alg.y geom

51
1 UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR GUÍA DE ESTUDIO MATEMÁTICAS III (Álgebra y Geometría) Y + 4 = ( x + 4 ) 2 Elaborada por: Gpe. Xochitl Chávez Pérez Daniel Flores Ibarra Guadalupe Rosas Mercado Rocío Solís Ledesma Octubre de 2005 3 2 = x y

Transcript of alg.y geom

  • 1

    UNIVERSIDAD NACIONAL AUTNOMA DE MEXICO COLEGIO DE CIENCIAS Y HUMANIDADES

    PLANTEL SUR

    GUA DE ESTUDIO MATEMTICAS III

    (lgebra y Geometra)

    Y + 4 = ( x + 4 ) 2

    Elaborada por: Gpe. Xochitl Chvez Prez

    Daniel Flores Ibarra Guadalupe Rosas Mercado

    Roco Sols Ledesma

    Octubre de 2005

    32 += xy

  • 2

    INTRODUCCIN

    Este trabajo es una gua de estudio de Matemticas III, la cual esta dirigida a los estudiantes del Colegio que por diversos motivos no han aprobado la asignatura. Y tiene el propsito de auxiliarlos en la preparacin de su examen extraordinario.

    En el desarrollo de este trabajo se contemplan cinco unidades basadas en el programa de estudio vigente. 1) SOLUCIN DE SISTEMAS DE ECUACIONES LINEALES. 2) SISTEMAS DE COORDENADAS Y LUGARES GEOMTRICOS. 3) LA RECTA Y SU ECUACIN CARTESIANA. 4) ELIPSE, CIRCUNFERENCIA Y SUS ECUACIONES CARTESIANAS. 5) LA PARBOLA Y SU ECUACIN CARTESIANA.

    RECOMENDACIONES PARA EL BUEN USO DE ESTA GUIA. Para resolver algunos problemas es necesario que te apoyes con una

    calculadora cientfica. Comprueba que tus resultados estn correctos cotejndolos con los que

    se te presentan en algunos problemas. Si no llegaste a la solucin correcta de algn problema, trata de

    encontrar tus errores e intenta resolverlo otra vez. Estudia los temas de cada unidad apoyndote en la bibliografa

    propuesta al final. Procura resolver todas las preguntas y en todo caso te asesores con

    algn profesor. Y recuerda que:

    La perseverancia torna los anhelos en realidades.

    Los escollos slo sirven para forjar el espritu.

    (I.Ch.P.)

  • 3

    UNIDAD 1. SOLUCIN DE SISTEMAS DE ECUACIONES

    Propsitos:

    Ampliar el concepto de sistemas de ecuaciones y extender dos procedimientos algebraicos de solucin. Reafirmar el significado algebraico y geomtrico de la solucin de un sistema. Proporcionar una herramienta para el manejo del mtodo analtico.

    Ecuaciones equivalentes Se llaman ecuaciones equivalentes, a las ecuaciones que tienen las mismas soluciones y se obtienen multiplicando todos y cada uno de los trminos de un ecuacin por un nmero distinto de cero. Por ejemplo, si cada uno de los trminos de la ecuacin (Ec1) se multiplica por 5 se obtiene: 10x + 4y = 8 ... (Ec1) 5(10x) + 5(4y) = 5(8) 50x + 20y = 40 5(Ec1) Ejercicios 1 1. Obtn ecuaciones equivalentes a la ecuacin anterior Ec1, multiplicando por 2, 4, 3, 1/2 y 1/4.

    2. Comprueba que las ecuaciones que obtuviste son equivalentes sustituyendo x = 2, y = 3, pues es una solucin de la (Ec1).

    Combinacin lineal de dos ecuaciones Dado un sistema de ecuaciones se puede obtener una ecuacin sumando o restando dos ecuaciones del sistema u otra combinacin de ecuaciones equivalentes. Por ejemplo con el siguiente sistema:

    10x + 4y = 8....(Ec1) 5x + 3y = 4 ....(Ec2)

    La combinacin lineal 2(Ec1) + (Ec2) (El doble de la ecuacin 1 ms la ecuacin 2). 20x + 8y = 16 ....(2(Ec1)) 5x + 3y = 4 ....( Ec2) 25x + 11y = 20 ....(2(Ec1) + (Ec2))

  • 4

    La combinacin lineal de (Ec1) y (Ec2), es una ecuacin que tiene la misma solucin que las dos ecuaciones. Con otro ejemplo te quedar ms claro: La combinacin es 2(Ec1) + (3)( Ec2), (multiplica por 2 cada uno de los trminos de la ecuacin 1 y smalo trmino a trmino con el triple de cada uno de los trminos de la ecuacin 2. 20x + 8y = 16 ....(2(Ec1)) 15x + 9y = 12....(3(Ec2)) 35x + 17y = 28....(2(Ec1) + 3(Ec2))

    Un tercer ejemplo es la combinacin lineal:

    41 ( Ec1) + (2)( Ec2)

    multiplicamos la ecuacin 1 por

    41

    y multiplicamos por 2 la ecuacin 2 y lo

    sumamos trmino a trmino, como se escribe a continuacin.

    2.5x + y = 2....(

    41 ( Ec1))

    10x 6y = 8...(2(Ec2))

    7.5x 5y = 6....(

    41 ( Ec1) 2(Ec2))

    Ejercicios 2 Dado el sistema de ecuaciones, obtener las combinaciones lineales de los incisos:

    3x + 4y = 6 ....(Ec1) 2x y = 7......(Ec2)

    1) (EC1) + 3(EC2) 2) (EC1) (EC2) 3) (2)(EC1) + 3(EC2) 4) (1/2)(EC1) + 2(EC2) 5) (EC1) + 4(EC2)

  • 5

    Como obtener sistemas de ecuaciones equivalentes Los sistemas de ecuaciones equivalentes tienen las mismas soluciones, para obtenerlos se pueden hacer cualquiera de estas operaciones: 1. Se intercambian las ecuaciones.

    2. Se cambia una ecuacin por la ecuacin multiplicada por un nmero distinto de cero.*

    3. Se cambia una ecuacin por una de sus combinaciones lineales.

    En el siguiente ejemplo se aplica el mtodo de eliminacin de sistemas de ecuaciones equivalentes, para resolverlo. Para cada sistema se seala como fue el cambio de la ecuacin con respecto al sistema inmediato anterior.

    El ltimo sistema es triangular da explcito el valor de y = 80, usando lo que se conoce como la sustitucin regresiva tenemos:

    x + 3(80) = 300

    * Multiplicar una ecuacin por un nmero, implica multiplicar cada uno de los trminos por ese nmero.

    2x + y = 200 (Ec1) x + 3y = 300 (Ec2)

    x + 3y = 300 2x + y = 200

    2x 6y = 600 2x + y = 200

    x + 3y = 300 5y = 400

    x + 3y = 300 y = 80

    Intercambiamos renglones

    La (Ec1) la cambiamos por ( 2) (Ec1)

    (Ec2) la cambiamos por la combinacin (Ec1) + (Ec2)

    Cambiamos (Ec2)

    por ( 1/5) (Ec2)

    Cambios Sistemas equivalentes

  • 6

    x = 300 240

    x = 60

    La comprobacin la haremos en las dos ecuaciones iniciales, aunque es la solucin de todos los sistemas equivalentes que se obtuvieron. Sustituimos x = 60 y a y = 80 en:

    2x + y = 200 ..(Ec1) 2(60) + 80 = 200 x + 3y = 300 ..(Ec2) 60 + 3(80) = 300

    En el segundo ejemplo t ayudaras a completarlo

    Te dejamos algunos espacios para que los llenes con base en la operacin que proponemos, en el sistema equivalente posterior puedes revisar tus respuestas:

    El sistema equivalente resultante es:

    x + 2y = 3 y = 1/2

    Aplica la sustitucin regresiva y obtn el valor de x.

    x + 2y = 3 (Ec1) 3x + 4y = 8 (Ec2)

    ___x 6y = ___ 3x + 4y = 8

    x + 2y = 3 2y = ___

    x + ___y = ____ y = ____

    ( 3) (Ec1)

    (1/3)(Ec1) (Ec1) + (Ec2)

    (1/___ ) (Ec2)

    Cambios Sistemas equivalentes

  • 7

    x + 2 ( ____ ) = ____ x = 2 Comprueba en el sistema original que la solucin del sistema es x = 2, y = 1/2.

    Ejercicios 3 Resuelve los siguientes sistemas con el mtodo de eliminacin y sistemas de ecuaciones equivalentes

    2x + 3y = 8 3x + 2y = 4 x 2y = 10 2x + 4y = 16

    4x + 8y = 4 2x + 3y = 2 4x 2y = 4 3x + 2y = 5 3x + 4y = 20 3x = 3 + y

    Interpretacin Geomtrica Sabemos que cada una de las ecuaciones lineales con dos variables representa una recta. Un sistema de estas ecuaciones, puede representar dos rectas que se cortan o una nica recta o dos rectas paralelas.

    x + 2y = 2 ...(ec1) 2x y = 5 ...(ec2)

    - En cada caso completa los elementos que falten y grafica la ec2. -

    x 0 1 2 3

    (ec1) y 1 2 (ec2) y 3 1

    1) 2)

    3) 4) 5)

    Sugerencia: escrbela primero en orden.

  • 8

    Este sistema se le llama consistente y tiene una nica solucin.

    Existen otras dos posibilidades, te pedimos que identifiques cada grfica con su sistema y con las caractersticas del sistema (procede como antes). Relaciona con flechas el sistema, la grfica y sus caractersticas.

    x + 2y = 2 ...(ec1) x + 2y = 2 ...(ec1) 3x 6 y = 6...(ec2) 2x 4y = 4 ...(ec1)

    2 1 1 2 3 4 5 6 7

    2

    2

    4

    x

    y

    2 1 1 2 3 4 5 6 7

    2

    2

    4

    x

    y

    Sistema consistente con infinitas soluciones Sistema inconsistente sin solucin

  • 9

    Compara tus resultados con lo que sigue:

    Conclusiones:

    Cada una de las ecuaciones lineales en el sistema representa una recta.

    La solucin es el punto de interseccin de las rectas, cuando el sistema es consistente.

    La representacin grfica de ecuaciones equivalentes corresponde a la misma recta, el sistema es consistente y tiene infinitas soluciones.

    El sistema es inconsistente si no tiene solucin y las rectas son paralelas.

    Problema 3 Mara, Pedro y Luis fueron al establecimiento de Copias y Copias. Mara pidi 10 copias, 4 amplificaciones y 3 acetatos; Pedro pidi 5 copias, 2 amplificaciones y 1 acetatos y Luis 1 copia y 3 acetatos. Si pagaron $19, $8 y $9.60 respectivamente. Cunto cuesta cada copia, cada amplificacin y cada acetato?

    x es el precio de cada copia ($) y es el precio de cada amplificacin ($) z es el precio de cada acetatos ($)

    Qu ecuaciones representan la compra de Mara, Pedro y Luis? 10x + 4y + 3z = 19 (compra de Mara)(ec1) 5x + 2y + z = 8 (compra de Pedro)(ec2) x + 3z = 9.60 (compra de Luis)(ec3)

    Resolveremos ahora un sistema de 3x3, es decir 3 ecuaciones y 3 incgnitas, usando el mtodo de eliminacin.

    El objetivo es obtener un sistema equivalente triangular de la forma:

  • 10

    a1 x + b1 y + c 1 z = d 1 + b 2 y + c2 z = d2 + c3 z = d3

    Plantearemos las operaciones con las ecuaciones y t completaras el sistema equivalente. Intercambiamos la (ec1) por la (ec3).

    x + 3z = 9.60 5x + 2y + z = 8 _______________=_____

    Cambiamos la (ec2) por la combinacin ( 5) (ec1)

    + (ec2)

    y

    (ec3) por ( 10) (ec1) +

    (ec3).

    x + 3z = 9.60 2y 14 z = 40 ( 5) (ec1)

    + (ec2) __________=_______ ( 10) (ec1)

    + (ec3) Para que el coeficiente de y en la (ec2) se 1, se multiplica por que es el inverso multiplicativo de 2, coeficiente de y.

    x + 4z = 9.60 y ___ z = _____ (1/2 )

    (ec2) 4y 27z = 77

    El coeficiente de y es 4, el simtrico ( 4) lo usamos para multiplicar la (ec2), para

    la combinacin lineal siguiente ( 4) (ec2) + (ec3)

    x + 3z = 9.60 y 7 z = 20

    _______________=______ ( 4) (ec2) + (ec3)

    NOTA: Aunque pueden ser a1, b2 y c3 diferentes de 1 los buscaremos que sean uno, pues existe el mtodo de matrices en el que se emplean los unos.

  • 11

    2)

    Finalmente como el coeficiente de z es 1 en la tercera ecuacin, hemos conseguimos un sistema triangular equivalente.

    Revisa si coincidimos: x + 0y + 3z = 9.60

    y 7z = 20 z = 3

    Sustituye z en la ecuacin 2, luego sustituye a "y " y z en la ecuacin 1 (sustitucin regresiva). Se obtiene:

    Comprobamos en la ecuacin 1 original:

    10 (0.60) + 4(1) + 3(3) = 19 6+ 4 + 9 = 19

    Comprueba que tambin nos da una identidad en la ecuacin 2 y en la 3.

    Ya resolvimos el sistema de ecuaciones y la respuesta al problema es que las copias costaron $0. 60, las amplificaciones $1.00 y los acetatos $3.00. Ejercicios 4 Resuelve los siguientes sistemas de ecuaciones utilizando el mtodo de eliminacin y obtn el sistema triangular equivalente.

    2x 3y + 4z = 4 3x + 2y + 2z = 3 3x 3y + 6z = 3 x + 3y + 2z = 3 x + 2y 2z = 1 3y 2z = 10

    2x + y 2z = 7 x + 2y + 2z = 6 2x + 2y + 3z = 0 3y + 2z = 3 3x 3y + 6z = 21 2x + 4y 2z = 6

    x = 0.60, y = 1 y z = 3

    1)

    3) 4)

  • 12

    5) Resolver algunos problemas del capitulo 9 Sistemas de ecuaciones lineales del Barnett.

    Sistemas de ecuaciones No lineales

    Mtodo de sustitucin El principal mtodo para resolver los sistemas de una ecuacin lineal con otra no lineal, es el mtodo de sustitucin. En un ejemplo podrs entenderlo mejor.

    3x + y = 7...(ec1) y = ( x + 2) 2 + 3..(.ec2)

    Paso 1. Espejar de la ecuacin lineal una de las dos variables:

    y = 3x+ 7

    Paso 2. Sustituir en la ecuacin no lineal la variable despejada:

    3x + 7 = ( x + 2) 2 + 3

    Paso 3. Se desarrolla el cuadrado, se despeja y se simplifica:

    3x + 7 = x 2+ 4x +4 + 3 x 2+ x = 0 Paso 4. Se resuelve la ecuacin de segundo grado (por factorizacin, frmula general, etc.) x( x + 1) = 0 entonces x = 0 x = 1

    Paso 5. Se sustituyen los valores encontrados en alguna de las ecuaciones y se obtienen las soluciones.

    y = ( 0 + 2) 2 + 3 (ec2) entonces y = 7 y = ( 1 + 2) 2 + 3...(ec2) entonces y = 4

    La solucin al sistema de ecuaciones son los puntos ( 0, 7 ) y ( 1, 4 ). Lo cual se puede corroborar si se grafican ambas ecuaciones en un mismo plano cartesiano.

  • 13

    Ejercicios 5 Resuelve los siguientes sistemas de ecuaciones y haz la grfica:

    ( x + 1 ) 2 + ( y + 3 ) 2 = 100 (circunferencia con centro ( 1, 3) y radio 10)

    213

    4=

    xy . ( recta decreciente)

    y = x 2 (parbola con vrtice en el origen) x + y = 2 (recta creciente)

    y = x 2 + 4x (parbola con vrtice en el origen) 3x + y = 2 (recta creciente)

    ( x + 1 ) 2 + ( y 2 ) 2 = 25 (circunferencia con centro ( 1, 2) y radio 5) x 2y = 0 (recta creciente)

    Sistemas de ecuaciones No lineales ambas

    Puede emplearse el mtodo de eliminacin o el de sustitucin segn el sistema de ecuaciones. En este caso emplearemos el mtodo de eliminacin.

    5 4 3 2 1 1 2

    2

    4

    6

    8

    x

    y

    1)

    2)

    3)

    4)

  • 14

    x 2 + ( y + 3 ) 2 = 25

    2 72 2xy =

    Paso 1. Desarrollamos los cuadrados y ordenamos los trminos igualando a los trminos independientes:

    x 2 + y 2 + 6y + 9 = 25 x 2 + y 2 + 6 y = 16 x 2 + 2y = 7 x 2 + 2 y = 7

    Paso 2. Con la suma o resta eliminamos alguna de las incgnitas:

    y 2 + 8y = 9

    Paso 3. Resolver la ecuacin

    y 2 + 7y 9 = 0 por la frmula general

    ( )( )( )

    2

    1,28 8 4 1 9

    2 1y

    =

    y = 1 ; y = 9 Paso 4. Sustituir en alguna de las dos ecuaciones y despejar: x 2 + ( 1 + 3 ) 2 = 25 entonces x = 3 x 2 + ( 9 + 3 ) 2 = 25 en este caso no existen valores para x. Las soluciones son ( 3, 1 ) y ( 3, 1) Las grficas son:

    7 6 5 4 3 2 1 1 2 3 4 5 6 7

    8

    6

    4

    2

    x

    y

  • 15

    Ejercicios 6 Resuelve los siguientes sistemas de ecuaciones: 2x 2 + 3y 2 = 9 x 2 + y 2 = 5 x 2 + y 2 = 4 x 2 = 4 (y 2)

    16 x2 + y 2 = 25 x2 + y 2 = 9

    x2 + y 2 = 10 (x + 4 )2 + y 2 = 25

    Solucin a los ejercicios. Ejercicios 1

    20x + 8y = 16 ....2(Ec1) 40x + 16y = 32 ....4(Ec1) 30x 12y = 24 ....3(Ec1) 5x + 2y = 4 ....(1/2)(Ec1) 52

    x + y = 2 ....(Ec1) Ejercicios 2

    1) 9x + y = 15 ...(EC1) + 3(EC2) 2) x + 5y = 13 ... (EC1) (EC2) 3) 11y = 33... (2)(EC1) + 3(EC2)

    4) 112

    x = 11 ... (1/2)(EC1) + 2(EC2) 5) 11x = 22 ... (EC1) + 4(EC2)

    Ejercicios 3 1) x = 2, y = 4 2) x = 2, y = 5 3) x = 3, y = 2 4) x = 4, y = 2 5) x = 1, y = 0.

    Ejercicios 4 1) x = 1, y = 2, z = 1 2) x = 1, y = 2 , z = 2 3) x = 0, y = 3 , z = 2 4) x =7/3, y = 5/3, z = 4

    Ejercicios 5 1) (9, 9) 2) (1, 1) y ( 2, 4) 3) (2, 4) y ( 1, 5) 4) (4, 2) y ( 4, 2)

    Ejercicios 6 1) ( 3 , 1), ( 3 , 1), ( 3 , 1) y ( 3 , 1) 2) (2, 1) y ( 2, 1) 3) (1, 3), ( 1, 3), (1, 3) y ( 1, 3) 4) (0, 3) y ( 0, 3)

    1.

    4. 3.

    2.

  • 16

    UNIDAD 2. SISTEMAS DE COORDENADAS Y LUGARES GEOMTRICOS Propsitos.

    Percibirs a los sistemas de coordenadas como la nocin fundamental para poder realizar el estudio analtico de los lugares geomtricos.

    Identificars el enunciado de un problema, la estrategia que te permita obtener los parmetros esenciales de un lugar geomtrico o bien, vislumbrar un procedimiento alterno para obtener la ecuacin que los representa.

    2.1 Estudio analtico de un punto en el plano En el Sistema de coordenadas rectangulares (Plano Cartesiano).

    1. Considera los puntos A(8,6) y B(6,8), sin hacer dibujo alguno contesta: Cul de los dos est ms arriba del eje X?_______________________ Cul est ms a la derecha del eje Y?___________________________ 2. Escribe las coordenadas de un punto colocado entre C (7,6) y D (10,6). Escribe las coordenadas de otro punto colocado exactamente a 5 unidades por encima de D. 3. Sea un punto E (x, 10), donde x puede tomar cualquier valor. Elige un valor para x que cumpla con la condicin de que el punto resultante est ms cerca del eje Y que el punto F (5,10). Escoge otro valor para x de manera que el nuevo punto este ms lejos del eje Y que el punto G (7,10). 4. Cul es el punto que se encuentra colocado simtricamente respecto al eje X en referencia al punto F (5,10)? 5. Sea D (9,5), encuentra el punto H colocado a la mitad entre D y el eje X. Localiza un punto I por arriba de D colocado a una altura triple de la de D respecto al eje X.

    En el Sistema de coordenadas polares En lugar de fijar la posicin de un punto del plano en funcin de sus distancias a dos rectas perpendiculares es preferible, a veces, hacerlo en funcin de su distancia a un punto fijo y de la direccin con respecto a una recta fija que pase por este punto. Las coordenadas de un punto, en esta referencia, se llaman

  • 17

    coordenadas polares. Por ejemplo, Te has preguntado alguna vez qu es un radar, cmo funciona y para qu sirve? El radar es un dispositivo para detectar la presencia de objetos y determinar la direccin y distancia a que se encuentran. El radar se emplea como ayuda a la navegacin en barcos y aviones, en meteorologa y con fines militares para la localizacin de blancos. Los datos emitidos por la pantalla de un radar estn escritos en coordenadas polares (r, ), donde r es la distancia a la que se encuentra el objeto y nos indica en que direccin se encuentra. El punto fijo O se denomina polo y la recta fija OA se llama eje polar. Las coordenadas polares de un punto P se representan por (r,), siendo r la distancia OP y el ngulo AOP.

    La distancia r medida desde O hasta P es positiva. Igual que en trigonometra, el ngulo es positivo cuando se mide en sentido contrario al de las manecillas del reloj; r es positivo cuando se mide desde el polo al punto, y negativo en caso contrario.

    Consideremos al punto P(r,) y supongamos que el eje polar OX y el polo O son, respectivamente, el eje X y el origen de un sistema de coordenadas rectangulares. Sean (x,y) las coordenadas rectangulares del mismo punto P. En estas condiciones,

    x

    ytgarc

    yxr

    senryrx

    =

    +=

    =

    =

    ,

    ,

    ,cos

    22

    A

    P(r,) r

    O

    P(x,y) (r, )

    r

    x

    y

    X

    Y

    O

  • 18

    EJERCICIO RESUELTOS Transforma a coordenadas polares o rectangulares segn corresponda los siguientes puntos. 1. P(3,30). Solucin: Las coordenadas rectangulares de este punto se obtienen sustituyendo los valores de r = 3, = 30 en las expresiones: senryrx == ,cos , esto es,

    ( )5.1)5.0(3303

    6.2866.0330cos3===

    ===

    senyx

    Entonces las coordenadas rectangulares corresponden al punto (2.6,1.5). 2. Q(5,2) Solucin:

    Ahora usaremos las expresiones: x

    ytgarcyxr =+= ,22 , para convertir las

    coordenadas rectangulares en polares.

    '482180.214.052

    38.52942525 2222

    =====

    ==+=+=+=

    tgangtgangx

    ytgang

    yxr

    Por lo anterior, las coordenadas polares son (5.38, 2148)

    EJERCICIO PROPUESTOS Usando las relaciones convenientes transforma las siguientes coordenadas a polares o rectangulares segn corresponda. 3. (1,1) 4. ( 2,3) 5. ( 2,210) 6. (6,45) 7. (3, 4) 8. (4,150) 9. (8, 30) 10. (0,1)

    Respuestas:

    3. ( 2 , 45) 4. ( 13 ,12341) 5. (1.73, 1) 6. (4.24, 4.24) 7. (5, 12652) 8. ( 3.46, 2) 9. (6.93, 4) 10. (1,90)

  • 19

    2.2 Estudio analtico de un segmento rectilneo en el Plano Cartesiano - Distancia entre dos puntos La distancia d entre dos puntos

    ( )111 , yxP y ),( 222 yxP es ( )212212 )( yyxxd +=

    Por ejemplo, la distancia entre los puntos (3, 1) y (6, 3) es:

    ( ) ( ) unidadesd 5252423213236 ==+=++=

    EJERCICIOS PROPUESTOS 1. En los siguientes incisos encuentra la distancia entre cada par de puntos. Para cada segmento traza su grfica en un plano cartesiano. a) (3, 4) y (6, 0) b) (3, 5) y (3, 4) c) (1, 1) y (9, 7)

    d) (8, 7) y (3, 5) e) ( 4, 3) y (2, 5) 2. Comprueba que el tringulo cuyos vrtices son A(2, 1), B( 1, 3) y C( 1, 1) tiene un permetro igual a 12 u. 3. Demuestra que es issceles el tringulo que tiene por vrtices A( 2, 3), B( 4, 1) y C(3, 2). 4. Traza el cuadriltero cuyos vrtices son: (1, 2), (4, 5), (1, 5) y (4, 2). Calcula las longitudes de sus diagonales y comprueba que ellas son iguales. 5. Traza el tringulo de vrtices A(4, 2), B(0, 6) y C( 2, 2); dibjale las medianas y calcula sus longitudes. Recuerda que las frmulas para calcular las

    coordenadas del punto medio de un segmento son:

    2

    221

    21

    yyy

    xxx

    m

    m

    +=

    +=

    Respuestas: 1. a) 5 b) 9 c) 10 d) 13 e) 10 2. 5=

    ABd , 4=

    BCd , 3=ACd , por lo tanto el permetro es de 12 unidades.

    ),( 222 yxP

    ),( 111 yxP d

    12 yy

    12 xx

    X

    Y

  • 20

    5. D(2, 4) punto medio de AB; E( 1, 2) punto medio de BC; F(1, 0) punto medio de CA

    5=AE

    d ; 37=BF

    d ; 52=CDd

    - ngulo de inclinacin del segmento y concepto de pendiente Se llama ngulo de inclinacin (), o simplemente inclinacin de una recta al ngulo positivo ms pequeo que forma la direccin positiva de esta recta con la parte positiva del eje X. Por consiguiente, la inclinacin de una recta es un ngulo que est entre 0 y 180. La tangente trigonomtrica de la inclinacin es la pendiente de la recta,

    tgm = =12

    12

    xx

    yy

    ;

    cualesquiera que sean los cuadrantes en los que estn situados los puntos P1 y P2. Si dos rectas son paralelas, sus pendientes son iguales. Si dos rectas L1 y L2 son perpendiculares, la pendiente de una de ellas es igual al recproco de la pendiente de la otra con signo contrario. Esto es, llamando 1m a la

    pendiente de L1 y 2m a la de L2 se tiene 2

    11

    mm = , o bien, 121 =mm .

    EJERCICIOS RESUELTOS 1. Halla la pendiente de la recta que pasa por los puntos (5, 6) y ( 4, 2).

    Solucin: 94

    94

    5462

    =

    =

    =m

    2. Obtn la inclinacin de la recta que pasa por los puntos ( 1, 5) y (7, 3).

    Solucin: 188

    1753

    =

    =

    +

    =m luego = ang tg ( 1), por tanto =135

    ),( 111 yxP

    ),( 222 yxP

    12 xx

    12 yy

    O

    Y

    X

  • 21

    3. Prueba que la recta que pasa por los puntos ( 1, 5) y (6, 2) es paralela a la recta que pasa por ( 2, 4) y (5, 1). Solucin:

    73

    1652

    1 =+

    +=m

    73

    2541

    2 =+

    +=m

    como 21 mm = , luego las rectas son paralelas.

    4. Demuestra que el tringulo cuyos vrtices son A(5, 3), B(4, 4) y C(1, 0) es rectngulo. Solucin: Denotando por 1m , 2m y 3m las pendientes respectivas de AB, BC y AC,

    se tiene: 75434

    1 =

    +=m ;

    34

    4140

    2 =

    =m ; 43

    5130

    3 =

    +=m

    Como 143

    34

    =

    . Entonces BC y AC son perpendiculares y por consiguiente

    el tringulo es rectngulo en C. EJERCICIOS PROPUESTOS 1. Calcula el ngulo de inclinacin , de los segmentos determinados por cada uno de los pares de puntos que se dan: a) P1( 1, 3) y P2(5, 3) b) P1(2, 1) y P2( 2, 3) c) P1(5, 1) y P2(5, 3) 2. Los vrtices de un tringulo son A( 2, 3), B(3, 1) y C(7, 6), calcula la pendiente de cada uno de sus lados. 3. Una recta de pendiente 2 pasa por el punto P(6, 3). Si la abscisa de otro de sus puntos es 3, halla su correspondiente ordenada. 4. Demuestra que el cuadriltero cuyos vrtices son: A( 4, 2), B( 1, 2), C(7, 4) y D(0, 5) es un trapecio. Recuerda que un trapecio es un cuadriltero con slo un par de lados paralelos. Cmo son las pendientes de rectas paralelas?______ 5. Demuestra, aplicando el concepto de pendiente, que los puntos A(8, 6), B(4, 8) y C(2, 4) son los vrtices de u tringulo rectngulo. Respuestas: 1. a) = 45 b) = 135 c) = 90

    2. 54

    =ABm , 47

    =BCm , 31

    =ACm

    3. Ordenada igual a 15.

  • 22

    - Divisin de un segmento en una razn dada Consideremos los puntos ),( 111 yxP y ),( 222 yxP y la recta que determinan. Sea

    ),( yxP un tercer punto que divida al segmento en la razn rPP

    PP=

    2

    1. Como PP1 y

    2PP son del mismo sentido, dicha razn es positiva. Si el punto de divisin ),( yxP estuviera situado en la prolongacin del segmento, a uno u otro lado del mismo, la

    razn rPP

    PP=

    2

    1 sera negativa, ya que PP1 y 2PP tendran sentidos opuestos.

    Teniendo en cuenta los tringulos semejantes de la figura,

    rPP

    PPxx

    xx

    PNMP

    ==

    =

    2

    1

    2

    11

    Despejando x , de rxx

    xx=

    2

    1 )( 21 xxrxx = rxrxxx = 21

    12 xrxrxx +=+ 21)1( rxxrx +=+ r

    rxxx

    +

    +=

    121

    .

    Anlogamente, r

    ryyy

    +

    +=

    121

    .

    Si ),( yxP es el punto medio del segmento 21PP , 1=r y 221 xxx

    += ,

    221 yyy

    += .

    O

    Y

    X

    ),( 111 yxP

    ),( yxP

    ),( 222 yxP

    yy 2

    1yy xx 2

    1xx

  • 23

    EJERCICIOS RESUELTOS 1. Halla las coordenadas de un punto ),( yxP que divida al segmento determinado

    por )7,1(1P y )3,6(2 P en la razn 32

    =r .

    Solucin: Como la razn es positiva, PP1 y 2PP son del mismo sentido, por tanto,

    el punto ),( yxP est situado entre los puntos dados extremos del segmento.

    32

    2

    1==

    PPPP

    r

    35

    15

    35

    41

    321

    )6(321

    121

    ==

    +=

    +

    +=

    +

    +=

    r

    rxxx 3

    515

    35

    27

    321

    )3(327

    121

    ==

    =

    +

    +=

    +

    +=

    r

    ryyy

    El punto buscado es (3, 3). 2. Halla las coordenadas de un punto ),( yxP que divida al segmento

    determinado por )1,2(1 P y )4,3(2 P en la razn 38

    =r

    Solucin: Como la razn es negativa, PP1 y 2PP son de sentido opuesto, con lo

    que el punto ),( yxP ser exterior al segmento 21PP . 38

    2

    1==

    PPPP

    r

    ( )6

    530

    35

    82

    381

    3382

    121

    ==

    =

    +

    +

    =

    +

    +=

    r

    rxxx

    ( )7

    535

    35

    335

    353

    321

    381

    4381

    121

    ==

    =

    +=

    +

    +

    =

    +

    +=

    r

    ryyy

    Por lo que el punto buscado es (6, 7).

    3. El extremo de un dimetro de una circunferencia de centro )1,4(1 =P es )6,2(2 =P . Halla las coordenadas ),( yxP del otro extremo.

  • 24

    Solucin:

    21

    2

    1==

    PPPP

    r como PP1 y 2PP son de sentido opuesto, la razn r es negativa.

    ( )10

    211

    2214

    121

    =

    +

    +

    =

    +

    +=

    r

    rxxx

    ( )4

    211

    6211

    121

    =

    +

    +

    =

    +

    +=

    r

    ryyy

    EJERCICIOS PROPUESTOS 1. Halla las coordenadas de un punto P(x, y) que divida al segmento que

    determinan ),( 111 yxP = y ),( 222 yxP = en la razn 2

    1

    PPPP

    r = .

    a) 12),4,1(),3,4( 21 = rPP b) 3

    1),3,3(),3,5( 21 = rPP

    c) 52),2,3(),3,2( 21 = rPP d) 7

    2),4,7(),3,0( 21 =rPP

    2. Sabiendo que el punto (9, 2) divide al segmento que determinan los puntos

    )8,6(1P y ),( 222 yxP en la razn 73

    =r , Halla las coordenadas de 2P .

    3. El segmento que une el punto A( 2, 1) con el punto B(3, 3); se prolonga hasta C. Sabiendo que BC = 3 AB, determina las coordenadas del punto C. Respuestas:

    1. a)

    35

    ,2 , b)

    23

    ,3 , c)

    711

    ,

    74

    d)

    513

    ,

    514

    .

    2. (16, 12). 3. C(18, 15) 2.3 Estudio analtico de algunos lugares geomtricos en el Plano Cartesiano LOS DOS PROBLEMAS FUNDAMENTALES DE LA GEOMETRA ANALTICA SON:

    1. Dada una ecuacin, hallar el lugar geomtrico que representa. 2. Dado un lugar geomtrico definido por determinadas condiciones, hallar

    su ecuacin matemtica.

  • 25

    LUGAR GEOMTRICO o grfica de una ecuacin de dos variables es una lnea, recta o curva, que contiene todos los puntos, y solo ellos, cuyas coordenadas satisfacen la ecuacin dada. El primer problema de la Geometra Analtica, que acabamos de mencionar, es que dada la ecuacin de un lugar geomtrico construir la grfica que corresponde a dicho lugar. Se procede en primer trmino a elaborar una tabla, asignando valores arbitrarios a una de las variables para obtener, de este modo, el valor o valores de la otra. Elaborada la tabla, se sitan los puntos que tienen la propiedad comn expresada por la ecuacin y se unen por una recta o curva si procede. De esta manera, se tiene la grfica del lugar geomtrico de la ecuacin dada. Tambin es importante calcular las intersecciones con los ejes, que son las distancias (positivas o negativas) desde el origen hasta los puntos en los que la lnea del lugar corta a los ejes coordenados. Para calcular la interseccin con el eje x se hace 0=y en la ecuacin dada y se despeja la variable x . De igual manera, para obtener la interseccin con el eje y , se hace 0=x y se despeja y . EJERCICIOS RESUELTOS Representa Grficamente el lugar geomtrico de las ecuaciones siguientes: 1. y = 2x + 3

    El lugar geomtrico es una recta Veamos las intersecciones con los ejes. Si 0=x entonces 3)0(2 +=y esto implica que 3=y , es decir, el punto de interseccin con el eje y es en el punto ( )3,0 .

    x y 2 1

    0 3 1 5

    Tabla ( )3,0

    0,

    23

  • 26

    Si 0=y entonces 032 =+x esto implica que 23

    ,32 == xx , es decir, el punto

    de interseccin con el eje x es el punto

    0,

    23

    .

    2) y = x2 + 4x

    El lugar geomtrico es una parbola Intersecciones con los ejes: Si 0=x , 0);0(402 =+= yy , esto nos indica que la parbola interseca a los ejes en el origen. Si ,0=y ;0)4(;042 =+=+ xxxx esto es, 40 == xx . EJERCICIOS PROPUESTOS Construye las grficas de las ecuaciones siguientes: 1) 53 += xy 2) 1223 =+ yx 3) 016162 = yx Respuestas: 1) Recta 2) Recta 3) Parbola El otro problema fundamental de la Geometra Analtica consiste en encontrar la ecuacin del lugar geomtrico, que corresponde a una serie de puntos que tienen una propiedad comn. EJERCICIOS RESUELTOS 1) Halla la ecuacin del lugar geomtrico de los puntos equidistantes de

    )3,2(A y )1,3( B . Solucin: Sea ( )yxP , el punto mvil.

    x y 5 5 4 0 2 4

    0 0 1 5

    Tabla

  • 27

    El lugar geomtrico del punto debe cumplir la condicin PBPA = , es decir,

    ( ) ( ) ( ) ( )2222 1332 ++=++ yxyx Elevando al cuadrado ambos miembros

    ( ) ( ) ( ) ( )2222 1332 ++=++ yxyx Desarrollando y simplificando resulta:

    03810 =+ yx

    Esta es la ecuacin de la mediatriz del segmento que une los puntos dados.

    2) Obtn el lugar geomtrico de los puntos ( )yxP , cuya distancia al punto fijo )1,2( C sea igual a 5.

    Distancia 5=PC , es decir, ( ) ( ) 512 22 =++ yx Elevando al cuadrado tenemos ( ) ( ) 2512 22 =++ yx Desarrollando 251244 22 =++++ yyxx

    Simplificando 0202422 =++ yxyx

    Este lugar geomtrico es una circunferencia de centro (2, 1) y de radio 5. EJERCICIOS PROPUESTOS

    1. Encuentra la ecuacin de la circunferencia con centro (0, 3) y radio 3. 2. Un punto se mueve de tal manera que sus distancias a los puntos

    A(5, 4) y B( 3, 2) es siempre constante. Obtn la ecuacin del lugar geomtrico de dicho punto.

    3. Halla la ecuacin del lugar geomtrico de los puntos P(x, y) equidistantes del punto fijo f(3, 2) y del eje y .

    Respuestas:

    1. 0622 =++ yyx

    2. 734 = yx

    3. 013642 =+ xyy

  • 28

    UNIDAD 3 LA RECTA Y SU ECUACION CARTESIANA

    Propsitos: Reafirmar el conocimiento del mtodo de la Geometra Analtica, encontrando ecuaciones de rectas, avanzar en la solucin analtica de problemas afines.

    RECTA Definicin. Es el lugar geomtrico de todos los puntos P (x, y) tales que si tomamos al azar dos puntos )( 1,11 yxP y ),( 222 yxP el valor de

    12

    12

    xx

    yym

    =

    siempre permanece constante.

    PENDIENTE Se define a la pendiente de una recta como la tangente del ngulo de inclinacin. Y se designa por la letra m

    PARALELISMO Y PERPENDICULARIDAD

    Dos rectas con pendientes 21 mym son paralelas, s 21 mm =

    Dos rectas con pendientes 21 mym son perpendiculares, s 121 = mm es decir:

    21

    1m

    m =

    ECUACIN DE LA RECTA PUNTO - PENDIENTE

    Dado que se conoce un punto y el valor de la pendiente 12

    12

    xx

    yym

    = despejando obtenemos:

    )( 11 xxmyy =

    La ecuacin de la recta de la forma punto pendiente

  • 29

    Requisitos para obtener la ecuacin de una recta. 1. Pendiente 2. Un punto

    Ejemplo 1 Calcula la ecuacin de la recta que pasa por los puntos A(2, 4) , B ( 1, 2) Primero . Graficaremos la recta

    Segundo . Calcularemos la pendiente de la recta

    12

    12

    xx

    yym

    =

    32

    32

    2142

    =

    =

    =m

    Tercero Calculamos la ecuacin de la recta utilizando la ecuacin punto pendiente Tomando la pendiente calculada y cualquiera de los dos puntos

    Abscisa al origen

    Ordemada al origen

  • 30

    2263)1(2)2(3

    ))1((322

    )( 11

    +=

    +=

    =

    =

    xyxy

    xy

    xxmyy

    Simplificando y ordenando tenemos 2x 3y +8 =0

    ngulo de inclinacin de la recta Si la pendiente es igual a

    32

    La tangente ser igual 32

    = 0.66

    Su ngulo de inclinacin ser 29'253342.3366.0tan === ang

    ECUACIN DE LA RECTA EN SU FORMA SIMTRICA Con los datos de la recta anterior . Para obtener la ecuacin de la recta en su forma simtrica se tiene que calcular las coordenadas al origen de la recta. As si la recta es: 2x 3y + 8 =0

    Para calcular las coordenadas al origen recurrimos a las siguientes ecuaciones Abscisa al origen

    Ac

    a

    = 428

    =

    =a la coordenada ser ( 4 , 0)

    Ordenada al origen

    Bcb =

    38

    38

    =

    =a la coordenada ser (0, )38

  • 31

    ECUACIN DE LA RECTA EN SU FORMA SIMTRICA

    1=+by

    a

    x

    Con los datos anteriores tendremos que:

    1

    384

    =+

    yx simplificando 18

    34

    =+yx

    RECTAS PARALELAS Y PERPENDICULARES Si queremos calcular las ecuaciones de las rectas perpendiculares y paralelas a la recta dada.

    Ejemplo Queremos la ecuacin de la recta paralela y perpendicular a la recta L1 5x 2y +4 =0 que pasen por el punto P(2,7)

    1 Obtenemos la pendiente de la recta dada

    m = 25

    25

    =

    =

    BA

    Como las rectas paralelas tienen la misma pendiente, la pendiente de la recta paralela (L2) a la recta 5x 2y+4=0 es 2

    52 =m

    Como sabemos que la recta paralela pasa por el punto P (2, 3 ) utilizamos la ecuacin Pendiente Punto para obtener la ecuacin de la recta paralela en su forma general

    01625)2(5)3(2

    )2(253

    )( 11

    =

    =+

    =+

    =

    yxparalelarectaxy

    xy

    xxmyy

  • 32

    La ecuacin de la recta perpendicular a la recta dada Pendiente de la recta perpendicular es inversa y negativa

    As que 52

    3 =m

    Y queremos que pase por el punto P (2, 3 )

    01152)2(2)3(5

    )2(523

    )( 11

    =++

    =+

    =+

    =

    yxlarperpendicurectaxy

    xy

    xxmyy

    Ejercicios 1.- Grafica y encuentra la ecuacin de la recta que:

    a) Pasa por el punto (1,5) y tiene pendiente m=2. b) Pasa por ( 6, 3) y tiene un ngulo de inclinacin de 45. c) Su pendiente m = 3 y su interseccin con el eje Y es 2. d) Pasa por los puntos (4,2) y ( 5,7). e) Su interseccin con X es en 2 y con Y en 3. Soluciones: a) 2x y+3=0, b) x y+3=0, c) 3x+y+2=0, d) 5x + 9y 38=0, e) 3x 2y 6=0.

    2. En cada uno de los siguientes incisos, encuentra: La pendiente de la recta. El ngulo de inclinacin de la recta que determinan los dos puntos, haga el

    dibujo. a) ( 1, 4), (3, 6) b) (0,0), ( 6,7) c) ( 2, 5), (6,4) d) (3,7), (3, 5) e) (3, 6), ( 7, 6) f) (2, 4), (2,3)

  • 33

    3-Demuestra que los tringulos dados por las coordenadas de sus vrtices son rectngulos.

    a) H(0,9) , P( 4, 1) , T(3,2) b) L( 2,8) , D( 6,1) , R(0,4)

    4.-Halla la ecuacin simtrica de la recta que pasa por los puntos C ( 3, 1) y D (2, 6). (Solucin: 1

    44=

    +

    yx ).

    5.-Enuncia la condicin de paralelismo y encuentra la ecuacin de la recta que pasa por el punto R( 6,3) y es paralela a la recta que determinan los puntos N( 1,6) y G(4, 7). (Solucin: 13x + 5y + 63 = 0) 6.-Da la condicin para que dos rectas sean perpendiculares y encuentra la ecuacin de la mediatriz del segmento A( 4, 8 ) y B( 3 , 5 ). (Solucin: 7x + 13y 23 = 0) 7.-Halla la ecuacin de la mediatriz del segmento que los ejes coordenados determinan en la recta cuya ecuacin es 4x + 5y 40 = 0 (Solucin: 5x 4y 9 = 0) 8.-Halla el rea del tringulo rectngulo formado por los ejes coordenados y la recta que tiene como ecuacin 5x+4y+20=0. (Solucin: A = 10 u2) 9.-Halla la ecuacin de la recta que tiene como pendiente m = 4 y pasa por el punto de interseccin de las rectas 2x + y 8 = 0 y 3x 2y +9 = 0. (Solucin: 4x+y 10=0) 10.-En el tringulo de vrtices A ( 2,1), B (4,7) y C (6, 3). Halla:

    a) Las ecuaciones de sus lados. b) La ecuacin de la recta que pasa por A y es paralela al lado BC. c) Las ecuaciones de las medianas y su punto de interseccin, llamado

    Baricentro. d) Las ecuaciones de sus mediatrices y su punto de interseccin llamado

    Circuncentro. Soluciones:

    a) AB: x y+3=0, BC: 5x+y 27=0, AC: x+2y=0. b) 5x+y+9=0. c) (8/3, 5/3). d) (10/3,5/3).

  • 34

    UNIDAD 4 CIRCUNFERENCIA, ELIPSE Y SUS ECUACIONES CARTESIANAS Propsitos: Reafirmar el mtodo analtico al obtener ecuaciones de la elipse y la circunferencia encontrando ecuaciones de circunferencia y elipse ampliando el conocimiento de curvas y la solucin analtica de problemas euclidianos.

    CIRCUNFERENCIA Definicin Es el lugar geomtrico de un punto que se mueve en el plano de tal manera que su distancia a un punto fijo es siempre constante. El punto fijo es el centro de la circunferencia y la distancia constante se llama radio. Ecuacin Ordinaria de la Circunferencia La ecuacin de la circunferencia cuyo centro es el punto (h, k) y cuyo radio es la constante r es:

    Clculo de la ecuacin de la circunferencia Ejemplo Calcula la ecuacin de la circunferencia que pasa por el punto (3, 5 ) y su centro se encuentra en el punto ( 1, 2) Para calcular el radio sustituimos el centro y el punto por el que pasa la circunferencia.

  • 35

    r

    r

    r

    r

    rkyhx

    =

    =

    =+

    =+++

    =+

    6565

    4916)25()13()()(

    2

    2

    222

    222

    Tomando el valor del radio sustituimos el centro en la ecuacin y encontramos la ecuacin cartesiana de la circunferencia

    generalformasuennciacircunfereladeecuacinyxyxyyxx

    ordinariaformasuennciacircunfereladeecuacinyxrkyhx

    06042654412

    )65()2()1()()(

    22

    22

    222

    222

    =+++

    =+++++

    =+++

    =+

    Ejercicios 1.- Halla la ecuacin de la circunferencia que: a) Tiene su centro en C( 3, 5) y su radio es 7. b) Los extremos de uno de sus dimetros son los puntos (2,3) y ( 4,5) c) Su centro es el punto C(7, 6) y pasa por (2,2). d) Pasa por los puntos (0,0), (3,6), (7,0). e) Pasa por los puntos (2, 2), ( 1,4), (4,6). f) Pasa por los puntos (4, 1), (0, 7), ( 2, 3).

    Soluciones: a) ( x + 3 )2 + ( y + 5 )2 = 49; b) ( x + 1 )2 + ( y 4 )2 = 10; c) ( x 7 )2 + ( y + 6 )2 = 89; d) x2 + y2 7x 4y= 0; e) 6x2 + 6y2 32x 25y 34 = 0; f) 7x2 +7 y2 22x +52y +21 = 0

  • 36

    CLCULO DE LOS PARMETROS DE LA CIRCUNFERENCIA EJEMPLO Calcula el centro y radio de la circunferencia

    Ejercicios

    1.-A partir de la siguiente ecuacin halla el centro y radio. Grafica la circunferencia, si existe. a) 2x2 + 2y2 10x + 6y 15 = 0 , b) 36x2 + 36y2 + 48x 108y + 97 = 0 , c) x2 +y2 8x + 6y + 29 = 0 (Soluciones: a) C (5/2, 3/2), r= 4; b) Un punto P( 2/3,3/2), r=0; c) No existe el lugar geomtrico. )

    2.- Encuentra la ecuacin de la tangente a la circunferencia en el punto P( 2, 5) con centro en C(4,3). (Solucin: 3x + 4y + 26 = 0)

    3.- Encuentra la ecuacin de la recta tangente en el punto de tangencia P(1,3), al crculo con centro C( 1, 1). (Solucin: x + 2y 7 = 0) 4.- Halla la ecuacin de la recta tangente a la circunferencia

    x2 + y2 + 2x 2y 39 = 0, en el punto de tangencia P(4 ,5). (Solucin: 5x + 4y 40 = 0)

    40)4,2(tan

    40)4()2(

    164201684428

    2420

    288

    244

    010422dim

    0208422

    22

    22

    2222

    22

    22

    22

    =

    =+++

    ++=+++++

    +

    +=

    +++

    ++

    =+++

    =+++

    rCtoloporyx

    osfactorizamyyxx

    yyxx

    cuadradosscompletamoyordenamosyxyx

    entretodoosdiviyxyx

  • 37

    5.- Halla la ecuacin de la recta tangente a la circunferencia

    10x2 + 10y2 30x + 20y 100 = 0, en el punto de tangencia P(5,2). (Solucin:7x + 6y 47 = 0)

    6.- La ecuacin de la circunferencia es (x 4)2 + (y 3)2 = 20. Halla la ecuacin de la recta tangente a este crculo en el punto de tangencia P(6,7). (Solucin: x + 2y 20 = 0)

    7.- Halla la ecuacin de la circunferencia de radio 5 y cuyo centro es el punto de interseccin de las rectas 3x 2y 24 = 0 y 2x + 7y + 9 = 0.

    (Solucin: x2 + y2 12x + 6y + 20 = 0 )

    ELIPSE

    Definicin Es un lugar geomtrico que describe un punto que se mueve en un plano tal que la suma de sus distancias a dos puntos fijos llamados focos es siempre igual a una constante.

    Partes de la elipse.

    x

    y

    0

    focos

    Lado Recto Lado RectoCentro

    Vrtice VrticeEje Mayor = 2a

    Polo o covrtice

    Eje Menor=2b

  • 38

    Ecuacin general de la elipse

    Ax2 + Cy2 + Dx + Ey + F = 0

    Caractersticas:A C y Positivos

    ba

    c F

    a2 = b2 + c2

    F

    a

    x

    0

    Relacin entre los parmetros de la elipse

    a2 = b2 + c2

    x0

    c

    b

    a

    yRelacin entre los parmetros de la elipse

  • 39

    a

    ce

    a

    bRLL ==22

    ..

    x

    0

    Lado recto y excentricidad

    Ecuacin cannica de la elipse C (0,0) eje mayor en el eje x

    1by

    a

    x2

    2

    2

    2

    =+

    x

    y

    0

  • 40

    Ecuacin cannica de la elipse C(0,0) eje mayor en el eje y

    x0

    122

    2

    2

    =+bx

    a

    y

    Ecuacin cannica de la elipse C (h,k),eje mayor paralelo al el eje y

    1b

    )hx(a

    )ky(2

    2

    2

    2

    =

    +

    x

    y

    0

  • 41

    Ecuacin cannica de la elipse C (h,k), eje mayor paralelo al el eje x

    1)()( 22

    2

    2=

    +

    bky

    a

    hx

    x

    y

    0

    Ejemplo. Calcula la ecuacin de la elipse si sus vrtices se encuentran en las coordenadas ( 3,7 ) y ( 3, 1) y la longitud de su lado recto es 2 Como los vrtices se encuentran sobre el eje focal y las coordenadas 3 se repiten el eje focal es paralelo al eje y por lo tanto la ecuacin que utilizaremos ser

    1)()( 22

    2

    2=

    +

    a

    kyb

    hx

    El centro es el punto medio entre los dos vrtices por lo tanto C( 3,3)

    La distancia entre los dos vrtices es igual a 8 y esto es igual a la longitud del eje mayor de tal forma que : 2 a = 8, a = 4 , a2 = 16

    Si la longitud del lado recto es igual a 2

    82

    422

    2

    2

    =

    =

    ==

    bb

    acomoa

    b

    Por lo tanto la ecuacin de la elipse en su forma ordinaria ser

    116

    )3(4

    )3( 22=

    ++ yx

  • 42

    Ejercicios

    1.- Encuentra la ecuacin de la elipse que:

    a) Tiene sus vrtices en los puntos (4,0) y ( 4,0) y sus focos en (3,0) y ( 3,0). b) Tiene sus vrtices en los puntos (0,6) y (0, 6) y sus focos (0,4) y (0, 4). c) Sus focos son (2,0) y ( 2,0) y su excentricidad es 2/3. d) Tiene sus focos en (3,8) y (3,2) y la longitud de su eje mayor es 10. e) Sus vrtices son ( 3, 1) y (5, 1) y su excentricidad es . f) Sus vrtices son (2,6) y (2, 2) y la longitud de su lado recto es 2.

    Soluciones:

    a) 1716

    22

    =+yx ;

    b) 13620

    22

    =+yx

    ;

    c) 159

    22

    =+yx ;

    d) 25x2 +16 y2 150x 160y +225 = 0; e) 7x2 +16 y2 14x +32y 89 = 0; f) 4x2 + y2 16x 4y+ 4 = 0.

    2.- Cules de las siguientes ecuaciones tienen como grfica a una elipse:

    a) 2x2 + 2y2 3x + 4y 5 = 0 b) x2 + 3y2 x 6 = 0 c) 3x2 2y2 + 4x 3y = 0 d) 2x2 + 5y2 +6x = 0 e) 4x2 + 3y 8 = 0 f) 5x2 + y2 +3x 2y 4 = 0 g) 1

    9)2(

    4)3( 22

    =

    ++

    yx h) 1

    164

    22=+

    yx

    i) 12

    )6(4

    )2( 22=

    +

    + yx j) (x + 2)2 + (y 3)2 = 1

    k) 14

    )3( 22=+

    + yx l) 14

    )3( 22=

    yx

    Solucin: a, b, f, g, h, k

    3.- De las siguientes ecuaciones que tienen como grfica una elipse, cules son elipses horizontales y cules son verticales.

    a) 116

    )2(4

    )3( 22=

    + yx

    b) 14

    )2(16

    )3( 22=

    yx

  • 43

    c) 12

    )6(4

    )2( 22=

    +

    + yx d) 1

    4)3()2(

    22

    =

    +y

    x

    e) 16

    )3(4

    22=

    +yx

    f) 124

    22=+

    yx

    g) 2x2 + 3y2 4x + 12y = 0 h) 3x2 y2 + 4x + y + 6 = 0

    i) x2 + 2y2 + 3x 8 = 0 j) x2 + 2y2 3x 6 = 0

    Respuestas: Horizontal: b, c, f, g, i, j Vertical: a, d, e, h

    4.- Para cada una de las siguientes elipses encuentra: Las coordenadas del centro La medida del eje mayor La medida del eje menor

    a) 116

    )3(4

    )3( 22=

    ++

    yx b) 1

    16)3(

    9)3( 22

    =

    ++ yx

    c) 14

    )8(25

    )2( 22=

    ++

    yx d) 1

    4)4()3(

    22

    =

    ++

    yx

    e) 1416

    22=+

    yx f) 1)2(

    42

    2=++ yx

    g) 136

    )5( 22=+

    yx

    Respuestas:

    Coordenada del centro Eje mayor Eje menor a) (3, 3) 8 4 b) ( 2, 3) 8 6 c) (2, 8) 10 4 d) (3, 4) 4 2 e) (0, 0) 8 4 f) (0, 2) 4 2 g) (5, 0) 12 2 h) (1, 2) 6 4.9 i) (0, 2) 4 2 j) (2, 3) 8.48 6.92

  • 44

    UNIDAD 5 LA PARBOLA Y SU ECUACION CARTESIANA Propsitos:

    Consolidar el manejo de los mtodos analticos a travs del estudio de la ecuacin de la parbola. Avanzar en el reconocimiento de formas, estructuras y procedimientos, al resolver diversos problemas que involucren tanto a la parbola como a otros lugares geomtricos ya vistos.

    Definicin: Lugar geomtrico de los puntos que equidistan de un punto llamado foco F y de una recta fija r llamada directriz. Cualquier punto P de la parbola cumple: d (P, F ) = d (P, r )

    Elementos de una parbola

    Ecuaciones de la parbola Ver temas de geometra Analtica pags. 669-680 Swokowski

    Directriz

    lado recto

    F

    Eje d

    e sim

    etra

    Vrtice

    P

  • 45

    Ecuacin Ordinaria de la parbola con sus elementos

    Ecuacin Grfica Eje de simetra Foco directriz

    ( x h) 2 = 4p( y k)

    x

    y

    x = h ( h, k + p) y = k p

    ( x h) 2 = 4p( y k) x

    y

    x = h ( h, k p) y = k + p

    ( y k) 2 = 4p( x h)

    x

    y

    y = k ( h+ p, k ) x = h p

    ( y k) 2 = 4p( x h) x

    y

    y = k ( h p, k ) x = h + p

  • 46

    EJERCICIOS 1. Cules de las siguientes ecuaciones tienen como grfica a una parbola?

    a) 04532 22 =++ xyx k) 82 = xy b) 06322 =+ xyx l) )4(62 = yx d) 0322 =+ yxx m) 84 = xy e) 042 =++ yx n) 1063 2 += xxy f) 25)3()2( 22 =++ yx o) 43 += yx

    h) 1164

    22

    =+yx

    p) 52 = yx

    i) )2(5)2( 2 += xy

    j) 19

    )3(4

    )2( 22=

    ++

    yx

    Respuesta: d, e. g, i, k, l, n, p 2. De las siguientes ecuaciones que tienen como grfica una parbola,

    Cules son parbolas horizontales y cuales son verticales?

    a) )4(82)3( = yx k) xxy 43 2 +=

    b) )3(42)2( += xy l) 52 = xy c) )5(6)4( 2 +=+ yx m) 64 2 += yx d) )2(16)3( 2 =+ xy n) 83 2 = yx e) 05342 2 =++ yxx f) 0322 =+ yxx g) 0832 =++ yyx h) 0632 2 =+ yx I) )4(32 += xy j) yx 4)5( 2 = Respuesta: Verticales: a, c, e, f, j, k, l Horizontales: b, d, g, h, i, m, n

  • 47

    3. De las siguientes ecuaciones que tienen como grfica una parbola vertical, Cules se abren hacia arriba y cuales hacia abajo? a) )6(3)2( 2 = yx m) 843 2 += xxy b) )6(3)2( 2 += yx n) 1062 2 + xx c) )5(2)6( 2 =+ yx o) 6)2(4 2 += xu d) )5(42 += yx p) 3)5(3 2 += xy e) yx 62 = f) yx 5)3( 2 =+ g) 4)8( 2 = yx h) 2)1()8(3 += xy i) 0242 =+ yxx j) 0843 2 =+ yx k) 034 2 =++ yxx l) 062 2 = yxx

    Respuesta: abren hacia arriba: a, c, g, h, i, j, l, m, o Abren hacia abajo: b, d, e, f, k, n, p

    4. De las siguientes ecuaciones que tienen como grfica una parbola

    horizontal Cules abren hacia la derecha y cuales hacia la izquierda?

    a) )8(5)3( 2 =+ xy l) 23yx = b) xy 62 = m) 3)2(3 2 += yx c) xy 4)2( 2 =+ n) 2)3(2 = yx d) )4(7)5( 2 += xy o) 1)2(4 2 ++= yx e) )3(62 += xy f) 2)5(2 =+ yx g) 2)6()4(3 += yx h) 04523 2 =++ yyx i) 0632 =++ yyx j) 06432 2 =++ yyx k) 0542 =+ xyx Respuesta: abren hacia la derecha: a, b, c, f, g, i, k, l, n

    Abren hacia la izquierda: d, e, h, j, m, o

  • 48

    5. De cada una de las siguiente parbolas encuentra: Las coordenadas del vrtice La distancia del vrtice al foco Lo que mide el lado recto

    a) )4(8)3( 2 += yx b) )1(4)3( 2 =+ xy c) )1(6)2( 2 += xy d) )4(12)1( 2 +=+ yx e) )3(22 = yx f) yx 4)2( 2 =+ g) xy 22 = h) 08242 =++ yxx i) 0862 2 =+ yx j) 0824 2 =+ yyx

    Respuesta Vrtice Distancia vrtice-foco Longitud del lado recto a) (3, 4) 2 8 b) (1, 3) 1 4 c) ( 1, 2) 1.5 6 d) ( 1, 4) 3 12 e) (0, 3) 0.5 2 f) ( 2, 0) 1 4 g) (0, 0) 0.5 2 h) ( 2, 2) 0.5 2 i) (0, 2) .75 3 j) (2, 2) .5 4

  • 49

    6. Encuentra las coordenadas del foco de cada una de las siguientes parbolas. En cada caso dibuja la parbola

    a) )4(8)2( 2 = yx b) )1(4)3( 2 +=+ yx c) )5(2)4( 2 = xy d) )2(6)2( 2 +=+ xy e) )8(62 = yx f) xy 42 = g) yx 32 = h) 08242 =++ yxx i) 0862 2 =+ yx j) 0624 2 =+ yyx

    Respuestas: a) (2, 6) b) ( 3, 0) c) (4.5, 4) d) ( 3.5, 2) e) (0, 6.5) f) ( 1, 0) g) (0, 0.75) h) ( 2, 2.5) i) (0, 2.75) j) (1.5, 2) 7. Escribe la ecuacin en la forma ordinaria de cada una de la parbola con las

    siguientes caractersticas. En cada caso dibuja la parbola

    a) Vrtice (1, 2) foco (1, 5) b) Vrtice (1, 2) foco ( 3, 2) c) La parbola es horizontal y abre hacia la derecha, vrtice (1, 3) lado recto mide 8. d) Vrtice (0, 1), foco (0, 2) e) Vrtice (2, 3), foco (6, 3) f) La parbola es horizontal y abre hacia la izquierda, foco (2, 4), la distancia del foco al vrtice es 2. i) La parbola es vertical y abre hacia arriba, la distancia del vrtice al foco es 4, vrtice (2, 5)

  • 50

    8) Escribe la ecuacin en la forma general para cada una de las siguientes parbolas. En cada caso dibuja la parbola.

    a) La directriz de la parbola es la recta 01 =y , y su foco el punto (4, 3)

    b) La directriz de la parbola es la recta 05 =+x , y su vrtice es el punto (0, 3)

    c) Pasa por los puntos A (0, 0), B (8, 4), y C (3, 1) y el eje es paralelo al eje de las abscisas.

    d) Pasa por el punto A (3, 3), tiene como vrtice el punto (4, 1) y eje la recta 01 =+y .

    Respuestas:

    a) 024882 =++ yxx b) 09622 =+ yoxy c) 022 =+ yxy d) 015242 =++ yxy

  • 51

    BIBLIOGRAFIA

    o BARNET, R. Preclculo. lgebra, Geometra Analtica y Trigonometra. Mxico, LIMUSA, 1998.

    o CABALLERO, C. Arqumedes et al. Geometra Analtica. Mxico, ESFINGE, 2003.

    o FILLOY, E. Y HITT F. Geometra Analtica. Mxico, Iberoamricana, 2002.

    o KINDLE H. JOSEPH. Geometra Analtica. Mxico, McGraw-Hill, 1970. Coleccin Shaums

    o LEHMANN CH. Geometra Analtica. Mxico, Limusa, 1990.

    o LEITHOLD, L. lgebra. Mxico, HARLA, 1980.

    o REES, P. y SPARKS, F. lgebra. Mxico, McGraw-Hill, 1994.

    o SWOKOWSKI, E. y COLE, A. lgebra y Trigonometra con Geometra Analtica. Mxico, Santillan, 2003.