Actividad 2 unidad 1 c comb

21
ACTIVIDAD 2 UNIDAD 1 Publicado en: jueves 7 de abril de 2016 11H57' CDT ANÁLISIS DEL COMPORTAMIENTO DE UNA CELDA DE COMBUSTIBLE MEDIANTE LAS CURVAS DE POLARIZACIÓN. En general, una curva de polarización muestra gráficamente la eficiencia electroquímica de una CC a cualquier corriente de operación. Para iniciar, analice y describa la diferencia entre cada término técnico utilizado cuando se grafica una curva de polarización. Potencial eléctrico. Diferencia de potencial eléctrico. Potencia. Densidad de potencia eléctrica. Corriente. Densidad de corriente eléctrica. Observe detalladamente las diferentes zonas de la curva de polarización: activación, resistencia óhmica y concentración. Observe que al inicio de la curva, a una densidad de corriente eléctrica de 0 mA*cm -2 , el potencial eléctrico es de 0 V, este punto se conoce como potencial eléctrico de circuito abierto, ya que no existe un flujo de corriente eléctrica. Inmediatamente después, conforme el potencial eléctrico disminuye, la densidad de corriente eléctrica aumenta. Observe que la parte central es esencialmente lineal, ya que este fenómeno se asocia a la resistencia de los materiales. También es importante observar la parte final de la curva, la cual decae ligeramente a causa de un cambio en la concentración de reactivos.

Transcript of Actividad 2 unidad 1 c comb

Page 1: Actividad 2 unidad 1 c comb

ACTIVIDAD 2 UNIDAD 1Publicado en: jueves 7 de abril de 2016 11H57' CDT

ANÁLISIS DEL COMPORTAMIENTO DE UNA CELDA DE COMBUSTIBLE MEDIANTE LAS CURVAS DE POLARIZACIÓN.

En general, una curva de polarización muestra gráficamente la eficiencia electroquímica de una CC a cualquier corriente de operación. Para iniciar, analice y describa la diferencia entre cada término técnico utilizado cuando se grafica una curva de polarización.

Potencial eléctrico. Diferencia de potencial eléctrico. Potencia. Densidad de potencia eléctrica. Corriente. Densidad de corriente eléctrica.

Observe detalladamente las diferentes zonas de la curva de polarización: activación, resistencia óhmica y concentración.

Observe que al inicio de la curva, a una densidad de corriente eléctrica de 0 mA*cm-2, el potencial eléctrico es de 0 V, este punto se conoce como potencial eléctrico de circuito abierto, ya que no existe un flujo de corriente eléctrica. Inmediatamente después, conforme el potencial eléctrico disminuye, la densidad de corriente eléctrica aumenta.

Observe que la parte central es esencialmente lineal, ya que este fenómeno se asocia a la resistencia de los materiales. También es importante observar la parte final de la curva, la cual decae ligeramente a causa de un cambio en la concentración de reactivos.

Redacte una conclusión de media cuartilla acerca de las características físicas de la celda de combustible representada mediante la curva de polarización; es decir, acerca de las características del electro-catalizador, de la resistencia óhmica y de los fenómenos de concentración de especies. La nomenclatura del documento sigue las reglas establecidas ECCM_U1_A2_XXYZ y debe incluir necesariamente la bibliografía consultada.

Page 2: Actividad 2 unidad 1 c comb

Finalmente, les recomiendo descargar y leer el siguiente artículo. http://pemfc.princeton.edu/Documents/Publications/PowerPerf_2006.pdf José Luis Rosas

Densidad de corriente

Relación entre la corriente y la densidad de corriente.

La densidad de corriente eléctrica se define como una magnitud vectorial que tiene unidades de corriente eléctrica por unidad de superficie, es decir, intensidad por unidad de área. Matemáticamente, la corriente y la densidad de corriente se relacionan como :

I es la corriente eléctrica en amperios A

es la densidad de corriente en A·m-2

S es la superficie de estudio en m²

Índice [ocultar]

1Densidad de corriente en física convencional

Page 3: Actividad 2 unidad 1 c comb

o 1.1Cargas puntuales aisladaso 1.2Conductor eléctricoo 1.3Densidad de corriente de un medio continuo

2Densidad de corriente en mecánica relativista 3Densidad de corriente en mecánica cuántica 4Referencias

Densidad de corriente en física convencional[editar]

Cargas puntuales aisladas[editar]La densidad de corriente está relacionada con los portadores de cargas (electrones, huecos, iones en un electrolito) por :

Donde:

es la concentración del portador i. es la carga eléctrica del portador i. es la velocidad media del portador i en el volumen.

Conductor eléctrico[editar]Si la densidad de corriente es uniforme en una región del espacio entonces la relación se simplifica notablemente. Esto sucede con bastante aproximación en el interior de un tramo de conductor de sección constante, donde el vector es independiente de la posición por lo que la sección, la densidad de corriente y la intensidad guardan la relación:

Siendo la sección transversal del tramo de conductor.

Densidad de corriente de un medio continuo[editar]Si tenemos una región del espacio con una densidad de carga, no necesariamente uniforme, en la que el movimiento de cargas se puede representar por un campo vectorial de velocidades, para esa distribución de cargas en movimiento tenemos:

donde es la densidad de carga en un punto y la velocidad de las cargas en ese punto.

Page 4: Actividad 2 unidad 1 c comb

Densidad de corriente en mecánica relativista[editar]

En teoría de la relatividad debido al carácter relativo del espacio y el tiempo, todas las magnitudes físicas relevantes deben ser representables en un espacio-tiempo unificado, que permita relacionar adecuadamente las medidas hechas por diferentes observadores, eso implica que las magnitudes vectoriales de la mecánica clásica deben sercuadrivectores, cuya parte espacial coincide con las componentes vectoriales de las magnitudes correspondientes de la mecánica clásica.

Así el vector densidad de corriente en mecánica relativista debe reemplazarse por un cuadrivector densidad de corriente, que intervendrá en los análogos relativistas de las ecuaciones del electromagnetismo. Este cuadrivector densidad de corriente vienen dado por:

Donde son las componentes de la velocidad tridimensional de una distribución de carga y c es la velocidad de la luz.

Densidad de corriente en mecánica cuántica[editar]

En mecánica cuántica, la corriente de probabilidad (también denominada flujo de probabilidad) es un concepto que describe el flujo de densidad de probabilidad. Así, en mecánica cuántica no-relativista, se define como

y satisface la ecuación de continuidad mecanocuántica

siendo la densidad de probabilidad

Fuente:

Page 5: Actividad 2 unidad 1 c comb

https://es.wikipedia.org/wiki/Densidad_de_corriente

DEFINICION

El movimiento de carga dentro de un conductor debido a un campo eléctrico aplicado, lo llamaremos corriente eléctrica. Suponga que las cargas se mueven perpendiculares a una superficie de área A, como en la figura.7.1. La corriente es la tasa a la cual fluye la carga por esta superficie. La corriente promedio, I es igual a la carga que pasa por unidad de tiempo:

Corriente

SENTIDO DE LA CORRIENTE

De lo estudiado el capitulo anterior podemos deducir el sentido de la corriente en un conductor. Por convención, se toma como sentido positivo de la corriente, el de la trayectoria que seguirían las cargas positivas (Fig.7.2), aun siendo las cargas negativas las que se mueven en dirección opuesta, ¿Por qué?

Fig. 7.1 Cooriente electrica

Page 6: Actividad 2 unidad 1 c comb

Explicación:

Para establecer una corriente en un conductor se requiere una diferencia de potencial entre sus extremos, como indica la figura 7.2.Cuando se conecta una batería a un conductor, la diferencia de potencial crea un campo eléctrico dentro del conductor. Los electrones libres de un extremo del alambre son atraídos al borne positivo y al mismo tiempo, en el otro extremo los electrones dejan el borne negativo de la batería y entran al alambre. Así se establece un flujo continuo de electrones, de tal forma que la corriente de electrones es equivalente a una corriente de cargas positivas en sentido contrario.

DENSIDAD DE CORRIENTE

Fig.7.2 Sentido de la corriente

Page 7: Actividad 2 unidad 1 c comb

La densidad de corriente eléctrica se define como una magnitud vectorial que tiene unidades de corriente eléctrica por unidad de superficie. Matemáticamente, la corriente y la densidad de corriente se relacionan como:

Densidad de Corriente

Vectorialmente la expresamos:

La densidad de corriente puede ser no uniforme y podemos expresar la corriente que atraviesa un elemento de una superficie como: di = J.dA

VELOCIDAD MEDIA O DE ARRASTRE

Cuando se aplica una diferencia de potencial, se establece internamente un movimiento de cargas, debido a que se establece un campo eléctrico dentro del conductor. Aunque el campo eléctrico acelera a los electrones, debido a los choques internos, sus velocidades no aumentan indefinidamente. El resultado es que la velocidad promedio o de arrastre es lenta y ordenada.

Fig.7.3 Densidad de corriente

Page 8: Actividad 2 unidad 1 c comb

Velocidad de arrastre

Cuando se aplica un campo eléctrico a un conductor, los electrones son acelerados por el campo, aunque esta energía cinética es inmediatamente disipada por los choques con los iones de la red. Los electrones son continuamente acelerados y frenados en un movimiento similar a la de las canicas de la figura. El resultado neto de esta aceleración y disipación es una velocidad de equilibrio muy baja denominada velocidad de arrastre.

TEORIA DE LA CONDUCCION

Si hay n partículas por unidad de volumen, con carga q, la carga total dentro de un trozo de material de longitud Δx y área A (fig. 7.4) es:

Fig.7.4 Velocidad de arrastre

Page 9: Actividad 2 unidad 1 c comb

Así tenemos que la corriente es:

Finalmente:

Metiendo este valor de I en (7.2), tenemos para la densidad:

LEY DE OMHN

En muchos materiales (incluidos la mayor parte de los metales), la proporción entre la corriente y El voltaje es una constante, que es independiente del voltaje productor de la corriente. Los materiales que obedecen la ley de Ohm y que, en consecuencia, presentan este comportamiento lineal entre V y I se dice que son óhmicos. Ver fig.7.6..

Enunciado

La corriente que fluye a través de un conductor es proporcional al

Fig. 7.5. Teoría de la conducción

Fig.7.6 Ley de Ohmns

Page 10: Actividad 2 unidad 1 c comb

voltaje aplicado entre sus extremos, teniendo en cuenta que la temperatura y demás condiciones se mantengan constantes.Hay que tener en cuenta que no se menciona la resistencia, sino que simplemente éste es el nombre dado a la constante de proporcionalidad involucrada.

Considerando la resistencia como el inverso de la constante m, la corriente como la variable y, y el voltaje como la variable dependiente x. De esta manera se establece una relación de proporcionalidad entre el voltaje y la corriente:

CONDUCTIVIDAD Y RESISTIVIDAD

La resistividad eléctrica de una sustancia mide su capacidad para oponerse al flujo de carga eléctrica a través de ella. Un material con una resistividad eléctrica alta (conductividad eléctrica baja), es un aislante eléctrico y un material con una resistividad baja (conductividad alta) es un buen conductor eléctrico.

La ley de Ohms, también la podemos escribir como:

Page 11: Actividad 2 unidad 1 c comb

RESISTENCIA

Sea un conductor homogéneo e isotrópico, de longitud L y de sección constante A (fig.6.6). Si se aplica una diferencia de potencial, el campo E es uniforme, (E=V/L) y la corriente es:

Despejando (V/I=R), e igualando con 7.5, obtenemos que la resistencia es proporcional a la resistividad del material y a su longitud, y es inversamente proporcional al área de su sección transversal.

Y si la sección transversal nos es constante, tenemos que:

Fig.7. 7 Resistencia electrica

Page 12: Actividad 2 unidad 1 c comb

RESISTIVIDAD Y TEMPERATURA

En algunos materiales como el grafito y los semiconductores, la resistividad disminuye con la temperatura. Por otra parte, en los metales, la resistividad aumenta con la temperatura. Esto se debe a que al calentar el material, se incrementa las amplitudes de vibración de los iones, lo cual disminuye la probabilidad de choques con los electrones libres. En el rango de temperaturas cercanas al ambiente la resistividad aumenta en forma lineal:

Siendo ρ0 (Ω.m) la resistividad a una temperatura T0 y en (0C-1) es una constante denominada coeficiente térmico de resistividad.

ENERGIA Y POTENCIA

ENERGIA : Cuando conectamos un equipo o consumidor eléctrico a un circuito alimentado por una fuente de fuerza electromotriz (F.E.M), como puede ser una batería, la energía eléctrica que suministra fluye por el conductor, permitiendo que, por ejemplo, una bombilla de alumbrado, transforme esa energía en luz y calor, o un motor pueda mover una maquinaria.

POTENCIA : Potencia es la velocidad a la que se consume la energía. Si la energía fuese un líquido, la potencia sería los litros por segundo que vierte el depósito que lo contiene. La potencia se mide en joule por segundo (J/seg) y se representa con la letra “P”. Un J/seg equivale a 1 watt (W), por tanto, cuando se consume 1 joule de potencia en un segundo, estamos gastando o consumiendo 1 watt de energía eléctrica.

Page 13: Actividad 2 unidad 1 c comb

A partir del concepto de energía calcularemos una ecuación de la potencia consumida en un circuito eléctrico.

ANALISIS

Recordemos que el trabajo está dado por:

Aplicando diferencial:

Como el potencial es constante dV = 0, así:

Y como la potencia es la variación de la energía respecto al tiempo, tenemos:

También la podemos expresar como:

RESISTENCIAS EN SERIES

Fig. 7.8 Energía Y Potencia

Page 14: Actividad 2 unidad 1 c comb

Cuando tenemos un conjunto de resistencias en serie como indica la fig.7.9, experimentalmente la corriente es la misma en cada resistencia, es decir:

CONCLUSIONES

El voltaje total se distribuye entre las resistencia del circuito.

De la ley de Ohms, V = IR.

Y como las corrientes son iguales, nos queda para la resistencia total:

RESISTENCIAS EN PARALELO

Cuando tenemos un conjunto de resistencias en paralelo como indica la fig. , experimentalmente se demuestra que:

CONCLUSIONES

Fig.7.9 Circuitos en serie

Page 15: Actividad 2 unidad 1 c comb

La corriente total se distribuye en cada resistencia del circuito.

De la ley de Ohms, I = V/R,

Y como los voltajes son iguales, nos queda para la resistencia total:

Fuente:

http://www.av.anz.udo.edu.ve/file.php/1/ElecMag/Capitulo%20VI/corrientelectrica.html

Densidad de Corriente EléctricaLa densidad de corriente eléctrica, es la relación que existe entre el valor de la Intensidad de corriente eléctrica que circula por un conductor y la sección geodinámico del mismo. Se Representa con la letra D

FORMULA

Fig.7.10 Circuitos en paralelo

Page 16: Actividad 2 unidad 1 c comb

D= Densidad de Corriente, (A/mm2)I= Intensidad de Corriente (A)S= Sección del Conductor (mm2)

La densidad de corriente en los conductores se limita reglamentariamente para evitar su excesivo recalentamiento por efecto Joule. La siguiente tabla muestra los valores máximos de densidad de corriente Admisible en nuestro país.

Sección en mm2 Grupo 1 Grupo 2 Grupo 30.75 16 201 11 15 191.5 10 12 152.5 8 10 124 6 8 106 5 7 910 4 6 716 4 20 6

Ejemplo Práctico

Por un conductor de 1 mm2 de diámetro circula una corriente de intensidad de 4 A el conductor se encuentra instalado en una instalación de interior. Calcular la sección del conductor y la densidad de corriente en el mismo.

Datos Fórmula Desarrollo Resultadod= 1 mm2 S= 3.14 x r2

D=I/SS= 3.14 x 0.25D= 4/0.785S= 0.785 mm2

D= 5.09D= ?

Page 17: Actividad 2 unidad 1 c comb

I= 4 AS= 0.785

La densidad de corriente es de 5.09 D

Fuente: http://www.oocities.org/encelec/fichas/2.html

2.3. Densidad de la corriente eléctricaEmilio todavía tiene en su mente lo que pasó con aquella bombilla. Ya sabe que la intensidad de la corriente eléctrica se mide en Amperios (A) y se empieza a preguntar cuántos A pudieron pasar por el cable ... Recuerda que los cables incluso quedaron "chamuscados".Ahora veremos un concepto que es la densidad de corriente eléctrica, dato muy importante para la elección de los cables eléctricos en viviendas o naves industriales, pues cada cable puede soportar una cantidad de electrones máxima por unidad de sección. Si pasaran más, éste acabaría calentándose demasiado pudiendo provocar un incendio...Terminemos este primer bloque de conceptos con la definición de densidad eléctrica:

La densidad de corriente, designada por el símbolo J, es la corriente media por unidad de área (sección trasversal) del conductor, es decir, suponiendo una distribución uniforme de la corriente:

En cuanto a sus unidades, J se mide en el S.I. en A/m2 pero es frecuente expresarlo en A/mm2 ya que, evidentemente, al tratarse de la sección de un conductor, es más manejable realizar la medición en mm2.

Page 18: Actividad 2 unidad 1 c comb

Fuente:

http://e-ducativa.catedu.es/44700165/aula/archivos/repositorio//2750/2952/html/23_densidad_de_la_corriente_elctrica.html

4.7 Densidad de potencia eléctrica para alumbrado (DPEA). Indice de la carga conectada para alumbrado por superficie de construcción; se expresa en W/m2.

Fuente:

http://dof.gob.mx/nota_detalle.php?codigo=2042919&fecha=15/04/2005