A MIS - bibdigital.epn.edu.ecbibdigital.epn.edu.ec/bitstream/15000/9203/3/T840.pdf · esculla...

101
ESCULLA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA ELÉCTRICA DISEÑO Y CONSTRUCCIÓN DE' UN AMPLIFICADOR DE POTENCIA ÜE KADIU FRECUENCIA Por MARCELO ANTUNIO DAVILA TORO Tesis previa a la obtención del título de Ingeniero en la especialidad de Electrónica y Telecomunicaciones en la Escuela Politécnica Nacional Quito, Diciembre - 1979

Transcript of A MIS - bibdigital.epn.edu.ecbibdigital.epn.edu.ec/bitstream/15000/9203/3/T840.pdf · esculla...

ESCULLA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA ELÉCTRICA

DISEÑO Y CONSTRUCCIÓN DE' UN AMPLIFICADOR

DE POTENCIA ÜE KADIU FRECUENCIA

Por

MARCELO ANTUNIO DAVILA TORO

Tesis previa a la obtención del título de Ingeniero en la

especialidad de Electrónica y Telecomunicaciones

en la Escuela Politécnica Nacional

Quito,

Diciembre - 1979

CERTIFICU LjUE E.STE TRABAJO FUL

HE.CHÜ PÜH LL 5EMOR MARCELO

DrtUILA T 0

. MARIO CLÜHLLÜ5

Quito , Diciembre - 1979

D E D I_ C_ j\ JJ H 1 A

A MIS

r t G R A D E _ C I H i £ J i l f i

A LA E5CUELA POLITÉCNICA NACIONAL Y

SU PERSONAL ÜUCENTE.

AL ÜR, BRUCE HÜENEISfcN.

A LOS ÜIRECTIUOS Y PERSONAL DE LA

EMPRESA ECUATRÜNIX CÍA. LTDA«

£1 transcurso be mi vida estudiantil en las aulas de la

Escuela Politécnica Nacional, ha estado siempre llena de ex-

periencias inolvidables tanto en el aspecto personal como en

el de los conocimientos académicos recibidos. Por esta razón

y con el afán de retribuir en algo el sacrificio que la Polj

técnica hace en bien de la juventud del País, he pensado en

elaborar una Tesis que de alguna manera vaya en provecho de

la Escuela Politécnica Nacional,

Una aspiración constante de la Facultad de Ingeniería —

Electrónica, es poder establecer en la Politécnica una esta~

ción de Radiodifución en Frecuencia Modulada con el objeto -

de transmitir su pensamiento y disponer de un elemento más -

para elevar el niuel cultural de sus estudiantes. Para la -

consecución de este fin, he diseñado y construido un amplif_i

cador de radio-frecuencía capaz de suministrar una potencia

de 1 Kw, suficiente para transmisión local.

Los fundamentos teóricos se expresan a lo largo de esta

Tesis, dividida en cuatro capítulos. En el primero se hace -

un estudio general de loa amplificadores de R.F., dando espe

cial atenció*n a los amplificadores de Hadio Frecuencia clase

C, debido a que este modo da servicio es el más conveniente

para el objetivo propuesto. Siendo la neutralización uno de

los proolemas más importantes cuando se trabaja con frecuen

cias elevadas, especialmente si se usa tétrodos, se ha he—

Cho un estudio detallado de los métodos y técnicas de neu-

tralización de amplificaüores de radio frecuencia.

El diseño del amplificador se lo hace en el Capítulo II,

Para evitar el nacer cálculos matemáticos que generalmente —

son complicados, se ha usaao la Carta de Smith, detallando -

de una manera clara el funcionamiento de este importante -

instrumento del proyectista. De la misma manera, para el di-

seño de la fuente de alimentación (problema que se lo ataca

en el Capítulo III), se evita en lo posible hacer cálculos -

matemáticos, prefiriéndose el uso de tablas y curvas estabija

cidas para el efecto.

Finalmente, se detalla la construcción y ajuste del e-

quipo, procurando ser lo más claro posible en cuanto se re-

fiere a la aisposición de los elementos de radio frecuencia

debido a la primordial importancia que tiene este aspecto en

el funcionamiento correcto del equipo. Cabe señalar que las

dificultades resultantes del trabajo con frecuencias eleva—

das se han minimizado debido a que he podido utilizar la te^c

noloyía que para el efecto ha desarrollado la empresa ——

tüUMTKUlMlX, a través de varios años de constante investiga—-

cien y trabajo.

ANPLlFICHUÜKtS DE! POTENCIA ü£

RADIO FRECUENCIA.,. 1 ¡

Amplificadores de Potencia Clase A.. , 1

Amplificadores ds Potencia Clase B.« 2

Amplificadores de Potencia Clase AB 2

Amplificaaores de Potencia Clase C 3 ,

Cálculo del amplificador Clase C 4

Redes de acoplamiento ................. .«13

Carta de Smith 14

Neutralización de Amplif icaaores de R,F .»«, ....17

Neutralización de Amplificadores con

Grilla a tierra 20

Neutralización de tétrodos y pentodos. 24

Funcionamiento bajo frecuencia

autoneutralizante .... 27

Funcionamiento sobre frecuencia

Autoneutralizante 28 V

CAPITULO II

DISÉNU ÜEL AinPLIFlCAÜUR ÜE PÜÍC.IMC1M 31

Diseño del circuito da acoplamiento

de placa 37

Diseño del circuito de acoplamiento

de reja.. * * *.. 41

CAPITULO III

D1SÉLNU UL LA FUENTE DE MUFILNTMCIüN ,44

Transitorios del circuito primario 44

Sistema de encendido y protecciones 45

Circuito de rectificación 47

Funcionamiento del diodo en serie « 48

Circuito de filtro de ondulación.. « 51

Polarización de pantalla... 53

Polarización de reja 54

Diseño del choque 62

Diseño del transformador.do,filamentó 65

CAPITULO ¿U

CUIMSTHUCCIüN UEL AMPLIFICADOR ÜE PüTLNClA 71

Construcción del panel de control 72

Construcción de la cavidad de H.F.... 74

Construcción de la fuente de alta tensión 76

Sintonía y ajuste del amplificador 77

Ajuste de la neutralización. „ 78

Lectura obtenida y comparación con

los datos calculados..... ,.. 61

C A P I T U L U I

A M P L I F I C A D O R E S DE P Ü T L I M C I A DE R A D I O

F R E C U E N C I A

V

, • )¡ '••••: •'-" ..'AhPLlflUAUUHLb DE POTENCIA fl£ RADIO FH'ECÜiNClA

Un amplificador de potencia es un convertidor que iranís

forma la c.c. en energía de radio frecuencia. Se compone de

una fuente de r.f . de un nivel de energía relativamente bajof

la misma que es amplificada y mezclada o multiplicada en frjs

cuencia para oDtener la potencia deseada y la frecuencia de

funcionamiento.

Los distintos tipos de amplificadores de r.f. pueden -

clasificarse de muy diversa manerai De acuerdo a la frecuen-

cia de funcionamiento, nivel de potencia, tipo de servicio -

(a .m, f «m., banda lateral única o BLU), modo de f uncionamieri

to o variación de las características dinámicas (clases A,

Ab, 8 o C)f asi como de acuerdo con los circuitos (excitado

por reja o excitado por cátodo). El modo de funcionamiento o

tipo de circuito a emplearse dependerá exclusivamente de la

aplicación que se quiera dar al amplificador, sin que se pu_e

da en consecuencia, generalizar sus ventajas o desventajas.

Como ocurre en cualquier tipo de amplificador de radio

frecuencia el modo o clase de funcionamiento tiene gran im—

portancia en la potencia de salida, la linealidad y el rend_i

miento de funcionamiento, razan por la cual es conveniente -

analizar los Distintos tipos de operación.

ANPLIFICAÜÜKES ÜE POTENCIA CLASE A.-

Un amplificador clase A, es aquel cuyo punto de reposo

y señal de entrada son tales que determinan una corriente en

el circuito de salida que circula en todo momento o dicho en

otras palabras, al ángulo de conducción del elemento amplif_i

cador es de 36Ü grados; los amplificadores de potencia clase

A, se usan cuando se requiere gran lincalidad. Aunque la ga-

nancia de potencia en esta clase de servicio es considerabl_e

mente mayor que en clase B o C, el rendimiento de funciona—

miento de un amplificador de potencia clase A es comunmente

de salo el 25%.

AMPLIFICADORES DÉ! POTENCIA CLASE B.-

En el amplificador clase 8 la tensión de polarización —

de reja corresponde al corte de la corriente de placa ( sin

tensión de excitación) y, en estas condiciones, la corriente

de placa se anula esencialmente durante un semiciclo de la -

señal de entrada * El ángulo de conducción de la corriente de

placa es de 180 grados. La excitación del amplificador de -

clase B, es generalmente, de tal magnitud que se produce co-

rriente de reja.

Un amplificador de RF clase B, es utilizado cuando se —

requiere una relación lineal entre el voltaje de entrada y —

el de salida, razón por la cual es con frecuencia llamado -

"Amplificador Lineal". Un amplificador de RF clase A es tam-

bién un amplificador lineal pero la eficiencia es considera-

blemente menor.

AMPLIFICADORES DE POTENCIA CLASE AB.-

En un amplificador clase AB, se trabaja en un punto in—

termedio entre los dos extremos definidos por las clases A y

B. Por lo tanto, la señal de salida se anula en una parte del

ciclo. Cabe distinguir en este tipo de servicio a los amplif _i

cadores de clase AB-j y AB2« £1 amplificador clase AB-j es aquel

en que el ángulo correspondiente a la circulación de la co

rriente de placa es sensiblemente superior a IBÜfl pero infe—

rior a 36U2. £1 sufijo 1 indica que no se establece corriente

de reja durante ninguna parte del ciclo de la señal de entra-

da .

El amplificador clase A 63 trabaja en condiciones esen

cialmente iguales al anterior en lo que se refiere a polariz^

ción de reja, pero la tensión de excitación es de tal ampli—

tua, que se establece la corriente de reja durante una parte

apreciable del ciclo de la señal de entrada.

MWLIKiLttUÜKEb Üfc. PUTLIMLIA CLASE. C.-

£n al amplificador clase C, está polarizada la reja con

una tensión superior a la de corte de la corriente de placa y

la señal de excitación es de tal amplitud que la corriente de

reja circula durante una parte apreciable de la señal de en—

trada. El ángulo de conducción de la corriente da placa del

amplificador clase C es menor de 18QS, o en otras palabras, -

la corriente de placa circula durante un tiempo algo menor -

que la mitad del ciclo. Debido a esta característica el rend¿

miento en este moüo oe servicio es ostensiblemente mayor que

en los amplificadores clase A y B, aunque su ganancia es me-

nor.

Estos amplificadores se utilizan frecuentemente como pa-

sos tie salida en transmisores de radio, debido a que estos re

quieren una potencia de salida grande, siendo en consecuencia,

de primordial importancia el rendimiento del amplificador» Es

ta es la razón por la cual se analizará de manera exclusiva -

el amplificador de potencia de R-F clase C. Además, el estu—-

dio de un amplificador clase C, proporciona tamoien un análi-

sis de los amplificadores R-F de clases A y AB. , v"v//

CALCULO UEL AMPLIF1CAÜUH CLH5E C

Como SB dijo anteriormente, el amplificador clase C, s«

caracteriza por el hecho da que la corriente de placa fluya —

en impulsos, que por definición, son menores que un semiciclo

de funcionamiento. El ciclo de funcionamiento es la porción -

del ciclo eléctrico en que la rejilla es polarizada positiva-

mente con respecto al cátodo y se considera en función del -

ángulo de conducción de re.ia o placa (0). £1 ángulo de con—

ducción es una expresión de la fracción de tiempo (expresada

en grados del ciclo eléctrico) en que en el tubo se establece

corriente de placa o corriente de reja en comparación con el

ciclo de funcionamiento de la forma de onaa de la tensión de

entrada.

En la figura 1, se representan las variaciones de la tejí

sión y corriente de la reja en función del tiempo. En el grá-

fico se observa que la tensión de entrada e se encuentra das9 -

plazada negativamente hasta el punto Ec1 que corresponde jus-

tamente al punto de polarización fija de reja, Al principio -

del ciclo da funcionamiento, la tensión de excitación es nula

y su amplitud aumenta hasta el punto A, an donde la tensión -

instantánea en la reja del tubo es cero con respecto al cáto-

do, y la corriente de placa se ha iniciado ya, cuando la se^—

nal de excitación es de mayor magnitud que la tensión ds reja

correspondiente al corte, E' COo

A B

igf

3TT/2 2TT

B

Las relaciones son normalmente tales que an el pico del

ciclo positivo de la tensión de reja e . la excitación dag-mx*

reja es apreciab.lemente positiva con respecto al cátodo» y

por consiguiente la reja absorbe alguna corriente*

La tensión en la placa del tubo responde a las variacioi

nes de la tensión de reja como se indica en ia figura 2. La

tensión instantánea de placa (»,) es igual a la tensión c.c,

de placa (E ) menos la caída da tensión de corriente alterna

que se produce en la impedancia de placa. Cuando la reja se

hace más positiva, el flujo de electrones que alcanzan a la

placa es mayor, la corriente instantánea de placa aumenta y

la caída de tensión en la impedancia de carga (R ) aumenta.

Las relaciones de fase son tales que se produce simultánea-

mente el mínimo potencial instantáneo de placa (e. . ) y elb-mín '

máximo potencial instantáneo de reja (a )1 J g-max

Como se puede observar en la figura 2*, tanto la tensión de

placa como la corriente fundamental de placa son sinusoida-

les para una variación de la tensión de reja también sinuspi_

dal, a pesar de que la corriente de placa es pulsante* Esto

es posible debido a que el circuito de placa es un circuito

resonante LC*

Aunque ,las condiciones de funcionamiento en clase C se -

pueden determinar por medio de las curvas convencionales de -

tensión de reja en función de la corriente de placa, el calcu

lo se simplifica si se utilizan las curvas de corriente cons-

tante* Este gráfico representa la corriente de placa constan-

tu sobra un'gráfico da la tensión de reja en función de la

tensión de placa,.

Figura 2

O

-*-eTensión de placa

/ \o de

conducción Corriente de placa

'U-p-fun

Componente fundamentalde la corriente de placa

Figura 3

Core de placaCorr.de reja

|«—Variación de la tensio'n de placa-^1

El gráfico de corriente constante es de utilidad porque

la línea de funcionamiento de un amplificador de potencia es

una recta dibujada sobre una familia de estas curvas y con él

se pueden hacer fácilmente loa cálculos por el procedimiento

gráfico. Por otra parte, cualquier punto de dicha línea de —

funcionamiento o recta de carga define los valores instanta—

neos de* la corriente da paca, la corriente de reja, la co-—-

rriente de pantalla (en caso de tetrodos), que deben existir

cuando se aplica al tubo una determinada tensión de excita-—

ción» £1 luyar de funcionamiento está dibujado entre los pun-

tos A y Q de la figura 3» En realidad el lugar debe tener el

ooble de esta longitud y debe extenderse más allá del punto Q

hasta otro punto llamado A1 que no está representado en el -

diagrama. Esto es, cuando uit varía desde U a TT/2, aTJi a 37 2,

a 2TT , el punto de funcionamiento instantáneo se desplaza de

A, a Q., a A1 , y a LJ respectivamente. Sin embarga, como el fu_n_

cionamiento- es en clase C la corriente de salida será cero pa_

ra el funciónamiento a lo largo de Í¿A' } por esta razón no se

ha dibujado»

Las tensiones y corrientes son funciones par del tiempo,

y, por tanto, si se conoce la respuesta para O W t £= TI/2 tam-

bién será conocida la respuesta para *yH ~ OJ t £: TT , El lu-

gar desde el punto A al Q se acota en espacias proporcionales

a eos wt como se indica. Esto es, cada longitud es AQcos tut,

siendo wt= U, 159, 309, 45fl, 602, 758, goa. El punto Q es el

punto de funcionamiento estático* Sus coordenadas son E y -

E ,* Las coordenadas del punto A son E y EL . *el c-max ' b-mín

E e=£ -t-e /. xc-max el g-max ti)

b-min~ b b-max (2)

- 10 -

Estos valores son desconocidos. Dependen, no solamente

del dispositivo, sino también del circuito resonante» A me-

nudo se escoge el punto A como parámetro del diseño* Poste-

rior mente se discutirá la manera de hacerlo. De momento, su-

pongamos que es conocido. Una vez determinados los puntos A

y Q, se puede dibujar el lugar entre ellos y acotarlo en —

grados. Se pueden oDtener entonces i e i en función de wtP 9

interpolando entre las curvas de corriente constante de plst^

ca y reja respectivamente. Las cotas indicando grados sobre

la línea AQ se utilizan con este objeto. 5i el elemento am-

plificador es un tetrodo, se podrá OD tener, de la misma ma-

nera, la corriente de pantalla.

Si la corriente de salida viene dada por la serie de -

fourieri Áp - lo + It eos ut t Iz eos 20) fc + I3cOS 3u>t + ---- (3*)

£1 valor de lo es el valor .medio de ip

Puesto que i es una función par del tiempo, pocemos e¿

cribir

lo -jjT íI I ^o

La componente fundamental de la corriente de placa sa —

puede obtener de la relación

'I I

L=-~r í 'if C O S W t dcot (6)I I •*

Como carecemos de una expresión analítica para i ,

mos utilizar técnicas aproximadas para la integración.

deremos la curva f(ut) representada en la figura 4. Ponemos

obtener su integral aproximada desde Ü a A sumando las áreas

de los trapecios obtenidos uniendo los puntos de. la curva —

- í l -

eon líneas rectas. £n realidad, para i e i , no tenemos una

curva continua, sino un conjunto da valores discretos deter-

minados a distintos valores de uit»

Figura 4

fftut)

GJC

£1 área del trapecio es c(a+b) /2. Por consiguiente po-

demos aproximarnos a la integral por

En donde =ILradianés. Combinando términos tendremos2Y1

Si escogemos n»6 de modo que Awt« radianes o 158, ob-

tenemos*

Tí/2

12

- 12 -

Reemplazando en las ecuaciones (5) y (6)

( 9 )

£1 valor lo es la componente continua de la corriente —

de salida, mientras que 1. es el valor de la componente fun-

damental de dicha corriente. Si hace/nos i (O*)' =^A, i (152) = B,

i (3Q2)=Cf etc., y reemplazamos los valores de los cosenos -

tendremos finalmente*

Trdc,-±- [A+B+C + D + F + al (11)

IP . fw«sJLfA*t93B t í .73C + 1MD + E - I - O . S 2 F ] (12)12 L

Para oDtener el valor de la componente continua de la -

corriente de reja, asi como el valor de su componente funda-

mental, se produce exactamente iyual que en el caso de la -

corriente de placa, de modo que sus ya lores serán*

(13)

•1Í93B*1,73C*1J41D*E + 0I52F] (14)La diferencia entre las ecuaciones (ll)-(l2) y (13)-(14)

está en que los valares de A, 8, C, etc, serán leídos en -

las curvas de corriente constante de placa y reja respectiva^

mente.

Con los valores calculados de corriente de placa y reja

se pueden determinar otras cantidades que son de interés en —

un amplificador de potencia. Supongamos que el circuito reso-

nante está • ajustado de modo que aparezca como una resistencia

pura para la frecuencia de la señal. La potencia de salida es

0 , , | p - f u nPsal- r fe —-—"

En donde £ « E, - s^p b b-mín

La resistencia afectiva del circuito de salida es justa^

mente la razón de la componente fundamental de la tensión a

la de la corriente

Ip-funLa potencia suministrada por la fuentei

Pdc-p =E x Ip-dc

Y el rendimiento del circuito se raí

Psal-rfPdc-p

ti ángulo de conducción se puede obtener en donde la cu_r

u a de i.=Q corta la recta de carga , £n la figura 4 este punto

es el fl. Luego,

n ., -1 MQO C - 2 C O S -z=r

AQ

REDES DE

Las redes de acoplamiento en los amplificadores de RF -

cumplen dos funciones importantes. Primero, transforman los —

niveles de impedancia como lo requieren los elementos activos

y fijos (por ejemplo, la salida del tubo a la impedancia da

la antena). Segundo, proporcionan aiscriminacion de frecuen-

cias en virtud del factor de calidad Q del circuito resonante,

transforman la energía armónica en la energía de la f recuen —

cia de salida deseada e impiden la presencia de frecuencias -

i nd es ea das en la salida.

Para transformar una impedancia en otra ,se usan varios -

- 14 -

tipos de redes, formados por capacitores y bobinas como so

indica en la figura 5.

c

L

Red de adaptación L Red de adaptación Red da adaptación

Figura 5

Los valores da las bobinas y capacitores pueden ser cal-

culados analíticamente, sin embargo resulta más conveniente,

por la rapidez con que se efectúan los cálculos, la utiliza—

cion de la carta de Smith, con lo que se obtienen valores ba_s

tantes aproximados, suficientes para un acoplamiento adecuado.

Hay que considerar además que los valores calculados diferi-

rán con los valores prácticos, por obvias razones, por lo que

se utilizarán elementos ajusta bles.// y

^CMrtTrt ÜE BhlTH.-

Uno de los instrumentos más útiles para diseñar redes de

acoplamiento es el gráfico de impedancia-admitancia o carta -

de Smith. Este gráfico puede definirse simplemente como el —

plano del coeficiente de reflexión^para las admitancias y pr_o

porciona un método más sencillo y rápido de análisis del cir-

cuito que el ofrecido por los gráficos rectangulares de impe-

dancia o admitancia. La carta representa todas las redes de

acoplamiento de una manera (gráfica y muestra los rangos de -

sintonía aplicables para componentes variables. Los valores -

de componentes concentrados para una dada frecuencia se dete_r

mina directamente del gráfico*

- ÍL5 -

La figura 6 ilustra la disposición básica del gráfico.

Los elementos en derivación (paralelo) da la red siguen los

círculos de admitancia (en línea de trazo). Los valores de

los elementos en paralelo corresponden a valores de los ar-

cos de intersección. Los elementos en serie siguen los cír—*

culos da irnpedancia; los valores correspondientes se leen -

sobre los arcos de intersección respectivos.

figura 6

B: X--?

<l---G Y

- 16 -

Cuando se agrega un solo elemento, L, C o R, a una im|Je

dancia conocida, uno de los siguientes parámetros no varía i

resistencia, conductancia, o suceptancia. Por consiguiente,

el componente sigue esa curva de parámetro constante*. Por -

ejemplo, un inductor, conectado en serie con el circuito, no

varía la curva de resistencia en serie. E.1 procedimiento pa-

ra cada tipo de componente es como se indica en la siguiente

tabla i

Agregar

L en serie Z

C en serie Z

R en serie Z

Derivación Y+ L

Derivación Y

C

Derivación Y

R

UsarGráfico Seguir una curva de Sentido

H en serie constante Horario

R en serie constante Antinora

X constante Hacia a-bierto

R en paralelo cons- Antinora^tante

H en paralelo cons- Horario

tante

Ualor delComponente

xL-xf-xi

X «X -X.C f 1

R =R,-R,s f i

BL=Bf-B.

e «B_-B.c f i

b constante Hacia cor Vfi =G -G .— ' p f i

to ¡circujlto

Un factor importante en el diseño de una red de acopla_

miento es el factor de calidad Lj del circuito. Su valor abs_o

luto es una solución de compromiso entre rendimiento y suprjs

sión de armónicos.

Lamentablemente, el Q exacto de un circuito complejo no

siempre se puede determinar calculando a una sola frecuencia,

sin embargo se puede definir un U de funcionamiento que se -

aproxime al real, para lo cual se usan las curvas de ,Q cons-

tante, indicadas en la figura 7. £1 Q en cada nodo del cir—

cuito será distinto, predominando el que tiene Q más alto; -

- 17 -

este u es definido entonces como el U de funcionamiento,

Figura 7

La técnica parü el uso de le carta de Smith será descreí

ta en el siguiente capítulo, cuando se realice el cálculo y

diseño de las redes de adaptación del amplificador de RF.

NEUTRALIZACIÓN ÜE /LUS KMPLIFICrtDÜHES DE RF

La realimentación de tensión desde la salida hasta la e_n

trada a través de las constantes distribuidas del tubo de va-

cío tienen un efecto perjudicial en el funcionamiento del am-

plificador. La magnitud, la fase y la velocidad de variación

con respecto a la frecuencia de esta tensión de realimentación

determinan la estabilidad del amplificador. El control de re^

lamentación se denomina neutralización» La finalidad de neu-

tralizar un amplificador es conseguir que los circuitos de e_n_

trada y salida sean independientes entre si en cuanto a la -

realimentación de tensión. Se puede definir la neutralización

correcta como el estado en el cual, cuando los circuitos de —

acoplamiento de entrada y salida están en resonancia, se pro-

ducen simultáneamente la máxima tensión de excitación, la mí-

nima corriente de placa y la máxima salida de potencia.

- 18 -

Un amplificar completamente neutralizado debe reunir -

dos condiciones» La primera es que la capacidad interna tía

los electrodos entre los circuitos de entrada y salida sea

cancelada. El sagunoo requisito es que la inductancia de la

grilla pantalla y los montajes y guias del cátodo sean com-

pletamente canceladas. La cancelación de estas impedancias

prevendrán las oscilaciones, lo que se puede hacer en la -

práctica, a rnenuoo sin ninguna dificultad.

M PüK UEbrtJÚ UE UHF.-

En las frecuencias ubica aas por debajo de la región de

UhF, la neutralización por lo general emplea un circuito de

puente de capacidades para equiliurar la realimentación de-

bida a la capacidad interelectródica de placa a grilla. Es-

to supone que la pantalla se encuentra bien desviada a tie-

rra proveyéndose de este modo el blindaje esperado. En el -

caso de UhF o UhF la pantalla no se encuentra necesariamen-

te a tierra para HF , por lo que la neutralización se hace —

más complicada .

En el cás° da tetro dos y pentodos la capacidad de neu

tralización se obtiene mediante la conexión de un alambre a

la reja del tubo, el cual es pasado a través del chasis pa-

ra formar una capacidao con la placa. Ajusta ndo el espacia-

miento de la varialla a la placa del tubo, se puede conse —

guir una muy buena neutralización»

NEUTftALUAClUlM EÍY PUbH PULL.-

Para proveer el voltaje fuera de fase necesario para —

la neutralización se pueden usar circuitos en pushpull a la

- 19

Fiyura 8

entrada o a la saliua. A causa del bajo voltaje y el tamaño

mucho más pequeño del circuito de entrada, es más simple h_a_

cer el push pulí en el circuito de entrada, conociéndose a

este caso oon el nombre de "Neutralización en yrilla" (Fiyura

9). Fiyura 9

—L 'fe i —

___

- 1. T

e ^r* "¿" 1 ..rs

out

-EcCn

£1 capacitor de neutralización, Cn es pequeño y se lo

puede conseguir en el mercado fácilmente. Para mantener el

equilibrio del circuito, es deseable poseer un capacitor Ci,

en ualor a la capacitancia de entrada d«l tubo.

£s posible noutralizar un amplificador sin que aea ne

cesario usar un circuito push pulí de entrada con el méto-

do.

- 20 -

que se indica en la figura lüa. El voltaje a tiarra en el -

capacitor C, está* fuera de fase con respecto al voltaje de -

grilla y puede ser realimentado a la placa para obtener neu-

tralización. En este caso, el capacitor de neutralización Cn

es mucho más grande que la capacidad de grilla a placa.

Figura 1Ü

Cn

^ (a) (b)Este circuito de neutralización puede ser rediseñado co_

mo un puente de capacidades mostrado claramente en el circu¿

to da la figura 10-b. t.1 equilibrio es obtenido cuando

Cn

C

en donde Cgp es la capacidad interelectróaica de grilla a

ca y CgK es la capacidad de entrada total.

NEüTHHLI/rtCiüN Ut rtí'IPLiriCrtUuBLS CUiM UHILL.M A TIERHrt.-

Para neutralizar amplificadores con grilla a tierra son

empleaüos comunmente dos métodos. £n el primer método, las —

grillas del amplificador en push-pull son conectados a un -

punta de impedancia cero a tierra, y un puente de capacida—

des es utilizado el cual es igual a la capacidad filamento —

placadelostubos.

- 21 -

El segundo método requiere de una inductancia entre la

grilla y la tierra o entre las grillas del amplificador en

push-pull de un v/alor que compensará el acoplamiento entre

los circuitos ue salida y entrada que resultan de las capa_ci

dades de los tubos.

ti comportamiento de estos dos circuitos es bastante -

diferente* Ellos pueden ser considerados como formas espe-

ciales del caso más común en el cual los capacitores neutra

lizantes tienen valores que difieren de las capacidades in-

ternas de los tubos y en el cual una reactancia apropiada -

es conectada entre las grillas, bajo esas condiciones, el -

valor de la capacidad de neutralización permite una varia—

cien continua da la amplificación de la potencia, la estab_i

lidad y la r ealimentación negativa»

£1 fin de la neutralización es hacer a los circuitos -

de entrada y salida independientes uno de otro en relación

a las corrientes reactivas. La corriente de entrada debe ser

independiente del voltaje de salida. Esta condición es nec_e

saria para permitir una independiente sintonización de los

circuitos de entrada y salida, de modo que las variaciones -

del voltaje de salida no produzca variaciones en el ángulo

de fase de la impedancia de entrada, resultando de esto una

modulación de fase.

Esta condición de independencia entre los circuitos de

entrada y salida, es la llamada "Condición Neutralizada", y

no implica la estabilidad del circuito. Esto es a causa de

la. supresión del acoplamiento por corrientes capacitivas e_n

- 22 -

tre la salida y la entrada de los circuitos, que no es sufi-

ciente para quitar el efecto del voltaje de salida en el vo¿

taje de cátodo a grilla. Una segunda condición, distinta dejs

de el punto de vista de la neutralización, puede ser emplea-

da para una estabilidad completa.

Un amplificador excitado en grilla en push-pull con cá-

todo a tierra es mostrado en la figura 11. Si la inductancia

de las guías es despreciada a la frecuencia de funcionamien-

to, la independencia entre los circuitos de entrada y salida

es generalmente obtenida mediante la conexión transversal de

las grillas y las placas por medio de los capacitores Cnt -

que tienen valores iguales a la capacidad interna de grilla

a placa de los tuoos, Cgp. Los requisitos ae neutralización

y estabilioad son satisfechos simultáneamente porque el cir-

cuito de entrada es conectado entre las grillas.

Figura 11

tout

El mismo método de neutralización puede ser aplicado en

amplificadores push-pull impulsados por cátodo, donde las -

grillas sean conectadas a tierra y las inductancias de las -

guías sean despreciadas. Las grillas y los cátodos son inve^r

tioos y los capacitores ae neutralización Cn, tendrán un va-

lor igual a la capaciaaa interna de placa a cátodo, Ckp de -

- 23 -

los tuoos de vacío. El circuito as mostrado en la figura 12»

figura 12

tout

Si las grilles no están al potencial de tierra debido a

la inductancia de las guías, el acoplamiento puede existir -

entre ios circuitos de entrada y salida. Un método de reduc-

ción de este acoplamiento es insertar entre las grillas, ci_r

cuitos sintonizados en serie, que tengan una impedancia cero

a la frecuencia de funcionamiento como se indica sn la figu-

ra 13.

Figura 13

El esquema de neutralización descrito sólo es útil para

el caso en que la corriente de yrilla no fluye. £n caso con-

trario, una resistencia en paralelo con la capacidad de gri-

lla a filamento se hará presente. Si la resistencia es pequ_e

ña en comparación con la reactancia de esta capacidad, la rn£

24 -

dulaclan en fase a e producirá.

ütra propiedad importante del método de neutralización

precedente es que la amplifica ción de potencia es función -

de la capacidad de neutralización* Si la capacidad de neu—

tralización es menor que la capacidad de placa a filamento

del tubo, el elemento operará con b¿ija potencia de excita —

ción y la yanancia será mayor.

Si la capacidad de neutralización es mayor que la cap<3

cidad de filamento o placa, la ganancia del amplificador d_£

berá ser incrementada para compensar su consecuente disminjj

£n el caso especial del amplificador con y r illa enlaz^a

da a tierra mediante una impeda ncia , se aplican las siyuie^n

tes ecuaciones, en referencia a la gráfica 14»

Cn « Cfp - CQ pu1Zg *=

jwCfg + Cgp (l+u)

. Si en la solución de la ecuación para "Cn, el signo es

negativo indicará que se requiere de una neutralización "en

fase". Si el signo es positivo, la neutralización requerida

será "fuera oe fase". Si el signo do Zy es negativo indica-

rá que se requiere de una reactancia capacitiva y si el si

no es positivo la reactancia a ser utilizada para la neutra^

mización será inductiva.

NLUTKAL1ZMCIU1M UL TLTflUUUS Y PLNTüüUb.-

£n la figura Ib se indican los elementos del circuito

tétrodo involucrados en la realimentación. fistos elementos

son inherentes al cubo y están formados, como se ve,'por -

Fiyura 14

la capacidad residual de placa a grilla, la capacidad de

placa a pantalla, la c¿i pací dad de pantalla a y r illa 'y la

inductüncia de la yuía de la pantalla al tubo.

figura 15

Ss notará que el uoltaje. desarrollado en el circuito -

de placa en K.F., tp, causa una corriente I que fluye por la

capacidad de placa a pantalla Cps, y la inductancia L en las

yuías de pantalla, ti paso de esta corriente por la inducta^n

cia L desarrolla un voltaje £ el cual tiene una polaridad -

0018-G

- 26 -

opuesta a la del voltaje de placa.

En la fiyura 16( los mismos elementos del circuito han

sido dispuestos con una representación gráfica donde la al-

tura sobre o debajo de la línea cero indica la magnitud y -

la polaridad del voltaje en R.F.

figura 16

La placa "P" es mostrada en un alto voltaje positivo

sobre cero, y la magnitud es representada por la dimensión

Lp. El voltaje desarrollado en la inductancia de le guía de

pantalla ubica a la pantalla a un potencial negativo con

pecto al voltaje de placa. Si el circuito es perfectamente -

neutralizado, la grilla de control G deberá" e star a un poter^

cial cero*

El total del voltaje de radio frecuencia entre placa y

pantalla acarea el voltaje de placa £p y el voltaje de la in

ductancia de la guía do pantalla E, Este voltaje es aplicado

entre el divisor de tensión que consiste üe la capaciaad de

grilla a placa Cgp, en serie con la capacidad de grilla a

pantalla Cgs, Elsta división de tensión variará grandemente

con la frecuencia, existiendo por consiguiente alguna part^i

culor frecuencia a la cual se establezca una división de —

voltaje que ubique a la grilla al potencial del cátodo* Es-

- 27 -

ta frecuencia se conoce con el nombre de "Frecuencia Autoneu

tralizante" de tetrada o pentodo, estando entonces el tubo -

inherentemente neutralizado* En la tabla siguiente se dan -

las frecuencias auto-neutralizantes típicas con el desvío de

pantalla.; normal de algunos tétrodos y pentodos»

TIPU UE TUBO ¿OCHLO FRLCUtiMÜÍA EN MHz

4-1ÜUÜA

4-4ÜÜA

4-250A

4X5ÜÜOF

4-125A

4-65A

4CX150A

4CX250B

4CX250R

4CX35ÜA

4CX10ÜÜK

4CX1ÜOOA

4CX1500B

4CX30ÜOA

4CX50QQA

4CX150ÜOA

5CX15UÜA

25

45

45

75

75

60

SK-6ÜÜ 535

SK-600 545

5K-60Ü 565

SK-oüü 460

SK-82G 385

5K-81Q 380

SK-810 380

SK-1400A 125

SK-30QA 140

SK-3ÜÜA 120

bK-840 115

- 3U

- 50

- 50

- 90

- 9U

- 120

- 540

- 555

- 570

- 470

- 395

- 390

- 390

- 130

- 170

- 150

- 120

FuNClUNrtI'Ut.NTu oAJü FHECuEíMClrt

Cuando el tubo es manejado bajo frecuencia autoneutral_i

zante, se aplican los circuitos de neutralización en paralela.

Un capacitor neutralizante aproximadamente igual a la capa ci—

dad de la placa a la grilla del tubo lleva voltaje de polari-

- 28 -

dad opuesta del circuito de salida, a la grilla, o desde el

circuito de entra da, a la placa.

FülyiClÜNrtl'ULNTü SUdHL FHECUtLNCIrt AUTUNE_UTHALI¿rtíMTL.-

Si la frecuencia de funcionamiento es mayor que la fre-

cuencia autoneutralizante del tétrodo o pentodo, el voltaje

E. desarrollado en la inductancia de la guía de pantalla es -

demasiado grande para dar una división de tensión apropiada

entre las capacidades internas dsl tubo. Un método obvio de

la reducción del voltaje en la reactancia de la guía de pan-

talla es ajustar dicha reactancia, que toma la forma de un .-

capacitor variable en serie como queda indicado en la figura

17.

Figura 17

Otro método deberá ser cambiar la red del divisor de te£

sión furmado por las capacidades intereiectrodicas del tubo.

£sto puede ser hecho por medio de una capacidad externa que

se añade al tubo entre grilla y placa, ti método es mostra-

do en la gráfica 18. tlsta ce pací aa o agregada de placa a gri—•

lia está en el mismo orden, en cuanto a tamaña, con la capaci_

dad residual de placa a grilla del tubo y, en consecuencia —

es similar en su construcción a la capacidad neutralizante —

utilizada en frecuencias inferioras. Sin embargo puede ser -

usado en este caso el método de la varilla mirando a la pla-

ca , la cual forma la capacidad requerida, en v/ez de una pola

ridad opuesta en el circuito de entrada.

Figura 18

Si el arnplificador de potencia en R.F, está funcionando

soDre la frecuencia autoneutralizante del tubo y puede ser -

sintonizado a má*s de la capacidad normal de las frecuencias,

es probablemente más fácil utilizar el métooo del capacitor

en da sintonización en serie con la pantalla.

Otro método de cambio de frecuencias autoneutralizantes

de un tétrodo o pentodo es obtenido cuando se utiliza el —

arreglo de desvío general de la pantalla y el cátodo mostra-

dos en la figura 19. La y ufa de pantalla es desviada con in-

ductancia mínima al terminal del cátodo del tubo.

Figura 19

- 30 -

La grilla es mostrada debajo del potencial cero, o v.oj

taje del chasis, indicando que el voltaje desarrollado en -

la inductancía total de la guía de pantalla al chasis es ex_

cesivo. Si ahora, el cátodo es conectado a esta inductancia

en un punto en el cual la diferencia de voltaje entre la -

grilla y el cátodo es cero, se logrará incrementar la fre —

cuencia autoneutralizante del tubo.

C A P I T U L O I I

DISEÑO ÜEL Af'lMLlFICADUK DE PÜTLNCIA

UISLIMÜ DEL Hl'iPLIFZCAÜQH ü£ POTENCIA

Como se estudio en el capítulo anterior, los emplifica^

dores de potencia se clasifican de acuerdo al margen de fre

cuencia. el modo de funcionamiento y los circuitos. Debido

al alto rendimiento asi como también al tipo de tubo de que

se dispone, se diseñará el amplificador de potencia de R.F.

para que funcione en clase C excitado por reja.

En el cálculoypredicción de un tubo de vacío como am-

plificador de radio frecuencia clase C, las consideraciones

que determinan las condiciones de funcionamiento son el re£i

oimiento de placa, la salida de potencia necesaria, las mé^x

mas disipaciones admisibles de potencia de placa, re¿illa y

pantalla, la máxima tensión admisible de placa, y la máxima

corriente también admisible de placa. Los valores elegidos

para estos valores dependerán de las demandas de la aplica-

ción particular del tubo.

Debido a que las corrientes de placa, regula y panta-

lla de un tétrodo son impulsos periódicos, la potencia de —

salicJa, la potencia de excitación, las corrientes medias, -

etc., no pueden ser calculaoas directamente, sino que deben

ser determinadas, par un análisis de Fourier tomando puntos

seleccionados a intervalos adecuados en la recta de carga -

representada en las características de corriente constante.

Para la construcción del amplificador se usará* el tubo

ACXlbUQA, que es un tétrodo cuya máxima disipación de pía—

ca es de IbüÚ vatios. Las caracter íst icas eléctr icas del tu-

bo al ser usado como amplif icador clase C soru

UULTrtjL UL FiLAriLfoTU ......... . ................. b.Ü volts

CünHlLNTL U£ FlLAi'iLhTü ....................... 38.5 amperios

1IMÍ LKLLLüTKuUlÜHb* Cin ........... 78. ü picofaradios

Cout .......... 10.5 picofaratíios

Cgp ......... * « Ü.2bpicofaradios

uc UL PLACA ..... . .................... s.uuü voltios

UÜLTAJL UC üt PAIMÍALLA ................. . ..... 500 voltios

Corriente de de placa ............ * .......... 1.0 amper

UlblHttClUhl UL PLriLH ....... .................. l.bÜÜ wats,

ÜlbiPALiUW Ut HHlMTHLLA ....................... 75 wats

ÜISIPACIÜN UL HLJH ................. . ......... 25 wats

THKN5CONUUCTMIMCIA ( Ib =1 A )

£c =5UU voltios Eb=2UU voltios ..... 26.UÜQ micromhos

Es conveniente conocer además algunas características -

mecánicas del tuüo que nos servirán para la construcción de

la cavidad así como también para su protección.

Largo ........................ * .......... 124.5 mm

Diámetro» • , ............................. 85.6 mm

J'vLTü ......... . ......................... . B5G gramos

ZüLHLU ....................................... bK-831

Chll'ILNtA ..................................... ¿K-806

uL UPLKkClUiM ........................ vertical

Placa ......... ,.,....,. ................. 2büS C

Base ---- * ........................... ... 25ÜB - C

. ......................... .. por radiación de aire

- 32 -

DISENÜt

Para el cálculo de ios parámetros del'amplificador tales

como voltajes, corrientes y potencia, usaremos las curvas de

corriente constante que están indicadas en la fiyura 1. £1 —

usar las curvas de corriente constante nos facilita el dise-

ño debido a que tendremos, como hemos dicho, igual forma de

onüa tanto a la entrada como a la salida.

En el capítulo anterior se deaujeron las expresiones ana

líticas para el diseño del amplificador a partir da las cur—

vas de corriente constante una vez que ha sido trazada sobre

estas la recta de carya; detallaremos aquí la manera de dib_u

jar dicha recta para lo cual se procede de la siguiente mane_

ra t

1.- Lbcogemos un vaiur de voltaje de polarización de placa,

que esté de acuerdo con los valores especificados por los

fabricantes. Para nuestro casa escogemos 2,5GÜ voltios,

con lo cual estamos por debajo del valor especificaüo.

2.- La corriente UC de placa especificada es una corriente -

•i promedio, por lo que la corriente de pico suponemos unas

3 o 4 veces más grande. Con esta consideración, la corrijen

te de placa de pico será de 4 amperios.

3.- Suponemos una variación del vultaje de placa de 2üüU **-

voltios o lo que es lo mismo, que el voltaje de placa -

mínimo sea de 5UU voltios, ti punto A de la recta de ca_r

ga se encontrará entonces en la intersección de la curva

de 4 amperios de corriente de placa con la recta que su-

be desae 5UU voltios de uoltaje de placa.

4.- Con 2. bu U voltios de polarización de placa el tubo se co¿

tara, (corriente dejjlüca U) a -175 voltios de voltaje de

o\L C

ON

STA

N!

CU

RR

EN!

CH

AR

AC

!ER

IS!IC

S GR

OU

ND

ED

C

AT

HO

DE

- S

CR

EE

N

VO

LT

A6

E =

50

0V

PLA

TE

C

UR

RE

NT

- A

MP

ER

ES

-SC

RE

EN

CU

RR

EN

! -

A

MP

ER

ES

——

GR

!D

CU

RR

EN

! -

AM

PE

RE

S

>,

U_l

H~

—J

O cz CD

o CD

CD

PLA

TE

V

OLT

AG

E (k

V)

CU

RV

E #

41

45

v y

reja, pero como queremos trabajar en clase C, la polariza —

cían de la reja deberá ser de un valor de voltaje más negat_i

vo que éste.

£1 valor aproximado de voltaje de polarización de reja

viene dado por la expresión»

Eco +er(max) cos(0p/2)ECC m—- ** C

1- cos(0p/2)

En la que»

£cos= Uoltaje de corte de rejilla para el voltaje

de placa de operación = -175 M

ec (max) = Máximo valor positiva de voltaje que

alcanza la reja = 3Ü voltios

U p = Anyulo de conducción üei tubo = 16D grados

175 + 30 x 0,131Elcc = -

1- 13,131

£CC = —178,93 m - 205,7 U.0,869

Si polarizamos la reja con un valor de -2ÜÜ voltios, el

punto Q de la recta de carya estará en la intersección de este

voltaje de reja con 2buü, U de voltaje de placa. La recta de

carga resultará entonces de unir los puntos A y Q.

5*- 5i llamamos cumoXH:el punto de la recta de carga para el

cual la corriente de placa es cero, el ángulo de conduc-

ción será entoncesi

8P = 2 eos (HQ/AQ)

8p = 2 cos(l.b/ll.b)

Üp e 165.Ül grados

Este valor del ángulo de conducción está de acuerdo con

el que nosotros supusimos (Ibb grados), de lo que deducimos

que el valor de polarización de reja está razonable.

- 34 -

Una vez que na sioo trazada la recta de carga, los valjo

res de corriente de placa, corriente de pantalla y corriente

de reja variarán sobre ésta.

Se pueden calcular dichas corrientes usando las expre-

siones que fueron deducidas mediante el análisis de Fourier

en el capítulo anteriori

Imed = yi2(A/2+B-t-C+ü+E>r+Q) (l)

Ifun = yi2(A+1.93B+l,73C-t-l,4lÜ+£.+Ülb2F) (2)

fc.n aunüe A, b, C, etc., son valores de corriente leídos

a intervalos de Ib yrdüos de voltaje de excitación de reja.

Estos puntos pueden ser localizados en la recta de caru,a de

la siyuiente manera»

QH = Ü,9b6 QA

LjC = ü,866 UA

gD = U,7U7 QA

Q£; = ü,bÜU QA

Los valores de corriente de placa, corriente de pantalla

y corriente de reja correspondientes a los puntos indicados

se muestran en la siyuiente tabla*

ft

B

C

U

E

r

Ib

4,0

3,B

2, y

1,4

Ü,2

U,U1

X - la

U,27

U, 23

0,13

0,Ü4

o,uu

U, 00

Ig

0,15

0,12

o,uu

U,UÜ

ú,uü

Ü,ÜU

Ib =s Corriente de placa

Is = Corriente de pantalla

ly a Corriente de reja

Al reemplazar los valores obtenidos en la taola, en las

expresiones (l) y (2) tendremos»

Imed-p * /12(4/2+3,e+2,9+l,4+0,2+0,ül)

Imed-p e= O, 659 Amperios

Imed-s = 1/12(0,27/2+0,23+0,13+0,04)

Imed-s 5= 0,Ü4b Amperios

Imed-y = yi2(0,15/2+0,12)

Imed-g «= O, 016 Amperios .

De acuerdo a las características eléctricas del tubo, -

tenemos que la corriente Ü.C. de placa es de 1 amperio, miejn

tras que en el diserto se ha obtenido una corriente de 0,659

amperios, estando" entonces dentro de un margen razonable -

de seguridad*

Los valores de la corriente de pico de la fundamental -

se encuentran usando la expresión (2)t

Ifun-pa 1/12(4+1,93x3,8+1,73x2,9+1,41x1,4+0,2+0,52x0,01)

Ifun-pa I,b4 Amperios

Ifun-s* 1/12(0, 27+1, 93x0,23+1, 73x0,13+1, 41x0, 04)

Ifun-s~ 0,0b3 Amperios

Ifun-g= yi2(ü,15+1,93x0,12)

Ifun-g= 0,062 Amperios.

Con los valores de la corriente media de pantalla y gr_i

lia, podemos calcular la disipación de potencia en estos ele^c

trodos,

Mdis-s ¡= Imed-s x £s

Pdis-s *= 0,U4b A. x 500 U.

Pdis-s = 22,5 watts

Pdis-g = Imed-g x Ec

Pdis-g = U,U16 A. x 2UU U.

Pdis-g « '¿,2 watts

Se v/e entonces que las potencias disipadas por la pa_n

talla y la reja son menores que las especificadas por el -

fabricantes 75 y 25 watts respectivamente.

La potencia de salida del amplificador será*»

Psal-rf = ¿EP x Lfun - P2

Psai-rf = "• X2

Psal-rf = 1.5AU watts.

La potencia d.c* de placa es

Pdc-p *= £p (Q) x Imed-p

Pdc-p = 2.5UU ü. x U,b59 Amperios

Pdc-p « 2.147,5 watts

Esta es la potencia que entrega la fuente de alta tensión,

perú como ¡.a la antena salen 1.64U watts, el rendimiento será»

V\, Psal -rf „ . 1540 I». _ m Q

1 Pdc-p 2.147,5 Ui

Y\ 71, 7>

La potencia de disipación del tubo será iyual a la dife-

rencia de la potencia entregada por la fuente y la potencia -

r.f. de sálica;

Pdis-p s= 2.147(b watts - 1.54U watts

Pois— p = 6U7,5 íuatts

Cumo el tubo ea capaz de disipar IbÜU watts en la placa,

la disipación calculada estará centro de un rango bastante -

- 37 -

aceptable.

La potencia üe excitación del tubo será

pin m £q x Ifun -q = 230 \i. 0,082 rt2 2

Pins= 9, 43 watts

Por último, podemos calcular tanto la impedancia de en

trada como la impedancia de salida del tubo, de la si

te manera*

Zin = Zy « EQ (u) « 200 UIfun-y Ü,Üd2 A

Zin = 2.439 ohms

Up 2ÜÜO v«Zout = Zp -. Ifun^p - - - - 1,U A

Zout = 1,298,7 ohms

ÜISENÜ Ü£L CIRCUITO ÜE ACUPLKM1LNTU ÜE

Para el diseño del circuito de acoplamiento de placa, -

se usará, como se ha dicho, las curvas de la UrtRTA DE bflITH,

que se indican en la f iyura 2. Lus resultados ootenidos son,

para fines prácticos, muy fiables dentro del margen de exac-

titud que comunmente es necesario, es decir, dos o tres ci —

f ras exactas .

Usanao la carta, vamos a acoplar la salida del tubo, — t

que tiene una impedancia formada por la resistencia de saljL

da (Zout) calculada, en serie con la capacidad interelect rj5

dica de salida especificada por el fabricante, a la antena -

que tiene una impeüancia de 5U bhms. Para el efecto se usará

el circuito de la fiyura 1.

38 -

F i y u r a 1

r ~~\

rn !*-* i

J-í. •< _

35M t

j!ii....

i ~— * vvyy —

L•u • ^C2

rCi

Para la determinación de los componentes de la red de -

adaptación se siguen los siguientes pasos»

1.- £1 punto í\e la carta corresponde a la impedancia de sa

litía del tuoo « 1.298,7 ohms.

2,- A la capacidad de salida del tubo se la expresa en térm_i

nos de impedancia a la frecuencia de trabajoi

Xc2TTfC

Xc = 172 ohms

Como debemos sumar esta impedancia capacitiva en parale

lo con la impedancia de salida, seguimos una curva de R en -

paralelo constante en el sentido horario, husta la intersec-

ción de la curua de 172 ohms de 6 constante (punto tí).

Las coordenadas del punto 8 son en consecuencia 172 -

ohms y 5,8 milimohs,

3.- A continuación se debe sumar una bobina en serie. Para —

el efecto se siyue la curva de K en serie constante en

sentido horario nasta el punto C, elegido de tal manera -

que ios valores de los elementos resulten dentro de un -

maryen razon¿iule. Las coordenadas del punto C de la tabla

son entonces 7U ohms y 13,B milimohs.

A.- Lueyo sumamos el capacitor (t ) en paralelo, debiendo se

IMPEDANCE COORD1NATES — 50 OHM CHARACTERISTIC IMPEDANCE

AOM1TTANCE CCORD1NATES — 20 MlLUMHO CHARACTER1STIC ADMITTANCE

O

o

¡iy w ~i iii

TOWAMD

S I

31*i S S

GC«£«ATO« *-

Ó *» d« — —

o o o q«1 í 3

RADtALLY SCAL* M — o

-* TOWARQ tOAO

o q o QV <• » N O

o • * ^ «t at¡ _ -i

EO PARAMETERS . .o

» «•

3

CENTER

O

b b— IW

f»pp

NO

b o

í 5

o o o o

«o o o o

_ • < • - * £ |* *O o o b b o o

0 =• Nu b . o

-

il»o o o £•£ ?

o o o o o

g 1* ™ to o *

- .'J 1Í

3 ¿í 'JifS,;

"4==!b S S 0 8 4 ;

i.1

yuir la curva de H en paralelo constante, en sentido hora-

rio, hasta la curva oe H en serie igual a bu ohms, con lo

que llegamos al punto U de la carta cuyas coordenadas son»

12Ü ohms y 8,b milimhos.

b.- Finalmente, siyuiencio la curva de K-bU ohms en sentido

antihorario (pues hay que sumar un capacitor, C^, en -

serie), llegamos al punto £, o sea bU + jO)*

Los valores de la bobina y de los capacitores se calcu-

lan entonces de la siguiente manerai

La uariacion de la impedancia desde el punto B al C ha

siao de 172 ohms (punto tí más 7U ohms (punto C), o sea, 24?

ohms. Como esta impeaancia es el resultado de sumar la bob_i_

na L, será precisamente la ímpedancia oe dicha oobina;

\~ 2TTf

L _ 242 ohms1 2x7Tx88,l x 1Ü6 Hz '~

LI)= U,44 /¿H

La uariación de suceptancia desde el punto C al D es 13,8

menos b,b miliiuhus « b,3 milirnhos, entonces:

BC11 2TTf

5,3 x 10 ohrns

'!" 2x77xü8,lxlu6 Hz

: = 9,6 pr

F inaImentoz

8,bxlO"3 ohms2 2x7Tx8B,lxlU^ Hz

;0« 13,3 pF

Debida a que los condensadores y bobinas de la red de

acoplamiento están sujetos a valores de voltajes y corrien

tes elevados, es necesario conocer los valores de dichos -

voltajes y corrientes, pues de éstos parámetros dependerán

el tipo de elementos a utilizarse y como es lógico suponer,

se poará minimizar el costo de los condensadores así como -

también se podrá determinar el diámetro del alambre para la

construcción de la bobina.

Si consideramos el circuito de la figura 3, y suponemos

una potencia de salida de 1,5 Kiuatts, la corriente que circu

lará por la resistencia de carga esi

Ir E 5,47 A 6A2

Corno esta corriente circula también por el condensador

t este elemento será capaz de soportar d.i.cna corriente.

£1 voltaje de pico que tiene.¡el condensador será;

Up = ]/ 2 (Ic . X 2C2 )= 1Ü1B Vp.

Figura 3

nrrm I LU

~£ Gi-*"oM

r ~\^

i1I1 _

R_

L ~

Para calcular el voltaje en el condensador C,, supone-

mos un condensador en paralelo (en línea de puntos de la fi

gura 3), cun lo que en la carta de Smith estaremos en el -

punto ti, cuya impedancia es de 5UU ohms»

1224,7 U

La corriente sobre el capacitor C será»

. 1 2 2 4 , 7 'V x 5,3xlO'3^-Icl = UKlv1b XBC1~ VT " ~ '

ul

leí * 4,6 At

Pare encontrar la corriente que circula por la -

bobina, determinamos en la carta el punto en que ésta es re-

',i\io pura, (punto F de 15 ohms).

\J 1500/15'

Resumiendo, y aandu un margen aceptable de seguridad, -

tenaremos que los elementos G eberán tener las siguientes ca-

ra cterísticas i

üs acueroo con esto, se utilizara para la construcción

del amplificador los cipócitores variables IbA - 11 y la

bobina se construirá* con un alambre AU*U No lü.

DISLwÜ DLL CIHCUITU Ut rtCÚPÜAPUtñiTü üt KLJH.-

Mara el circuito de acoplamiento tíe reja, se usa el cir

- 42 -

Figura 4

•T— — n— — rC< LÍ

1

11

1

;Rout

cuito indicada en la figura 4.

Usando el método anterior y con la tabla de 5mith de la

figura 6 tendremos;

£1 punto A corresponde a la impedancia de entrada, esto

es, 2,5 Kohms. Siguiendo la curva de R paralelo constante -i

llegamos al punto 8, que corresponde a la curva de la rsac—

tancia de la capacidad de entradaí 23 ohms, o expresada en -

términos de suceptancia 43 milimhos, con lo que estamos en -

el punto B de la carta.

Luego debemos sumar una bobina en serie, para lo cual —

nos movemos a través de la curva de K es paralelo constante

hasta el punto Cf teniendo entonces una suceptancia total -

de 45,6 milimhos o 220 ohms.

Como queremos tener un rango de sintonía, tomamos para

la bobina una impedancia de 180 ohms y para el capacitor 40

ohms.180 ohms

2TTf

L= Ü,33/¿H

1

2]7x SB.lxlÜ6 Hz

2 277fXc 2TTxB8.1xl06 Hz x 40 "ohms

C2= 4,5 PF

A continuación, desde el punto C y siguiendo la curva -

de 51) ohms llegamos al punto E» siendo entonces el valor del

condensador C, i

IMMITTANCE CHARTIMPEDANCE COORDINATES — 50 OHM CHARACTERISTIC IMPEDANCE

ADMITTANCE COORDINATES — 20 MILLIMMO CHARACTERISTIC ADMITTANCE

O

O

je•¡i

• 'RAOIALLY

?? ? 7.. . . ? . ? . ? . . , . ? , * . ? . 7 , ? . ' 7, , .

'

SCALED PARAMETERSo

.¡r ' * ' i ' i1 ' i ' i f ' 1 1S í

1¿Í

;*J c* o n <j o P o o1* M « - — * W « H

' o o o op q o «• * T **)> « • * — «t * « t i — — — —

o

p

CEN

D

3

» IV0 V

o

TER

o

0 0

NP

p

r*o

s s0 0

O n *•• ° O

P 0 0 3

S 5

S» ^

o o o o o oSt? ?C

o o S S o o o <

S v> * M r* -o o o o o c

upeili

S u * u > - Q S ~ zo o b P ° i "£

§?

cl 2.6 x 1U ohmsC, =•1 2 77 f 277 x 88,lxlU6-Hz

Cl = 4,5 pF

El circuito total del amplificador de radio frecuencia

se inaica en la figura 5. En él se han incluido los choques

de radiofrecuencia Ch y C h , que evitarán que la señal al-

terna pase a la fuente y su valor deberá ser unas 1Q veces -

mayor que la resistencia de salida y entrada respectivamente,

a la frecuencia de trabajo. De acuerdo con esto tendremos»

10 Zout

ch K 12.987 ohms

Ch - *Chl - 12-9871 2 Tí f 277x 68,1 x 10a Hz

Y el choque de radio frecuencia de reja será;

1 = lü zinChg

; = 24390 ohms

2 XPKLh2 24390 ohms

Ch -2 2 TT f 2T7x 88,1 x lü6 Hz

Ch2 « 44, 1 MH.

Se puede ver además en el circuito de la figura 5, el -

capacitor Cf de desacoplamiento que impedirá que la tensión

continua de pol&Fiización de placa sea aplicada a los capaci-

tores de sintonía, fc.1 valor de su capacidad deberá ser lo sjj

ficientemente grande como para que no resuene con los eleme^n

tos de la red de acoplamiento y deberá tener una capacidad -

de tensión como para que soporte el voltaje de placa.

AM

PL

IFIC

AD

OR

FIN

AL

FR

EC

UE

NC

IA

: 88

.1

MH

z

2500

V

CH

]

1.3 K

JL

J2.

5 K

JL

23

F

500

pF

5KV

200

Ví.5

0 V

mA'ó

dí/

yn

*/'

OA4

u H

10A

- .0

1JL

LF

-rb.

01.u

Fi

~

i —

IV

^

9.6

pF

NI íw

c Q

* *

,*

*t

A

C A P I T U L O I I I

DISEhü U£ LA FUENTE DE. ALlfUNTAClQN

UISEÑÜ D£ LA FUENTE OE ALIMENTACIÓN

Cualquiera que sea su finalidad, todo equipo electróni-

co necesita de una fuente primaria de alimentación esto; e¿ da

un dispositivo que convierta la energía de una línea de c*a»

en corriente continua de tensión constante y del valor desea-

do* Básicamente una fuente de alimentación consta de los blo-

ques indicados en la figura ;!} sin embargo, dependiendo de -

los usos a que esté destinada, no necesariamente debe constar

de todos ellos pudiendo reducirse de acuerdo a las necesida—

des específicas.

Figura 1

Energía ac. Rectificacien é Filtrado Regulación

Energía de

Los diversos niveles de tensión de c.c. necesarios para -

el equipo motivo de esta tesis, serón suministradas por la fujsn

ts primaria a través de un transformador, un rectificador y -

una red de filtro utilizados conjuntamente con un dispositvo -

de control y de protección de sobrecargas.

Debido a que los transmisores de potencia requieren de -

tensiones elevadas de polarización es necesario incluir en el

diseño de la fuente de alimentación un sistema de protección

tanto para los elementos del equipo cuanto para el operador -

que lo vaya a manipular.

TRANSITUrtlUb uLL LlKCUITü PR1MAKIO.-

- 45 -

Una fuente da alimentación está sujeta por lo general a

transitorios tín los circuitos primarios, que pueden llegar -

inclusive a los miles da voltios en líneas de 110 o 220. Es-

tos transitorios pueden dañai% los elementos del transmisor -

y son provocados principalmente por la conmutación üe alto -

nivel de cargas industriales o por descargas atmosféricas s_o

bre una reo de eneryía próxima*

Una solución barata para eliminar estos transitorios as

incorporar a la entrada de la línea de c.a. un "supresor da

transitorios o varistor" (fiyura 2-a), que es una conección

de dos diodos zener en oposición, o simplemente incluir una

red conectada en paralelo con la red de a ,c. (fiyura 2-b)•

Figura 2

Linea Línea

40K

0-1

(a) (b)

S15TU'iH DL ENCENDIDO V PKQTECCIUNES.-

Como se dijo anteriormente, es necesario incorporar en

el diseño de la fuente un sistema de control para proteger

los elementos del equipo y al operador. Un circuito que sati£

face estas necesidades es al inoicado en la figura 3* Anali-

zando el funcionamiento de este circuito de una manera secuejí

cial, desde la entrada da la tensión, tendremos!

Cuando ha sido activada el protector (breaker) de entra-*-

- 46 -

da, es necesario que los puntos 4 y 5 (partida remota) se -

cortocircuiten (lo que se puede lograr mediante la utiliza—

ción de contactos de un relay) para que sa enérgica el relay

A, con lo que, su respectivo contacto quedará enclavado, en-

trando inmediatamente a funcionar el ventilaoor que protege-

rá de calentamientos excesivos al tubo. La partida remota es

necesaria, debido a que el transmisor está generalmente si—

tuada en una parte l ,.:~r: ! estuu.-*.^, ¡ es conveniente que -

exista la posiblidad de poner en marcha al equipo desde di-

cho luyar.

Con el ventilador funcionando, se activa la espoleta E,

cerrando el circuito y alimentando tensión al primario del

transformador de filamento, con lo que éste empezará a ca—

lentarse* £n caso que el ventilador dejara de funcionar, la

espoleta no actuaría aoriendo el circuito con lo que se dejj,

conectaría el equipo.

Después de un tiempo prudencial, necesario 33ra que el

tubo se caliente, se activará el relay de retardo de tiempo

Rt, enclavándose su respectivo contacto, con lo que, si es-

tán cerrados tanto el interruptor de seguridad colocado en

la puerta del transmisor como el interruptor de ALTA T£h—

5IUN, se energisará el contactor B, cerrándose el contacto

B que permite el paso de la tensión de 22 U voltios al —

transformador de alta tensión»

Se ha usado un contacto auxiliar del contactor B en -

paralelo con el contacto del Rt para evitar posibles rebotes

del contacto del relay de tiempo, asegurando de esta manera

la entrada de alta tensión.

igura 3

15A

CIKCUITÜ KeCTlFICMCIüN.-

Para rectificar la tensión alterna se ha escogido el cijr

cuito puente monofásico de onda completa (figura 4), en razón

de que se utilizará un transformador sin toma central, que es

justamente el tipo ds transformador que se dispone para la -

construcción de la fuente,

48 -

Figura 4

£1 circuito rectificador puente tiene además las si—

guientes ventajas sobre un rectificador da onda completa -

con toma central! suministra el doble de tensión de salida

para la misma tensión del transformador; cada rectificador

indiviuual está sometida a la mitad de la tensión de p.ico

inverso para la misma tensiónj a través üe cada rectifica-

dor circula sólo el 5Ü/¿ de la corriente total.

Como se puede ver en P la figura 4, el circuito puen-

te consta de cuatro u ni oa des de rectificación que funciona

con una sola fuente de c.a, Durante el semiciclo positivo

de la tensión aplicada, el punto A es positivo con respec-

to al C y los rectificadores 1 y 3 cunducen. £ n el otro s_e

miciclo, la conducción tiene luyar en los rectificadores 4

y 2 siendo el punto C positivo con respecta al A. Por con-

siguiente, en un semiciclo los rectificadores 3 y 1 están

en serie con el circuitu de salida y en el otro semiciclo

son los 4 y 2 los que están en serie con el circuito,

FUNCIÜNAFUt-NTÜ D10DÜ

Debido a que la tensión 'a ser rectificada es alta, la

- 49 -

tensión de pieu inverso que soportarán los rectificadoras -

están en el crden tía los S.QÜGv, lo que hace necesario uti-

lizar varios diodos en serie, da modo que la tensión de pi-

co inverso se reparta uniformemente an cada rectificador. -

Las dos técnicas más comunes para asegurar una división unj

forme da la tensión son el uso de redes compensadoras da r_e

sistencias y capacitancias y la selección de rectificadores

características inversas semejantes.

£n los rectifica dores apilados para alta tensión y cojn

pensados con HC, se Cüiuca un resistor y un capacitor a trja_

vés de cada unidad rectificadora» £stos resistores y capaci

tores obligan ¿ que la tensión inversa se distriüuya en i-

yual forma a través de cada unidad de la sarie si sus valo-

ras se eligen oe tal manera que, en tudas las condiciones -

de funcionamiento, sean estos componentes y no los rectifi-

ca cores los que controlen la -distribución de la tensión. -

Los resistores controlan la división oe la tensión durante

ai funcionamiento un c*c. Los capacitores controlan la civ_i

sión de tensión durante el funcionamiento con aita frecuen-

cia o cuando se aplican tensiones transitorias. Durante el

funcionamiento normal con baja frecuencia, la división ae —

tensión es controlada tanto por los Capacitores como por —

los resistores.

La espacioso1 parásita que aparece entre los rectifica-

dores y fíissa tienden a originar una distribución desiyu&l —

üc ifc tensión a troves de ios rectificaaares. Lsts efecto -

puede ser controlada meaiante el uso de capacitores en para

50 -

lelo, como se indica en figura 5. De un valor más grande qua

esta capacidad parásita.

Los capacitores en paralelo también se usan para igualar

el tiempo de recuperación inversa; la recuperación inversa —

da un rectificador es básicamente el resultado de dos efec—-

tos« los portauores minoritarios son dispersados por la jun-

tura, y, los portadores minoritarios se recombinan en la zo-

na da la juntura. De estos efectos, el más rápido es la dis-

persión de portadores minoritarios causados por la corriente

inversa.

£n cualquier serie de rectificadores, el tiempo de recij

peración inversa de las diferentes unidades no es exactamen-

te iyual, de manera que, aquellas unidades que se recuperan

más pronto bloquearán la tensión total que vuelve a aparecer,

o bien dejarán pasar la corriente inversa. Cuando estas uni-

dades se recuperan, detienen la circulación de corriente in-

versa en torno de los rectificadores recuperados y así a cele

ran la recuperación de los rectificadores más lentos.

Fiyura 5

— J l

f\ J

D2 D3

.. ! 1

Ci Cz C3

Cada uniaaü de rectificación del circuito puente está -

formada por un apilamientu en serie de diodos como se indica

en la fiyura b. Sitando la tensión del secunuario del trans—•

- 51 -

formador de 2.5UU voltios, la tensión de pico inversa que dj»

derá soportar la serie será de 3.535,5 voltios. Para obtener

un margen aceptable de seguridad, suponemos un tensión de p i

co inverso de tí.Uüü voltios, con lo que, el número de diodos

que se requieren si se usan elementos que tienen una tensión

de pico inverso de l.ÜUÜ voltios es de 8*

ClttÜUlTu Uh. FiLTHU U£. ÜNUULHLIUN.-

Para el filtrado de la tensión rectificada se usará una

red con entrada capacitiva como la indicada en la figura 6.

Los cálculos de los elementos constitutivos de dicho filtro

se facilitan si se usan las curvas dadas por el RAÜ1UTKUN. ..

....... que se encuentran al final de este capítulo.

Figura 6

LV< 2500

0,7A

o

£1 procedimiento para el cálculo es el siguiente» Prifne

ramente tomamos una sección del filtro anterior, la misma -

que está indicada en la figura ?•

Figura 7

- 52 -

La resistencia R será:

I » 2500 U / 0.7 A =* 3571 ohms

Suponemos una ¡resistencia R del secundario del transfaro

mador de 1UÜ ohms, con lo que calculamos la relación

R/R. = lüü ohms /3571 ohms = U,Ü28=±># R /R « 2,..- L S L

Sí hacemos que el capacitor C1 sea de 4 A

UiCR= 2"H" x 60 x 4 x 1U"6 x 3571 = 5,4

Da las curvas ti a la figura Ib tenemos

/U, - 76,5 >o r= EX, » 2bUÜ/ ü,76b = 3268 U.

231Ü V.

Usando las curvas ae la figura 17

. « ü»12 x 25UU - =

Si queremos que en el punto 2 exista un voltaje da 10

esto es, un rizado total del 0,4 fc tendremos

l = X - 1U U X - I

Hacemos C = IQ^./' f

\ = x /

- =• *L/ x(

X, - Xr (3üQ " iü ) ,: 29 X0

L L2 lü C2

10

3,8 x 10 ohmsi v y 9TTf - ' .L. XL/ 2TTf - ¿TTx 120 c/s

5 H

La corriente RlvíS que circulará por el secundario del -

transformador se obtiene a e las curvas de la fíiyura 18, pa-

círa lo cual calculamos la relación §— , en la que la n=2,

RHL

pues se trata ae rectificación ae onda completas

Rs/ nRL = 1,4 V»

= 10,8

IRMS / Idc = 2,6

RMS2 A

POLMKIZAC10N Ut PMNTHLLM.-

Para 1.1a polarización de la pantalla, se aprovecha la -

misma fuente da polarización de placa mediante un divisor -

de tensión, como se indica en la figura 8* Debido a que la

pantalla necesita un voltaje reyulado, se usan los tubos

ÜA2, que en número de tres nos provean de 45U voltios regu-

laoos para la pantalla.

.Figura 8

2500 VPLACA

PANT.

- 54 -

R = 450 U / 5 m A = 9 U K ohms > R» = 100 K ohms

La potencia disipada seral

p =1/1 = 450 V x 50 m A = 22,5 UR3

Se ha calcudado esta potencia con 50 mA para preueer un -

posible daño en uno de los tubos.

La corriente que circula por la pantalla es de 30 mA.

y si consideramos que por los tubos de regulación circulan

15 mA., la corriente que circula por R será de 5U mA. da

donde

R = 2UbÜ U / 5ü mA « 41 K ohms

R « 5U K ohms

PQ « U I = 2U50 x 50 = 102,5 U.R2

PD = 125 yR2

El diagrama total de la fuente de alimentación para el

transmisor está indicado en la figura 11. £n dicho circuito

se hen incluido los medidores para controlar tensión de pan-

talla, tensión de cátodo, corriente de placa y potencia de

salida.

PULMKI¿ACIUÍM L)L Ht.Jrt.-

La reja ha sido polarizada medíante una fuente negativa

como se inuica en la fiuura 9. Ll bobinado del transformador

se encuentra conjuntamente con el bobinado del transformador

da filamento y de su diseño nos encargáramos lueyo.

figura 9

VR, ^1 r:

1^Ci r~-

— — ' í.\JU V<t

50 ™ A

^C2

Para el diseño de la fuente üe reja, usaremos las mis-

mas curvas que se usaron anteriormente, siendo su procedi-

miento el mismo.

La resistencia de car^a viene dada por la expresión

R = 2ÜÜ U / 5U mtt

R = 40ÜÜ ohms

5i suponemos una resistencia del secundario del trans-

formador da 5U omnios, la relación entre la resistencia ue _

carga y dicha resistencia del secundario del transformador -

será del l,2b >* Consideramos el valor del condensador C, de

SüU microfaría dos, con lo quet

-6lüCR = 2TTx 6U x 4UÜÜ x büü x 10 = 753,6 ohms

Pdra encontrar el valor del voltaje KíMS necesario en el

secunoario aei transformauor, usamos las curvas correspondían

tes, tomando en cuenta que el circuito a diseñar es un rect_i

ficaaor da media onua.

% Ldc /EX B 87 %

L'v ._ 2UÜ/U,tí7 » 229,8 U

EHh& = 162,5 U.

- 56 -

£ 1 valor del vol ta je Hl'ib en el capacitor C se encuentra,

como hemos v/ isto, ae lab curvas de la figura 11.

% UH|Í|S / Edc - ü,23 %

U,.,, « Ü,UÜ23 x 20Ü *= 0,46 UrihíD .

Consideramos, a la salioa de la fuente, un rizado del -

U,l/í>, valor con el cual nos assguramos de que el punto está-

tico de trabajo dal amplificador no sufra alteraciones da im

porta ncia. Con este valor pedemos calcular el voltaje Kl'ib a

la salida de la fuente.

UUl r = U, OÜ1 x 20Ü = 0,2 UKPISl.

La corriente que circula por la resistencia podernos ca_l

cularla de la siguiente manera*

Si tomamos para el capacitor C? un valor de 5ÜÜ microfa-

radios, el valor üa la resistencia se calculará como sigue t

Xr •» t / 2TTfc « l/(2TTx 6U x 5UÜ x líf) = 5,3 ohmsC2

H = R x IR = H WRMS^ / Xc^ = UHMS^ _ v ^

0,2 R / 5,3 = U, 26

R= 6,69 ohms y 1Ü ohms

Para tener la opción de variar la tensión de polariza —

ción de la reja, se conecta a la sálica un potenciómetro, -

que cando entonces el circuito de la fuente como se indica —

en la figura 10.

£n el diseho da la fuente se han incluido aaemás, como

se puede uer en el esquema general, sistemas de medición de

los distintos parámetros del amplificador, tales como corrían

- 57 -

te de cátodo, tensión de pantalla, tensión de cátodo y potejí

cia de salida. figura 10

Estos valores no sa toman directamente de los puntas respete

tivos, sino que, con el objeto de que a los instrumentos de

meaida no lleguen valores de tensión o corriente que gene—

raímente son altos, se ha cogido únicamente una muestra me-

diante ios divisores de tensión formados por las T resisten—

cias dad flohm y 1UÜ Kohm para el caso de la tensión de pan-

talla y tensión de cátodo. Para medir la corriente de cáto-

do se usa el divisor de tensión formado por la resistencia

del1 ohm y la resistencia de 1 Kohm. Para detectar la poten-

cia de salida del amplificador se usa un diodo de germanió,

el cual es colocado en el interior de la cavidad, como se -

puede ver en el diagrama del amplificador.

£1 turnar únicamente una muestra de los diferentes par¿£

metros nos permite además, usar un sólo instrumento de fnedjL

da (un miliamperímetro) para leer la tensión de pantalla, -

tensión de cátodo y la potencia, mediante un selector que -

se encontrará al alcance del operador. Caos señalar además,

que se Han colocado en paralelo con los miliamperímetros, -

capacitores de U,U1 microfaradios, con el ubjetü da que —

sean uri cortocircuito para la radio frecuencia existente y

de esta manera evitar que las lecturas sean afectadas por

ésta.

jiilP. líLrJj (lihjIíiK; $111! ?1¡

so

OX

OO

rZcorn

•tícH

rHra

ü ' ü i i t i i i i ¡ : ;

i Ii M üi i ! h::í ülS lyi^

en

O

nou

1'.7

6 fi

ú) T

O D

ET

LK

MIN

E P

f-A

K A

KD

AV

ER

AG

E D

IOD

E C

UR

RE

NT

S 30¿

that

n

=

2 fo

r fu

ü w

ave

rect

ific

atio

n,

nR

Step

8.

From

Fi

g.

30.8

(lo

wcr

) w

hcre

ni

aCR

L

=

21.2

wc

may

obt

ain

Ste

p 9.

T

he a

ver

agc

diod

c cu

rren

t i¿

:;,j

=

I L

for

ha

Jf-v

,'avc

cir

cuit

s an

d fu

il-w

avc

volt

ase

doub

ler

circ

uits

,i¿

= \l

L f

or f

ull-

wav

e ci

rcui

ts.

In t

h-s

exam

ple

i¿ =

12

5/2

= 6

2.5

mA

;

Step

10

. T

he p

eak

diod

c cu

rrcn

t, i

s ob

tain

cd b

y su

bsti

tuti

ng

the

valu

é of

id

give

n by

Ste

p 9

in t

he r

csul

t of

Ste

p 8.

In

the

exa

mpl

e

(iv

) T

o d

eter

min

e ri

pp

lc p

crc

en

tag

eH

avi-

ip, d

eter

min

ad t

he p

cak

.i:od

e cu

rr-.'

i1.!,

we

rr.a

y ih

cn p

nv

icJ

toct

hcr

unkn

o\ns

. T

he's

amo

exar

r.pl

e as

in

(iií

) üb

jve

is .

iUo

usc.

1 h¿

;^

Ste

p

Stcp

4.

A

pply

im:

this

va

lúe

to

Fig.

30.

9 (r

ete

th*

-v:ih

ics

shc\

vn

iri

ibc

in^c

r,ap

plyi

ng t

o íh

c vi

irio

us c

urve

s),

and

usin

g th

e va

lué

of

wC

K,

dctc

nnir

iCd

íbov

c,th

e pc

rccn

tacc

of

ripp

lc v

oltn

gc t

ó di

rcct

vol

taje

¡s

givc

n.\R

,\n

th

e cx

ampl

c,

--1

--

12.8

% (

full

wav

e) a

nd

a>C

R{

-----

10.6

giv

in-

A</

,ri

pnlc

vo

ltaj

eJ__

l _

__

_

_ •:

-_

^ R

O/

dirc

ct v

olta

ge

" /0

'T

he r

ippl

c vo

ltage

\B

R\

ripp

lc p

crce

ntag

e X

dir

ect

vok;

;gc.

(v)

To d

eter

min

e th

e tr

aasf

orn

ier

seco

nd

ary

r.

m.s

. cu

rren

t \:

¿\g

the

valu

é of

ía-

as d

eter

min

ed i

n (i

ii)

Stc

p 9

abov

Cj

also

the

val

úes

cf ?

:,

<aC

RL a

nd

\Rs\

/fí¡

3 Fi

g. 3

0.8

(upp

er c

urve

s) \

vjll

givc

the

val

ué o

f |i

,;í.

Jn t

hc s

ame

exam

ple i

d ~

62.

5 m

A ;

n --

---- 2

; ta

CR

L =

lü.

b.in

d \R

:\.R

. -

I2.S

°Ó,

so t

hat

id\/~

i¿ «

2.2

5 an

d ¡iu

.| =

62.

5 x

2.25 -

14

0 m

A.

(vi)

Fro

ced

ure

w

hcn

co

mp

lete

p

ub

lish

ed d

ata

are

n

ot

av

aií

ab

leSt

ep

1.

To

díL

crm

inc

i'j.

id

= I

r fo

r ha

lí-w

avc

circ

uits

and

ful

l-\v

ave

volt

age

doub

lcr

circ

uits

3

i'd

~

M [

f°r

íull

-wav

e ci

rcui

ts. A

_

Ste

p 2.

T

he

diod

c* p

eak

curr

ent

id i

s íe

ntat

ivel

y as

sum

ed t

o be

6 ;

rí.

Alt

srna

-ti

vely

, íf

the

out

put

volt

aje

is k

now

n, t

he c

urre

nt r

atio

ir.n

y be

der

ived

fro

m

Fig.

30.1

0A.

Ste

p 3.

F

rom

Fig

. 30

.4,

and

knov

/led

ge o

f th

e va

lvc

typc

, th

e di

ode

peak

p!j

:eA

A

.

A

A

A

volt

age

c ¿

corr

cspo

ndin

g to

¡",,

can

be

fcun

d.

Thc

reío

rc r

d

=•• ¿

j/ij

can

. be

evs'

.ua'

cd.

1 E u: -SO

-o "dK E:fJ t.

i<i Or: LOo c<i

rj J3 rj

(X íí t J M •

ü : ; r ! ! Í T H r - : ^;^ b;i : ;= ¡ : Í L : ¡|. ¡:::¡ :;;:;

B ALT

15

A Fue

nte

de a

lta

tens

ión

rPane

l de

con

trol

A

iu 3;

100.

a

ES

PO

LE

TA

-X

*

E!

470

ZW

2

W

IS l/t II

í 'V

3A

' P

2 50

0 Y.

PLAC

A

AL

TA/

PU

ER

TA

/

- 62 -

DISEÑO DLL CHUUUE.-

Para el diseño del choque usaremos las curvas y tablas

dadas por el KEFEKtNCE ÜATA FüH Rrtulü ENIUNEERS. Este méto-

do sirve para calcular choques con entrehierro, paro debido

a la dificultad de oDtener núcleos con estas caracteresti—

cas, calcularemos un choque sin entrehierro pero con una -

inductancla ligeramente mayor que la requerida en el "cálcu-

lo.

Suponemos una inuuctancia de 7 H., con lo quej

L I 3,43

Uisto en la tabla 1, tenemos que el tipo de lámina -

usarse es la EI-19, y la potencia de esta lámina (de la ta_

bla 2) es de 525 Watts.

Una lámina de estas características conseguible en -

nuestro mercüao es la indicada en la figura 13, de una po-

tencia de"1! Kilovat. Sus dimensiones están indicadas en di—

Figura 13cha figura.

^—™

T

I

VM1H-

63 -

vo lumen del núc leo*

Ü« 178 mm x 165 tnm x 2G mm - 2 ( l 4 4 m m x 38rnm x 20mín)

tf« 5B74ÜQ mm3 - Í73280 mm3

U« 414120 mm

U« 2 b , 2 7 pulg 3

largo del camino magnético!

1 - (114+114+178+178) mmc

1 « 5d4 mmc

1 c 23 pulyc

íl _ = 0,135

V

Con estos valores y con las curvas de la figura 19 obtenemos

quei

-JÜ - 177

c

En donde N es el número de vueltas

N- X 230.7

N= 5816 vueltas

£1 diámetro del alambre a usarse viene dado por la ex

presión*

= / 2 Vl(amp)/J

£n la que*

ÍES Corriente d*c. en amperios

oJa Densidad de corriente en amperios/ pulg

(tabla 2)

« 2 \/ü.7/12uü B U , U 2 7 pulg

«Ü.64 mm.

- 64 -

Ll número de vueltas por capa resultará de dividir el

laryo exterior de la forma (112 mm) restado el espesor de -

las láminas de cartón que forman el cuerpo del núcleo (9mm),

para el diámetro del alambre. A este valor ss le resta f por

seyuridatí, un

Uueltas/capa= 113mm " 9mm - - 10*U. 64

Vueltas/capa* 147

capas 6616Vueltas/capa 147

ff Capas- 39

UISPüblülUU UEL

2 capas de cartón ... .................. 2.6 mm

2 capas de mi lar grueso ..... . ........... 0.3 mm

39 capas de $ 22 más 1

capa de mi lar yrueso ........ . ...... * • 31 .41mm

2 capas de mi lar grueso*.......* ....... 0.3 mm

2 capas de cartulina *.**... .......... * 0.6 rnm

35.41mm

5 %

37.16mm

Porcentaje de la ventana utilizada * 97,7 >>

Cálculo del peso y resistencia del alambre.-

Í"1LT = Laryo medio por vuelta

ÍMLT = 2(r+q) + 2(s*J) + a

3 — Ü . b mm

hLT « 2(bl-t-U.5)mm-+-2t20-*-0.5)mm+3.14x37.16 mm

65 -

MLT ~ 260.68 mm m Ü.855 pies

Longitud total «= N x WuT m 5816 x 0.855 pies *= 4972,68 pies

De la tabla jf 3 obtenemos quei

Qhms/lOÜQ pies (Mlúü #22) *= 16.14

R« 80,23 ohms

Ibs/lUÜÜ pies (MUkL, #22) «1.945

Pesos= 9.b? lluras

2 2Potencia disipaoa « I R *=(ü.7 A) x 80.23 ohms

Potencia disipada » 39,3 watts.

UI5t.WÜ ÜtL TKHNbFühttriUUrt ÜE. FlLAñENTü.-

Para el calentamiento del filamento del tubo 4EX-18ÜÜ

se requiere, corno sa ha visto en el capítulo anterior, una

tensión alterna de 5 U. con una corriente de 38.5 amperios.

Esto se consigue mediante el transformador indicado en la

figura 14. £n dicho transformador se ha incluido además un

bobinado (S#2) que nos servirá para, como se ha dicho, pa-

ra la construcción de la fuente de polarización de reja. -

Eln dicha figura se indica además, el tipo de lámina a usa_r

se, así como sus dimensiones.

Figura 14

O V

39.5 A

0,5A

ov

T

ov

El diámetro de los alambres para los distintos bobina-

dos se puede determinar de la expresión*

Ó » 1,13

De oonde obtenemos

9 p « Ü,Ü337 mm

292U -610 log P

AUiütflB

s = U,18 mm

2= Ü.Ü337 mm

numera de vueltas se determina usando la relación

N = 3,75 x 1U-3

/ Sun

£n donde*

Voltaje del bobinado en voltios

V

5 = Sección del alambre en mm

Se puede entonces, con los valores obtenidos de las

presiones anteriores, construir la siguiente tabla*

.i•».'."•,:] ¡o j.Xjtiri 'm \¡;>.'•;:} .KIIÍ :;;;i!i) .'K¡n'mp1 \] -runop jo ; , -> i : ( I - í .',\!tpu:.s\; n¡ -¡if ¡¡IA\A x.vajo^

'ST, ''-'K ;-'f n -!-V\O ;v/ix > - - - t n : . ' ; n ;;i)l 'o ;>¡qi; j_ MÍO.IJ

J 0¡ '}( i í / x ' ! : í r{ í> K'Oíí •''' K;O:i 'ü - i • - - • i í / t n t - - - í i / ' í -n f i jo

,,,y

i--VIST vi

^ ' : ; : ' ( . í . ' l l v ) t ' l ! i - 5/ ;'"' ' ' - 1 ' .' • i . i ; \ l _ - i - u i q iS i i j - ] \ [ i T , t • i l l i | i ¡ > l . \:

; i ^ ' i . . - ¡ i : í : . . j ^ - .^¡.vj-v^-

í ' l : i .M. i . - .V

• .;• > •

ti .1 ':-:

u

:/:• :"•-.- '- * c-i

12-:

fVJ

<_iCD

~\.u

CQ

*

**

**

*

C A P I T U L O J U

CONSTRUCCIÓN DEL AMPLIFICADOR DE. PUTLNCIA

*

-,

-J

CQN5THUCCJLUN ü£L AMPLIFICADOR DE POTENCIA

El amplificador está construido en una consola como i_n_

dica la fotografía de la figura 1. El conjunto mide 63 cm.

da anchura 58 cm, de profundidad y 180 cm. de altura. En la

parte inferior del conjunto se encuentra el suministro de -

alta tensión y en la parte superior la sección de radio f r_a

cuencia y sistemas de protección, separadas éstas por una -

franja de 2 U cm. en la que se encuentra el protector —

(breaker) de encendido, un voltímetro para medir la tensión

de línea y una luz indicadora de alta tensión.

figura 1

.*.-. - - .

"•""-: *. jr rt'rf íp

^ %3|fí|lpf

', ,- L ' Sv - ::fete. M¿. • .!tt--Ji«teflk.i .,«-*ar-.-_i«ii«

- 72 -

La sección de radio frecuencia es un panel fácilmente -

desmontable de la consola y atornillado a ésta. En él se ha

incluido todo el sistema de protecciones así como la ventila^

ción del amplificador; está construido de aluminio tratada y

se compone de dos cuerpos independiente, como se puede ver —

en la fotografía de la figura 2«

En la parte inferior, que se encuentra atornillada al

panel frontal se encuentran, contó se ha dicho, los sistemas

de encendido y protecciones y el ventilador de refrigeración

del tubo*

"Figura 2

Las interconecciones entre el panel de control y la f u_en

te de poder se hace mediante la regleta que se pueda apreciar

en la fotografía,

La disposición de los elementos del panel de control se

puede apreciar en la fotografía de la figura 3. El ventilador

se encuentra atornillado directamente a la pared superior -

del panel, en la cual se ha hecho una perforación que comuai

- 73 -

ca directamente con el tubo, can lo que se proporciona una -

muy buena ventilación y con un nivel de ruido bastante bajo.

figura 3

En la pared lateral izquierda se encuentra la fuente de

polarización do reja, montada sobre un circuito impreso y s_e

parada del aluminio por medio de aislantes de porcelana» El

potenciómetro de la fuente de polarización de reja ha sido -

montado en el panel frontal (8IAS) de tal manera que pueda -

ser ajustado fácilmente por el operador.

El relay de tiempo se encuentra también en la pared la-

teral izquierda. Para variar su tiempo de retardo, sa dabe -

girar la perilla que se encuentra en IB parte superior riel -

relay .

En este panel se encuentra además, como puede verse» el

transformador do filamento cuyo tensión es lie u acá al tubo

mediante un cable que atravieza la pared superior y ?s ator—

nillado en un pasa-muro que se encuentra en la cavidad.

La sección de radio frecuencia, o panel de la cavidad,

es una caja de aluminio montada sobre el panel de control,

como se ve en la figura dos. Interiormente se encuentra di-

vidido en dos mediante una placa también de aluminio; en el

cual se encuentra montado el zócalo, Esta disposición de -

los elementos del amplificador provee una muy buena aisla—

ción electromagnética entre los circuitos de placa y reja.

La parte inferior del panel de la cavioad corresponde

al circuito de reja (figura 4). Todos los terminales del z_ó

calo sa encuentran desacoplados de tierra meaiante capacito

res de ü.l microfaradios, como puede verse en la fotografía.

La radio frecuencia entra por un conector tipo N atornji

liado en la pared lateral izquierda, a las placas fijas del

capacitor variable C, . Eli otro extremo del capacitor, se eji

cuentra unido meuiante un alambre, a la reja del tubo.

Con alambre esmaltado de cobre tf 18, con un diámetro de

1,5 cm, y tíos espiras, se ha construido la bobina L, la cual

se encuentra unida a la reja del tubo y al capacitor C-. La

pplaord'zación de reja es traída desde el pasa-muro a través -

del Ch que tiene 9 espiras con ;un^diámetro de 1,5 cm y co—

nectado en la bobina L en un punto en el que la radio fre—

cuencia sea mínima»

Los capacitores de sintonía de reja se encuentran atb_r

nillados directamente sobre la placa de aluminio y tienen —

ejes de prolongación que atraviesan la cavidad hasta el pa-

nel frontal.

- 75 -

Figura 4

La sección correspondiente al circuito tíe placa se in-

dica en la fotografía de la figura 5. £n dicha figura se -

puede observar claramente la disposición de los elementos -

constitutivos del circuito de placa. Al igual que los capa-

citores de sintonía de reja, los de placa tienen ejes de -

prolongación hasta el panel frontal.

La bobina da acoplamiento L está construida con un diá

metro de 3 cm. y dos espiras de alambre ff 6, conectada a la

placa del tubo mediante una abrazadera da cobre y al capa-

citor de desacoplamiento CR. La tensión de polarización de

placa entra a la cavidad a través de un pasa-muro colocado

en la parte superior izquierda y mediante el Ch se conecta

a la bobina L, también en un punto en donde la radio fre-

cuencia sea mínima.

La potencia de radio frecuencia sale desde el capaci——

tor C a través de un cunector tipo N atornillado a la pa—

- 76 -

red de la cavidad»

F i g u r a 5

Como se ha dicho anteriormente, en la parte inferior -

del amplificador se encuentra la fuente de alta tensión. La

fotografía ae la fiyura b muestra la colocación de los campo

nenies principales de la fuente.

Figura 6

ir-

-77 -

El transformador de alta tensión está atornillado direc

tamente a la base de la consola, así como los capacitores -

y el choque del filtro. £n la parte superior izquierda se eti

cuentran las resistencias de potencia que proveen la tensión

para la pantalla así como los tubos OA2, montados éstos en -

zócalos que se encuentran sujetos en una plancha de baqueli-

ta. Los rectificadores de alta tensión están montados en la

parte superior derecha sobre una plancha de baquelita 9 como

indica la figura.

Fiyura 7

LIS. v \A Y AJUSTE: UEL AMPLIFICADOR.-

Para el ajuste inicial de las bobinas tanto de placa co

mo de reja, el procedimiento a seguirse es el siguíente i Con

- 76 -

3l capacitor da salida completamente abierta, y el de entra-

ua en una posición intermedia, se construye una bobina qua -

resuene a la frecuencia requerida (88.1 Mhz), para lo cual -

se usa un ondametro de absorción o grid-dip-meter. Variando

los capacitores del circuito de acoplamiento, la resonancia

debe obtenerse en un margen ae por lo menos unos 5 flhz "alr_e

deoor de la frecuencia da trabajo.

£1 choque de radio frecuencia va conectado directamente

a la bobina de acoplamiento, en un punto en donde la radio —

frecuencia sea cero, oo^ativo que GB logra excitando el cir-

cuito y localizando, (a lo largo de la bobina) üicho punto,

para lo cual se usará* un detector de H.f,

Ajuste de la neutralización.-*

Como se vio en el capítulo 1, la neutralización del tu-

bo ss puede hacer mediante una capacidad de reja a pisca que

se logra msoiante una varilla conectada en la reja, que pasa

a través de la lámina de aluminio y cuya distancia a la pla-

ca es vari ti ble. Hará obtener el punto de correcta neutralizja

cion se excita al amplificador con una potencia prudencial—

mente baja (unos 5 wats), estando aplicada la tensión de fi-

lamento del tubo* La salida del amplificador debe estar c o—

nectüda, y través Oe un medidor de potencia, a una carga ar-

tificial de bu olims. Se varía entonces, como se ha dicho, la

distancia de la varilla a la placa, hasta que el detector de

potencio marque la mí n im a lectura.

Una vez qus han sido ajustadas las bobinas de los cir—

cuitos do reja y pleca así como la neutralización se puede -

- 79 -

entonces proceder al encendido total del amplificador para -

lo cual se debe seguir los siguientes pasosi

;

1.- Se coloca a la salida del amplificador una carga artifi-

cial de 50 onms que sea capaz da disipar una potencia de

por lo menos unos 2 Kwats»

2.- Se activa el breaker de encendido general (figura 8), -

con lo que el voltímetro debe marcar la tensión de línea

(22Ü voltios) .

3.- Al activar el breaker del panel frontal (línea), el ven-

tilador debe entrar en funcionamiento. Se comprobará en-

tonces que la ventilación a través del tubo no sufra nin

guna obstrucción. Con elfuncionamiento del ventilador djs

b8 activarse la espoleta, con lo que entra la tensión -

al filamento, encendiéndose.la luz da FlLAIMLNTU del pa-

nel frontal. Se debe medir, en los terminales corres-

pondientes, que la tensión de filamento sea la correcta

(5vJ, pudiéndose variar ésta mediante los taps del trajn

formauor de filamento localizado en la parte interior -

de la cavidad, £s conveniente entonces comprobar el f u_n

fionamiento de la 1-a espoleta, obstruyendo el aire del

ventilador que hdCe que está se active, con que la ten-

sión de filamento debe ser interrumpiaa, apagándose el

indicador del panel frontal.

4.- Una vez que la espoleta ha sido activada, el relay de -

retardo de tiempo inica su funcionamiento enclavándose

us contactos después de 9Ü segundos.

- 6G -

Figura 8

5.- Al activar el conmutador de ALTrt y si la puerta poste-

rior del amplificador está cerrada, se aplica la ten-

sión a la placa del tubo, así como la tensión corres—

pendiente üe pantalla. Se enciende entonces la luz in-

dicadora de HLIH. Uebe verificarse que los tuDQs regu-

lan ores de tensión (en la fuente de poder) entren en

funcionamiento,Se ajusta entonces la corriente estáti-

ca del tubo con el potenciómetro del panel frontal —

(dihb), hasta que el medidor correspondiente marque ui-

nos 4UÜ mrt. La tensión del cátodo (en el muítímetro )

debe ser de 2UUU y la tensión de pantalla de AbÜ \J.

La potencia de salida debe ser cero en cualquier punto

- 81 -

de los capacitores de sintonía, pues en caso contrario,

debido a que la excitación no ha sido aplicada, el am-

plificador estaría oscilando.

6,- Al aplicar la potencia de excitación se debe a justar -

los capacitores de biwTulMlrt UE HLJh Y bliMluwIM DL PLMLA

del panel frontal hasta obtener el máximo de potencia -

de salida con el mínimo dQ corriente de cátodo.

Una vez o p t i m izadas las sintonías de placa y reja, las

lecturas obtenidas fueron:

TLNbluN bL" LIIMLH: ........ . ................... 19Ü Voltios

MLirt TLÑblUfoi ......... * .................. , 2.300 Voltios

TLNblufo UL PHiMTHLLrt ....................... 450 VULTlUb

TL^blüÍ\ ÜL Ktjrtí .......... * ............ ... 18U Voltios

ÜL FiLAHLlMl'ü* ........... , ......... 4,8 Voltios

uL LHTuüU ¡ ............ ..... ..... 5 bt) miliamperios

Ut bHLlUA; ....................... 900 vatios.

Con loa datos obtenidos experimentalmente, se puede -

calcular el rendimiento real del amplificador de la siguie_n_

H U c « £ x I d cp

Pdc = 2,300 V. X 55Ü mA.

P tí c = 1-265 vatios

Como la potencia efectiva de solida es de 9ÜU vatios,

rendimiento será;

^ Psal-rf

Pdc

- 82 -

vi - 9ÜÜ

1.265 Ui

= U,711

« 71,1 ;%

Si comparamos con los üatos calculados vemos primeramen

te que el renoirniento del amplificador se ajusta con el va—

lor obtenido en la práctiva, pues en eldiseño se encentró -

quG el rendimiento sería del 71,1 /b.

En cuanto a Id potencia de salida se esperaban l.bÜQ v_a_

tíos, pero con un consumo de 859 miliamperios y una tensión

en la placa de 2.büÜ voltios. Debido a que la tensión de lí-

nea en el luyar de las pruebas es baja, siendo apenas de 19G

voltios, mientras que en el diseño se suponía una tensión tíe

línea de 22U voltios, la tensión en la placa fue de sólo —

2.3ÜU voltios llegando el tuüo a consumir b5U miliamperios,

obteniéndose une potencia de salida de 9ÜO vatios. Esto nos

lleva a la conclusión de usar para el funcionamiento del a_m

plificador un regulador de t «n 8 i ón con lo que, i n d e p e n tí i e n tji

mente ael valor tis ia tensión de línea existente en si lugar

rje la i n s lalación del equipo, pudra limentarse a éste con -

.lor; 2 2 ü V , requeridas*

Se rui f n e d i d o además 1 a corriente alterna total c¡ u e con-

sume el ampiiíicauor sienüo ésta ue 12,b A. Con esto podemos

determinar el rendimiento total üel equipoi

Potencia entrada por la l£nea -19Ü V. x 12,5 A.

Potencio entreyacja por lu línea *¿ 2.^75 vatios

- 83 -

En consecuencia:

Víaw 9ÜO U

2,375 U

Y\_= 0,379

V\,« 37,9 %

Se debe señalar que en este rendimiento se incluye el

consumo del ventilador, filamento, pantalla, etc., con lo -

que se puede decir que se ha logrado construir un amplifica^

dor de potencia de radio frecuencia dentro de los márgenes -

que prácticamente son posibles.

& I 8 L I Q G R A F I *

Robert Ui, t andee - Ü o n o v a n C« Oauis - Alüer t P. Albrecht ,

"Electronic Qesit jners* Handbook1 1, He Gr-aw Hill book Compa-

ny , 1971.

- .Paul n. Chir l ian , "Análisis y DiseTio ue Circui tos

u Hill, ^léxico, 1974.nicos", secunda edición, i*íc Grau

- Jacob iylilluian -Christos C, Halki t is , "ELlectrcDnica Inteyra-

da", Editorial HÍ8pano-£uropea , Barce lona s 197b.

- Uíilliam I. U r r , "Radio Handbook 1 1 , ha re ambo, Barcelona , 1977,

- Joe O oh n son, "Salid Circui ts y o u r HF Wouier Ampl i f i e r Mer fo j r

manee, 19770

- Care and Feediny of Moiuer Tubes, P repa rad by Labora tory —

S t a f f , W a r i a n , Li tnac Divis ión.

- UHF-FM T r a n s m i t t e r s , rteuista pub l i ca cía por R o h d s & S c h w a r z ,

Londres , 197S0