17: A capítulo 2 expresiones algebraicas

2. Ahora podrás reducir términos semejantes, es decir, súmalos:

Otro ejemplo: Realizar la suma de polinomios indicada:

Para dar solución a esta suma, debes proceder de igual manera que en el ejemplo anterior:

Como último paso, debes ordenar el polinomio, esto lo haces teniendoen cuenta los exponentes de la variable x; entonces

Ordena de mayor a menor (orden descendente), y te quedará así:

- 7x3 +4x2 +8x +3

3 2 3 23x +7x +(-5x) + 5 3x +7x - 5x + 5. Es tu respuesta

3

2 3

2 3

8x +5x +3

4x + x +3x

4x - 7x +8x +3

3 2 3-8x +5x +3 + 4x + x +3x

Page 18: A capítulo 2 expresiones algebraicas

RESTA DE POLINOMIOS

EJEMPLO1: Realizar la siguiente resta de monomios: 15x – 10x

Para dar solución debes restar los coeficientes 15 -10, ya que estamos operando con términos semejantes; por lo tanto, tu respuesta será igual a 5x.

Respuesta: 15x – 10x = 5x

EJEMPLO2: realizar la siguiente resta de polinomios: P(x) – Q(x).

Sea P(x) = y Q(x) =

1. Para dar solución a esta resta observemos la siguiente disposición en

forma horizontal:

3(4x + 5x - 6) 3 2(3x - 2x + 7x)

?3 3 2P(x) - Q(x) = (4x + 5x - 6) - (3x - 2x + 7x)=

Page 19: A capítulo 2 expresiones algebraicas

2. Destruye el paréntesis aplicando la ley de signos:

3. Operando con los términos semejantes, se obtiene:

EJEMPLO3: Realizar la siguiente resta de polinomios, utilizando la forma vertical :

Para dar solución, observa de nuevo como el signo menos afecta el sustraendo:

No olvides que para restar dos polinomios deben cambiarse No olvides que para restar dos polinomios deben cambiarse todos los signos al sustraendo y sumar algebraicamentetodos los signos al sustraendo y sumar algebraicamente.

3 3 2 3 3 2 (4x + 5x - 6) - (3x - 2x + 7x)= 4x + 5x - 6 - 3x + 2x - 7x =

3 3 2 3 2 4x + 5x - 6 - 3x + 2x - 7x = x + 2x -2x -6, Es tu respuesta

2 2(2x +4x-3)- (5x -6)= ?

2

2

2

2x + 4x-3

-5x 6

3x 4x 3

Minuendo

Sustraendo

Diferencia

Page 20: A capítulo 2 expresiones algebraicas

EJEMPLO 4: Realizar la siguiente resta utilizando el método horizontal:

Para dar solución, no olvides escribir en forma horizontal los polinomios cuidando de cambiar el signo a los términos del sustraendo.

Teniendo en cuenta el cambio de los signos, la operación se convierte en una suma de polinomios:

Ahora, efectúa las operaciones:

2 2 2 2( 4x 3xy 2y ) (3x 4y ) ?

2 2 2 24x 3xy 2y 3x 4y

2 2 2 2 2 24x 3xy 2y 3x 4y 7x 3xy 6y

Page 21: A capítulo 2 expresiones algebraicas

Taller para practicar la suma y resta depolinomios

Page 22: A capítulo 2 expresiones algebraicas

MULTIPLICACIÓN DE POLINOMIOS

1. MULTIPLICACIÓN DE UN MONOMIO POR OTRO MONOMIO:

Para multiplicar dos monomios entre sí se procede de la siguiente manera:

1. Se multiplican los signos (Es decir, se aplica ley de signos)

2. Se multiplican sus coeficientes.

3. Cuando tenemos letras iguales o bases, se suman los exponentes para cada una.

Ejemplo 1: 3x2 (-5x3y) = - 15 x2+3 y = -15x5y

Ejemplo 2:

-3 -4 2-3 - 4 1 + 2 -7 3-2 -9-2x y -9x y 18

× = x y = x y5 11 5 11 55

Page 23: A capítulo 2 expresiones algebraicas

2. MULTIPLICACIÓN DE UNA CONSTANTE POR UN POLINOMIO

Al efectuar esta multiplicación, se utiliza la propiedad distributiva del

producto, y el resultado es otro polinomio que tiene de grado el mismo del

polinomio inicial y como coeficientes el producto de los coeficientes del

polinomio por la constante.

3. Multiplicación de un monomio por un polinomio:

Se multiplica el monomio por todos y cada uno de los monomios que

forman el polinomio, aplicando la propiedad distributiva de la multiplicación

y las propiedades de potenciación, es decir se suman los exponentes de

los términos semejantes, sin olvidar aplicar la ley de los signos.

23(4y 10y 5xy 7) 12y2

- 30y + 15xy -21

Page 24: A capítulo 2 expresiones algebraicas

EJEMPLO : Realizar la siguiente

multiplicación de un monomio (11x3) por el

polinomio 2x5 – 4x2 + 5x – 12

El producto resultante de esta multiplicación es:

8 5 4 322x 44x 55X 132x 3 5 211x( 2x -4x +5x-12)=

Page 25: A capítulo 2 expresiones algebraicas

4. MULTIPLICACIÓN DE POLINOMIOS:

Para multiplicar dos polinomios entre sí, se

multiplica cada término del primer polinomio

por todos y cada uno de los términos del

segundo polinomio con sus correspondientes

signos, es decir, se está utilizando

nuevamente la propiedad distributiva del

producto lo mismo que las propiedades de la

potenciación.

Esta operación la podrás realizar de forma

horizontal o vertical

Page 26: A capítulo 2 expresiones algebraicas

5. MULTIPLICACIÓN DE POLINOMIOS UTILIZANDO EL MÉTODO

HORIZONTAL:

EJEMPLO1: Efectuar la siguiente multiplicación del polinomio

por

Para realizar la multiplicación expresamos cada factor así:

Multiplicando cada término del primer polinomio por cada uno del

segundo te obtiene:

2(3x 2x 3) 2(2x 5x)

2 2(2x 5x)(3x 2x 3)

2 2(2x 5x)(3x 2x 3) 6x4 - 4x3 + 6x2 + 15x3 - 10x2 + 15x

Page 27: A capítulo 2 expresiones algebraicas

6. MULTIPLICACIÓN DE POLINOMIOS UTILIZANDO EL MÉTODO

VERTICAL:

EJEMPLO 1: multiplicar los polinomios: P(x) = 7 x3 - 5 x + 2 y Q(x)

= 2 x2 + 5 x - 1

Para realizar la multiplicación disponemos los polinomios de la siguiente

forma, para multiplicar cada término, y luego sumar los términos

semejantes:

2

5 3

4 2

5

2

3

3 2

3

4

5 x

35 x - 25 x + 10

2 x

14 x - 10 x

7 x - 5

14 x

x + 2

+ -

+35

1

x -1

- 7 x

7 x -+ 2

+ 5 x -

x

1 x + 15 x4 x

2

- 2

Page 28: A capítulo 2 expresiones algebraicas

EJEMPLO 2: Realizar la siguiente multiplicación de polinomios:

26x

4 3 242x +18x

27x +3x

4228x

-1

- +

4 3 242x

2x

3 2-14x - 6x + 2x

+ 4x + 16x + 14x - 4

+ 12x

-

- 6x

4

Page 29: A capítulo 2 expresiones algebraicas

DIVISIÓN

1. DIVISIÓN DE MONOMIOS

Para dividir dos monomios se dividen sus coeficientes y para cada letra

común en el dividendo y divisor se restan sus exponentes.

EJEMPLO 1: Realizar las siguientes divisiones de monomios

18a) 6

7x 7 4x5y 5 3 3 2y 6x y3y43x

3 7 2 73

55

7xx

32

x8

yb) y 8

4x y

Note que el exponente de x en el numerador es menor que el exponente de x en el denominador, por lo tanto, al realizar la resta de éstos su diferencia es negativa e igual a -2; lo que significa que debemos representarlo como exponente positivo, por lo tanto, se podrá lograr llevándolo al denominador, según propiedades de los exponentes.

Page 30: A capítulo 2 expresiones algebraicas

a 1 10 0a 1 y a a 1a

01 a 0 1 1a aa a

11Por lo tanto : aa

Ejemplo: 3 -2 4

2 -1 -2 3-2 2 -4 2

3 2 4y 5x 5y= 3x ; = 2x ; = 4x y ; =

x x x 3y 3x

Algunas propiedades de los exponentes para tener en cuenta:

Page 31: A capítulo 2 expresiones algebraicas

2. DIVISIÓN DE UN POLINOMIO POR UN MONOMIO:

En el caso de que el dividendo sea un polinomio y el divisor un monomio, se puede representar indicando la división de cada uno de los monomios del dividendo entre el monomio divisor.

EJEMPLO1:

3 6 4 3 6 418x y - 6x + 3x z 18x y 6x 3x z= - +

3x 3x 3x 3x

Observe que ya tiene tres divisiones de

monomios, y su resultado es:

2 5 33 6 418x y 6x 3x z

- + 6x y 2x x z3x 3x 3x

Page 32: A capítulo 2 expresiones algebraicas

EJEMPLO2: Realizar la siguiente división de un polinomio por un monomio:

Para dar solución dividimos cada uno de los términos del polinomio del

dividendo por el monomio , veamos

Realizando la división de monomios, obtenemos:

5 2 4 3 2 4 557x y + 12x y - 11x y - 9y + 23?

4 53x y

4 53x y

4 35 2 2 4 557x y 12x y 11x y 9y 234 5 4 5 4 5 4 5 4 53x y 3x y 3x y 3x y 3x y

-2 -4 -5-3 -2 -1 4 057xy 12y 11x y 9x y 23x y

3 3 3 3 3

19x 11 3 234 4 53 2 x 3x yy 3x y

Page 33: A capítulo 2 expresiones algebraicas

DIVISIÓN DE POLINOMIOS:

Para dividir dos polinomios siempre, el grado del dividendo debe ser mayor o igual al grado del divisor. Además, siempre deben estar ambos polinomios ordenados en forma descendente.

En el caso de que falte algún término del divisor , debe dejarse su espacio o colocar un cero (0) para poder operar correctamente.

Para que no te quede ninguna duda, estúdiate las siguientes reglas:

Page 34: A capítulo 2 expresiones algebraicas

REGLAS PARA LA DIVISIÓN DE POLINOMIOS:

1. El dividendo y el divisor se deben expresar en orden descendente con

respecto a una misma letra.

2. Procede luego a dividir el primer término del dividendo entre el primer

término del divisor y obtendrás así el primer término del cociente.

3. Este primer término del cociente se multiplica por todo el divisor y el

producto se resta del dividendo, para lo cual se le cambia el signo,

escribiendo cada término debajo de su semejante. Si algún término de

éste producto no tiene término semejante en el dividendo se escribe en

el lugar que le corresponde de acuerdo con la ordenación del dividendo y

el divisor.

4. Para continuar se divide el primer término del resto entre el primer

término del divisor y tendremos el segundo término del cociente.

5. Este segundo término del cociente se multiplica por todo el divisor y el

producto se resta del dividendo, cambiando los signos. Y así

sucesivamente.

Page 35: A capítulo 2 expresiones algebraicas

DIVIDENDO DIVISOR

COCIENTE RESIDUO

Debes recordar estos nombres y su ubicación:

El grado del cociente siempre es

la resta entre el grado del dividendo

y el grado del divisor

Page 36: A capítulo 2 expresiones algebraicas

EJEMPLO: Realizar la siguiente división de polinomios:

entre

Para dar solución a esta división, realizaremos paso a paso las reglas

enunciadas para esta división:

1. El dividendo y el divisor se deben expresar en orden descendente con

respecto a una misma letra.

• Observa que los polinomios ya estar están ordenados:

•Este es el dividendo:

•Este es el divisor:

2. Ahora procede a dividir el primer término del dividendo entre el primer

término del divisor y obtendrás así el primer término del cociente.

3 2 4x + 2x - 4x + 3 22x - x + 1

3 2 4x + 2x - 4x + 322x - x + 1

Page 37: A capítulo 2 expresiones algebraicas

3

2

4x2x

2x Corresponde al primer término de tu cociente.

3. Este primer término del cociente se multiplica por todo el divisor y el

producto se resta del dividendo, para lo cual se le cambia el signo,

escribiendo cada término debajo de su semejante. Si algún término de

éste producto no tiene término semejante en el dividendo se escribe en el

lugar que le corresponde de acuerdo con la ordenación del dividendo y el

divisor, veamos:

2

3

3

2

4x + 2x - 4x + 3

- 4x + 2x

- 2x

22x - x + 1

2x

Observa que multiplicaste 2x (2x2 – x + 1) = + 4x3 - 4x2 + 2x, pero para restar del dividendo lo pasas con el signo contrario: - 4x3 + 4x2 - 2x

Page 38: A capítulo 2 expresiones algebraicas

Ahora realizamos la resta:

4. Para continuar se divide el primer término del resto (4x2) entre el primer término del divisor (2x2) y tendremos el segundo término del cociente que es 2.

Primer término del Cociente

3 2

3 2

3 2

- 4x

4x +

+ 2x - 2x

2x - 4x + 3

0x 4x 6x 3

22x - x + 1

2x

Resto

22x - x + 1

2x 23

3

3 2

2

2

- 4x + 2x - 2x

4x + 2x - 4x + 3

0x + 4x - 6x + 3

Page 39: A capítulo 2 expresiones algebraicas

5. Este segundo término del cociente se multiplica por todo el divisor y el

producto se resta del dividendo, cambiando los signos. Y así

sucesivamente.

3 2

2

3

2

2

4x + 2x - 4x + 3

+ 4x - 6x + 3

- 4x +- 4x

- 4x + 2x - 2x

+ 2x 1- 2

22x - x + 1

2x + 2

Divisor

Dividendo

Cociente

Residuo

Page 40: A capítulo 2 expresiones algebraicas

La respuesta a esta división se debe expresar de la siguiente forma:

3 2

2 2

DIVIDENDO RESIDUOCOCIENTE

DIVISOR DIVISOR

4X 2X 4X 3 4X 12X 2

2X X 1 2X X 1

Page 41: A capítulo 2 expresiones algebraicas

PARA TENER EN CUENTA:

Al igual que en una división normal ,

se puede comprobar que :

dividendo = divisor por cociente + dividendo = divisor por cociente +

residuoresiduo

Si los coeficientes del primer término

del dividendo y del divisor no dan una

división exacta debemos utilizar

fracciones (algunas veces se usan

decimales si no son periódicos),

veamos un ejemplo1:

Page 42: A capítulo 2 expresiones algebraicas

EJEMPLO 1: realizar la división:

La disposición de ambos polinomios es la siguiente:

3 2 23x + 2x + 3 entre 2x + 6x + 1

3 2 23x + 2x + 3 2x + 6x + 1

Observa que debes dejar este espacio o colocar cero porque la variable xx no existe y además, el polinomio está ordenado en forma descendente

Page 43: A capítulo 2 expresiones algebraicas

3 2

3 2

2

2

3x + 2x + 3

3-3x - 9x - x

23

- 7x - x + 32

7 + 7x +21x +

2 39 13

+ x +2 2

22x + 6x + 1

3 7x -

2 2

Realizando la división obtenemos:

Observa que cuando en el resto queda la letra principal con un exponente de grado menor que el del divisor, se ha concluido la división.

Page 44: A capítulo 2 expresiones algebraicas

EJEMPLO 2: Efectuar la siguiente división del polinomio P(x) entre Q(x),

si 4 2 21

P(x) 2 x 5 x - 3 y Q(x) x - 4x -12

P(x)

Q(x) 34 2 21

2 x 5 x - 3 x - 4x -12

0x 0x

Observa que aquí se han

colocado los ceros en el

espacio que ocuparían las

variables xx33 y x, x, si te gusta más,

puedes dejar los espacios.

Page 45: A capítulo 2 expresiones algebraicas

Realizando la división, obtenemos:

4 2

4 2

4

3

3

3

3

3

2

2

2

2

0x 0x

xx

2 x 5 x - 3

-2x + 16 + 4x 0x + 16 - 1x + 0

- 16 + 128x + 0 + 127x + - 3

x

x 32

xx 32x

- 127

1016x +

2

+ 254

0x + + 251

x1048x

21 x - 4 x - 1

2

24x + 32 x + 254

Page 46: A capítulo 2 expresiones algebraicas

REGLADE RUFFINI

La regla de Ruffini es un algoritmo que permite

obtener fácilmente el cociente y el resto de la

división de un polinomio por un binomio de la

forma x ± a, donde a es cualquier numerito.

Esta regla nos dice que “un polinomio tiene

por factor (x ± a) si al reemplazar el valor x por

“a” en el polinomio, el resultado es cero.

El valor de “a” de los posibles factores de la

expresión, es un divisor del término

independiente del polinomio”.

Paolo Ruffini (1765-1822). Matemático y médico italiano. En el año 1799 publicó el libro “Teoría general de las ecuaciones”, en el cual aparece la regla que lleva su nombre.

Page 47: A capítulo 2 expresiones algebraicas

EJEMPLO 1: Realizar la siguiente división,

entre , utilizando la regla de Ruffini:

4 3 25X 3X 2X 7X 3

x 1

45X 3 2

45x

3X 2X 7X 3

3

3 2

2

2

2

35x2x

7

2x

2x 2x4x

4x

x

3

3

4x

x 3

3x

0

x 13 25x 2x 4x 3

Para dar solución a este polinomio utilizaremos el método que ya hemos estudiado, y luego compararemos comparemos con el método de Ruffini:

Ahora realizaremos la división utilizando el método de Ruffini y compararemos los resultados de ambas divisiones y lo fácil que es aplicar éste método

Page 48: A capítulo 2 expresiones algebraicas

4 3 25X 3X 2X 7X 3

Aplicando la regla de Ruffini tenemos:

1. Recordemos el polinomio que vamos a dividir:

2. Para dividir polinomios usando la regla de Ruffini, seguimos los siguientes pasos que aplicamos al ejemplo:

3. Ordenar el polinomio (dividendo) de forma decreciente.

4. Se escriben los coeficientes del dividendo (recuerde que si faltan términos se deben dejar los espacios o colocar los ceros como ya se estudió en la división):

5 -3 2 -7 3

5. Ahora ya se puede preparar la tabla de Ruffini, como se verá a continuación:

÷ x 1

4 3 25X 3X 2X 7X 3 ÷ x 1

4 3 25X 3X 2X 7X 3

Page 49: A capítulo 2 expresiones algebraicas

6. Colocamos el término independiente del divisor x -1, que en este caso es 1, entonces el término independiente pasará con signo contrario +1

5 3 2 7 3

5 3 2 7 3 1

Término independiente del divisor con signo contrario

Coeficientes del dividendo

Page 50: A capítulo 2 expresiones algebraicas

7. Bajamos el primer coeficiente (5 para este ejemplo).

8. Realizamos un proceso repetitivo, de izquierda a derecha, que consiste primero multiplicar el primer coeficiente (5) por el divisor (1), el resultado se coloca a la derecha del segundo coeficiente del dividendo.

1

5 3 2 7 3 1

5

5

5 3 2 7 3 5

Al multiplicar 5 x 1= 5

Page 51: A capítulo 2 expresiones algebraicas

5 2 4

5 3 2 7 3

5 2 4 3

3

0

Ahora se suma esta segunda columna y este resultado nuevamente se multiplica por el divisor (1). Este procedimiento se repite hasta el último término del diivdendo.

9. El último número obtenido es el residuo de la división, que en nuestro ejemplo es cero (0). Los anteriores a la izquierda del cero representan el cociente.

1

Residuo

Cociente

Page 52: A capítulo 2 expresiones algebraicas

La respuesta para la división utilizando el método de Ruffini, se expresa de la siguiente manera:

1. Se toman los valores correspondientes al cociente

y se les asigna la letra definida en el dividendo, pero empezando con un exponente disminuido en 1 respecto al dividendo:

Que es tu respuesta para la división

5 2 4 3

3 25x 2x 4x 3

Page 53: A capítulo 2 expresiones algebraicas

Taller para practicar las operaciones de multiplicación, división de polinomios y la regla de Ruffini

Page 54: A capítulo 2 expresiones algebraicas

STEWART JAMES, REDLIN LOTHAR, Pr cálculo, quinta edición

J. Rodriguez S. A. Astorga M. Expresiones AlgebraicasM.Sc. Alcides Astorga M., Lic. Julio Rodriguez S.Instituto Tecnológico de Costa Rica. Escuela de Matemática http://www.cidse.itcr.ac.cr/cursos-linea/MATEGENERAL/t1-reales-expresionesalgebraicas/pdf/expresiones-algebraicas.pdf