Ana Rovayo17

13
Ana Rovayo 17-dec-2008 Trabajo personal sobre lo anterior RESUMEN GENERAL DE LA FOTOSÍNTESIS 1 INTRODUCCIÓN Fotosíntesis, proceso en virtud del cual los organismos con clorofila, como las plantas verdes, las algas y algunas bacterias, capturan energía en forma de luz y la transforman en energía química. Prácticamente toda la energía que consume la vida de la biosfera terrestre —la zona del planeta en la cual hay vida— procede de la fotosíntesis. Una ecuación generalizada y no equilibrada de la fotosíntesis en presencia de luz sería: CO 2 + 2H 2 A → (CH 2 ) + H 2 O + H 2 A El elemento H 2 A de la fórmula representa un compuesto oxidable, es decir, un compuesto del cual se pueden extraer electrones; CO 2 es el dióxido de carbono; CH 2 una generalización de los hidratos de carbono que incorpora el organismo vivo. En la gran mayoría de los organismos fotosintéticos, es decir, en las algas y las plantas verdes, H 2 A es agua (H 2 O); pero en algunas bacterias fotosintéticas, H 2 A es anhídrido sulfúrico (H 2 S). La fotosíntesis con agua es la más importante y conocida y, por tanto, será la que tratemos con detalle. La fotosíntesis se realiza en dos etapas: una serie de reacciones que dependen de la luz y son independientes de la temperatura, y otra serie que dependen de la temperatura y son independientes de la luz. La velocidad de la primera etapa, llamada reacción lumínica, aumenta con la intensidad luminosa (dentro de ciertos límites), pero no con la temperatura. En la segunda etapa, llamada reacción en la oscuridad, la velocidad aumenta con la temperatura (dentro de ciertos límites), pero no con la intensidad luminosa.

Transcript of Ana Rovayo17

Page 1: Ana Rovayo17

Ana Rovayo 17-dec-2008

Trabajo personal sobre lo anterior

RESUMEN GENERAL DE LA FOTOSÍNTESIS

1 INTRODUCCIÓN

Fotosíntesis, proceso en virtud del cual los organismos con clorofila, como las plantas verdes, las algas y algunas bacterias, capturan energía en forma de luz y la transforman en energía química. Prácticamente toda la energía que consume la vida de la biosfera terrestre —la zona del planeta en la cual hay vida— procede de la fotosíntesis.

Una ecuación generalizada y no equilibrada de la fotosíntesis en presencia de luz sería:

CO2 + 2H2A → (CH2) + H2O + H2A

El elemento H2A de la fórmula representa un compuesto oxidable, es decir, un compuesto del cual se pueden extraer electrones; CO2 es el dióxido de carbono; CH2 una generalización de los hidratos de carbono que incorpora el organismo vivo. En la gran mayoría de los organismos fotosintéticos, es decir, en las algas y las plantas verdes, H2A es agua (H2O); pero en algunas bacterias fotosintéticas, H2A es anhídrido sulfúrico (H2S). La fotosíntesis con agua es la más importante y conocida y, por tanto, será la que tratemos con detalle.

La fotosíntesis se realiza en dos etapas: una serie de reacciones que dependen de la luz y son independientes de la temperatura, y otra serie que dependen de la temperatura y son independientes de la luz. La velocidad de la primera etapa, llamada reacción lumínica, aumenta con la intensidad luminosa (dentro de ciertos límites), pero no con la temperatura. En la segunda etapa, llamada reacción en la oscuridad, la velocidad aumenta con la temperatura (dentro de ciertos límites), pero no con la intensidad luminosa.

2 REACCIÓN LUMÍNICA

La primera etapa de la fotosíntesis es la absorción de luz por los pigmentos. La clorofila es el más importante de éstos, y es esencial para el proceso. Captura la luz de las regiones violeta y roja del espectro y la transforma en energía química mediante una serie de reacciones. Los distintos tipos de clorofila y otros pigmentos, llamados carotenoides y ficobilinas, absorben longitudes de onda luminosas algo distintas y transfieren la energía a la clorofila A, que termina el proceso de transformación. Estos pigmentos accesorios amplían el espectro de energía luminosa que aprovecha la fotosíntesis.

La fotosíntesis tiene lugar dentro de las células, en orgánulos llamados cloroplastos que contienen las clorofilas y otros compuestos, en especial enzimas, necesarios para realizar las distintas reacciones. Estos compuestos están organizados en unidades de cloroplastos

Page 2: Ana Rovayo17

llamadas tilacoides; en el interior de éstos, los pigmentos se disponen en subunidades llamadas fotosistemas. Cuando los pigmentos absorben luz, sus electrones ocupan niveles energéticos más altos, y transfieren la energía a un tipo especial de clorofila llamado centro de reacción.

En la actualidad se conocen dos fotosistemas, llamados I y II. La energía luminosa es atrapada primero en el fotosistema II, y los electrones cargados de energía saltan a un receptor de electrones; el hueco que dejan es reemplazado en el fotosistema II por electrones procedentes de moléculas de agua, reacción que va acompañada de liberación de oxígeno. Los electrones energéticos recorren una cadena de transporte de electrones que los conduce al fotosistema I, y en el curso de este fenómeno se genera un trifosfato de adenosina o ATP, rico en energía. La luz absorbida por el fotosistema I pasa a continuación a su centro de reacción, y los electrones energéticos saltan a su aceptor de electrones. Otra cadena de transporte los conduce para que transfieran la energía a la coenzima dinucleotido fosfato de nicotinamida y adenina o NADP que, como consecuencia, se reduce a NADPH2. Los electrones perdidos por el fotosistema I son sustituidos por los enviados por la cadena de transporte de electrones del fotosistema II. La reacción en presencia de luz termina con el almacenamiento de la energía producida en forma de ATP y NADPH2.

3 REACCIÓN EN LA OSCURIDAD

La reacción en la oscuridad tiene lugar en el estroma o matriz de los cloroplastos, donde la energía almacenada en forma de ATP y NADPH2 se usa para reducir el dióxido de carbono a carbono orgánico. Esta función se lleva a cabo mediante una serie de reacciones llamada ciclo de Calvin, activadas por la energía de ATP y NADPH2. Cada vez que se recorre el ciclo entra una molécula de dióxido de carbono, que inicialmente se combina con un azúcar de cinco carbonos llamado ribulosa 1,5-difosfato para formar dos moléculas de un compuesto de tres carbonos llamado 3-fosfoglicerato. Tres recorridos del ciclo, en cada uno de los cuales se consume una molécula de dióxido de carbono, dos de NADPH2 y tres de ATP, rinden una molécula con tres carbonos llamada gliceraldehído 3-fosfato; dos de estas moléculas se combinan para formar el azúcar de seis carbonos glucosa. En cada recorrido del ciclo, se regenera la ribulosa 1,5-difosfato.

Por tanto, el efecto neto de la fotosíntesis es la captura temporal de energía luminosa en los enlaces químicos de ATP y NADPH2 por medio de la reacción en presencia de luz, y la captura permanente de esa energía en forma de glucosa mediante la reacción en la oscuridad. En el curso de la reacción en presencia de luz se escinde la molécula de agua para obtener los electrones que transfieren la energía luminosa con la que se forman ATP y NADPH2. El dióxido de carbono se reduce en el curso de la reacción en la oscuridad para convertirse en base de la molécula de azúcar. La ecuación completa y equilibrada de la fotosíntesis en la que el agua actúa como donante de electrones y en presencia de luz es:

6 CO2 + 12H2O → C6H12O6 + 6O2 + 6H2O

4. CLOROPLASTO

Page 3: Ana Rovayo17

Cloroplasto, orgánulo citoplasmático, que se encuentra en las células vegetales y en las de las algas, donde se lleva a cabo la fotosíntesis (proceso que permite la transformación de energía luminosa en energía química).

Los cloroplastos son orgánulos con forma de disco, de entre 4 y 6 micrómetros de diámetro. Aparecen en mayor cantidad en las células de las hojas, lugar en el cual parece que pueden orientarse hacia la luz. En una célula puede haber entre 40 y 50 cloroplastos, y en cada milímetro cuadrado de la superficie de la hoja hay 500.000 cloroplastos.

Cada cloroplasto está recubierto por una membrana doble: la membrana externa y la membrana interna. En su interior, el cloroplasto contiene una sustancia básica denominada estroma, la cual está atravesada por una red compleja de discos conectados entre sí, llamados tilacoides. Muchos de los tilacoides se encuentran apilados como si fueran platillos; a estas pilas se les llama grana. Las moléculas de clorofila, que absorben luz para llevar a cabo la fotosíntesis, están unidas a los tilacoides. La energía luminosa capturada por la clorofila es convertida en trifosfato de adenosina (ATP) mediante una serie de reacciones químicas que tienen lugar en los grana. Los cloroplastos también contienen gránulos pequeños de almidón donde se almacenan los productos de la fotosíntesis de forma temporal.

En las plantas, los cloroplastos se desarrollan en presencia de luz, a partir de unos orgánulos pequeños e incoloros que se llaman proplastos. A medida que las células se dividen en las zonas en que la planta está creciendo, los proplastos que están en su interior también se dividen por fisión. De este modo, las células hijas tienen la capacidad de producir cloroplastos.

En las algas, los cloroplastos se dividen directamente, sin necesidad de desarrollarse a partir de proplastos. La capacidad que tienen los cloroplastos para reproducirse a sí mismos, y su estrecha similitud, con independencia del tipo de célula en que se encuentren, sugieren que estos orgánulos fueron alguna vez organismos autónomos que establecieron una simbiosis en la que la célula vegetal era el huésped.

5. CLOROFILA

Clorofila, pigmento que da el color verde a los vegetales y que se encarga de absorber la luz necesaria para realizar la fotosíntesis, proceso que transforma la energía luminosa en energía química. La clorofila absorbe sobre todo la luz roja, violeta y azul, y refleja la verde.

La gran concentración de clorofila en las hojas y su presencia ocasional en otros tejidos vegetales, como los tallos, tiñen de verde estas partes de las plantas. En algunas hojas, la clorofila está enmascarada por otros pigmentos. En otoño, la clorofila de las hojas de los árboles se descompone, y ocupan su lugar otros pigmentos.

La molécula de clorofila es grande y está formada en su mayor parte por carbono e hidrógeno; ocupa el centro de la molécula un único átomo de magnesio rodeado por un grupo de átomos que contienen nitrógeno y se llama anillo de porfirinas. La estructura recuerda a la del componente activo de la hemoglobina de la sangre.

De este núcleo central parte una larga cadena de átomos de carbono e hidrógeno que une la molécula de clorofila a la membrana interna del cloroplasto, el orgánulo celular donde tiene lugar la fotosíntesis. Cuando la molécula de clorofila absorbe un fotón, sus electrones se excitan y saltan a un nivel de energía superior (ver fotoquímica) esto inicia en el cloroplasto una compleja serie de reacciones que dan lugar al almacenamiento de energía en forma de enlaces químicos.

Page 4: Ana Rovayo17

Hay varios tipos de clorofilas que se diferencian en detalles de su estructura molecular y que absorben longitudes de onda luminosas algo distintas. El tipo más común es la clorofila A, que constituye aproximadamente el 75% de toda la clorofila de las plantas verdes. Se encuentra también en las algas verdeazuladas y en células fotosintéticas más complejas. La clorofila B es un pigmento accesorio presente en vegetales y otras células fotosintéticas complejas; absorbe luz de una longitud de onda diferente y transfiere la energía a la clorofila A, que se encarga de transformarla en energía química. Algunas bacterias presentan otras clorofilas de menor importancia.

6. MELVIN CALVIN

Melvin Calvin (1911-1997), químico y premio Nobel estadounidense, célebre por sus estudios sobre la fotosíntesis y por su trabajo con determinadas plantas que producen combustible. Calvin nació en Saint Paul (Minnesota) y estudió en la Escuela de Minería y Tecnología de Michigan (actualmente Universidad Tecnológica de Michigan), en la Universidad de Minnesota y en la Universidad de Manchester, en Inglaterra. Se incorporó al departamento de química de la Universidad de California, en Berkeley, en 1937. Durante la década de 1940, comenzó sus experimentos sobre la fotosíntesis. Al utilizar carbono 14 radiactivo, Calvin pudo detectar la secuencia de reacciones químicas producida por las plantas al convertir dióxido de carbono gaseoso y agua en oxígeno e hidratos de carbono, proceso conocido como ciclo de Calvin. Por este descubrimiento le fue concedido en 1961 el Premio Nobel de Química.

www.monografias .com

La fotosíntesis es un proceso que ocurre en dos fases. La primera fase es un proceso que depende de la luz (reacciones luminosas), requiere la energía directa de la luz que genera los transportadores que son utilizados en la segunda fase. La fase independiente de la luz (reacciones de oscuridad), se realiza cuando los productos de las reacciones de luz son utilizados para formar enlaces covalentes carbono-carbono (C-C), de los carbohidratos. Las reacciones oscuras pueden realizarse en la oscuridad, con la condición de que la fuente de energía (ATP) y el poder reductor (NADPH) formados en la luz se encuentren presentes. Investigaciones recientes sugieren que varias enzimas del ciclo de Calvin, son activadas por la luz mediante la formación de grupos -SH ; de tal forma que el termino reacción de oscuridad no es del todo correcto. Las reacciones de oscuridad se efectúan en el estroma; mientras que las de luz ocurren en los tilacoides.

Page 5: Ana Rovayo17

REACCIONES DE LUZ

En los procesos que dependen de la luz (reacciones de luz), cuando un fotón es capturado por un pigmento fotosintético, se produce la excitación de un electrón, el cual es elevado desde su estado basal respecto al núcleo a niveles de energía superior, pasando a un estado excitado. Después de una serie de reacciones de oxido-reducción, la energía del electrón se convierte en ATP y NADPH. En el proceso ocurre la fotólisis del agua, la que se descompone según la ecuación:

H2 O + cloroplasto + fotón à 0,5 O2 + 2 H+ + 2 electrones.

En la reducción de un mol de CO2 se utilizan 3ATP y 2 NADPH, que a través de una serie de reacciones enzimáticas producen los enlaces C-C de los carbohidratos, en un proceso que se efectúa en la oscuridad. En las reacciones de oscuridad, el CO2 de la atmósfera (o del agua en organismos fotosintéticos acuáticos/marinos) se captura y reduce por la adición de hidrógeno (H+ ) para la formación de carbohidratos [ ( CH2 O )] . La incorporación del dióxido de carbono en compuestos orgánicos, se conoce como fijación o asimilación del carbono. La energía usada en el proceso proviene de la primera fase de la fotosíntesis. Los seres vivos no pueden utilizar directamente la energía luminosa, sin embargo a través de una serie de reacciones fotoquímicas, la pueden almacenar en la energía de los enlaces C-C de carbohidratos, que se libera luego mediante los procesos respiratorios u otros procesos metabólicos.

FOTOSISTEMAS

En la fotosíntesis cooperan dos grupos separados de pigmentos o fotosistemas, que se encuentran localizados en los tilacoides. Muchos organismos procariotes solamente tienen el fotosistema I (es el más primitivo desde el punto de vista evolutivo).

Page 6: Ana Rovayo17

Los organismos eucariotes poseen los fotosistemas I y II. El fotosistema I está asociado a las formas de clorofila a, que absorbe a longitudes de onda de 700 nm ( P700 ), mientras que el fotosistema II tiene un centro de reacción que absorbe a una longitud de onda de 680 nm ( P680 ). Cada uno de estos fotosistemas se encuentra asociado a polipeptidos en la membrana tilacoidal y absorben energía luminosa independientemente. En el fotosistema II, se produce la fotólisis del agua y la liberación de oxígeno; sin embargo ambos fotosistemas operan en serie, transportando electrones, a través de una cadena transportadora de electrones. En el fotosistema I se transfieren dos electrones a la molécula de NADP+ y se forma NADPH, en el lado de la membrana tilacoidal que mira hacia el estroma.

2.10 FACTORES AMBIENTALES Y FOTOSINTESIS.

Page 7: Ana Rovayo17

CO2

La cantidad de CO2 es determinante del rendimiento, a pesar de que algunas reacciones de la fotosíntesis pueden realizarse en su ausencia, sin embargo, sin este gas sencillamente no habría síntesis de carbohidratos. La concentración de CO2 en la atmósfera no es optima para la fotosíntesis, en la practica agrícola se utiliza una adición artificial de CO2 gaseoso, bajo condiciones de iluminación constante, para aumentar la tasa fotosintética y con esta el rendimiento en la producción de materias biológicas.

AGUA

El agua además de ser materia prima de la fotosíntesis, participa como reactivo en otras reacciones del metabolismo. Los componentes del agua en forma de iones (OH) y (H) son recombinados para formar otra vez moléculas de agua. En las plantas superiores el agua en el exterior de las células tiene la función de medio de transporte mediante el cual las sales llegan desde las raíces a los demás órganos de la planta.

LUZ

Sin luz no hay fotosíntesis, esta requiere de la luz en términos de intensidad y de calidad de la radiación. Con un incremento de la intensidad lumínica aumenta la intensidad fotosintética (ver gráfico) primero en forma lineal, luego disminuye suavemente y por ultimo alcanza un valor constante, es decir la capacidad fotosintética esta saturada de luz. Este valor de saturación es alcanzado por las diferentes especies con diferente velocidad. En plantas heliófilas esto ocurre después de llegar a intensidades de radiación altas y en plantas umbrófilas esta saturación se alcanza rápidamente, es decir se requieren intensidades de luz bajas.

TEMPERATURA

En la figura se puede apreciar la importancia de este factor para la fotosíntesis en intensidades lumínicas bajas y altas. Para el primer caso la intensidad fotosintética permanece casi constante (la luz es en este caso el factor limitante), para el segundo caso hay un incremento de la fotosíntesis con el aumento de la temperatura dentro de un rango definido. Si se sobrepasa este rango hay un descenso de la actividad fotosintética, el mecanismo se daña entonces por calor excesivo.

De la dependencia de la fotosíntesis de los factores luz y temperatura, se concluye que la fotosíntesis no es un proceso constante, se compone de un conjunto de reacciones fotoquímicas que dependen de la luz y de una serie de reacciones enzimáticas dependientes de la temperatura. Estas últimas se hacen evidentes en el estado de saturación de luz punto en el cual un aumento de la temperatura aumenta la intensidad fotosintética.

Con luz débil la temperatura no influye casi en la fotosíntesis, es decir solo el sistema de reacciones fotoquímicas es activo o sea, este complejo es indiferente a la temperatura.

El transporte, la industria, la deforestación, la agricultura y otras actividades humanas, están provocando un aumento de la concentración atmosférica de CO2 (aprox. ppm por año) y de otros gases como el metano. La acumulación de estos gases tiende a calentar la atmósfera, lo cual podría conducir, a cambios regionales o globales que afectarían parámetros como la

Page 8: Ana Rovayo17

temperatura, las precipitaciones, la humedad del suelo y el nivel del mar.

Se sabe que el CO2 produce un incremento inmediato de la tasa de la fotosíntesis, especialmente en las plantas C3; sin embargo cuando las plantas crecen continuamente con CO2 elevado, tienen lugar cambios bioquímicos que disminuyen la capacidad fotosintética de la hoja, así los grandes incrementos iniciales de la fotosíntesis con alta concentración de CO2 no suelen mantenerse tan elevados cuando pasan semanas o meses. Este fenómeno se conoce como aclimatación de la fotosíntesis.

La aclimatación a largo plazo de la fotosíntesis al CO2 no permite que las plantas puedan expresar al máximo su potencial fotosintético, lo que se ha relacionado con la acumulación de carbohidratos y la reducción de la concentración de enzimas fotosintéticas clave, como la rubisco, que frecuentemente se observa en hojas crecidas con alto CO2, por lo cual las hojas presentan una reducción en el contenido de N y un aumento de la relación C/N.

Existen dos razones para justificar la aclimatación de la fotosíntesis; la planta puede no ser capaz de usar todos los carbohidratos adicionales que la fotosíntesis a alto CO2 produce y, por lo tanto, una reducción de la actividad de las fuentes puede ocurrir. Además la rubisco se requiere en cantidades menores a alto CO2 para realizar tasas de fotosíntesis similares a las de CO2 ambiente.

Sin embargo, las conclusiones de Van Helmont eran demasiado amplias. El siguiente avance en nuestro conocimiento sobre la nutrición vegetal provino de estudios de combustión, un tema que intrigaba no sola mente a los alquimistas medievales, sino también a sus sucesores, que establecieron los fundamentos de la química moderna. Uno de los problemas fascinantes acerca de la combustión era que, de alguna manera, "dañaba" el aire. Por ejemplo, si se hacía arder una vela en un recipiente cerrado, la llama pronto se extinguiría, si luego se colocaba un ratón -en este recipiente, moriría.

Uno de los que se interesaban en los cambios producidos en el aire por la combustión era Joseph Priestley (1733-1804), un clérigo y químico inglés. El 17 de agosto de 1771, Priestley "puso un ramito de menta en el aire en que había ardido una vela de cera y encontró que el 27 del mismo mes otra vela podía arder en el mismo aire". Priestley creyó, según su informe, que accidentalmente había descubierto un método de restablecer el aire que había sido dañado por la combustión de velas. El "restaurador que emplea la naturaleza para este propósito -dijo-- es la vegetación". Priestley extendió sus observaciones y mostró rápidamente que el aire "restablecido" por la vegetación no era "en absoluto inconveniente para un ratón".

Estos experimentos ofrecieron la primera explicación lógica de cómo el aire permanecía "puro" y era capaz de mantener la vida a pesar de la combustión por incontables incendios y de la respiración de muchos animales. Cuando Priestley fue premiado con una medalla por su descubrimiento, la inscripción decía en parte:

"por estos descubrimientos estamos seguros de que ningún vegetal crece en vano.., sino que limpia y purifica nuestra atmósfera".

Los informes de Priestley acerca de que las plantas purificaban el aire fueron de gran interés para los químicos, pero pronto suscitaron críticas, porque los experimentos no pudieron ser confirmados. De hecho, cuando Priestley trató de repetir los experimentos personalmente, no obtuvo los mismos resultados. En la actualidad pensamos que debe de haber trasladado su

Page 9: Ana Rovayo17

equipo a un rincón oscuro de su laboratorio: dado que la velocidad de fotosíntesis depende de la intensidad de luz, por lo tanto, la cantidad de oxígeno desprendido debió ser menor.

Fue un médico holandés, Jan Ingenhousz (1730-1799), quien finalmente confirmó el trabajo de Priestley. Encontró que la purificación ocurre solamente en presencia de la luz solar. Las plantas durante la noche o en la sombra, comunicó, "contaminan el aire que las rodea, arrojando un aire dañino para los animales". Observó también que solamente las partes verdes de las plantas restablecían el aire y, sobre la base de experimentos control, que "el sol de por sí no tiene poder para enmendar el aire sin la concurrencia de las plantas".

Mientras Ingenhousz desarrollaba sus experimentos con plantas, Antoine Lavoisier (1743-1794) llevaba a cabo los experimentos que establecieron las bases de la química moderna. Entre los muchos descubrimientos de Lavoisier, los que tuvieron más impacto sobre los estudios de los procesos vegetales se relacionaban con los intercambios gaseosos que ocurren cuando los animales respiran. Trabajando con el matemático P. S. Laplace (1749-1827), Lavoisier encerró a un cobayo durante unas 10 horas en una jarra que contenía oxígeno y midió el dióxido de carbono producido. Midió también la cantidad de oxígeno consumido por un hombre en actividad y durante el reposo. Con estos experimentos pudo mostrar que la combustión de compuestos de carbono con oxígeno es la fuente real del calor animal y que el consumo de oxígeno se incrementa durante el trabajo físico. "La respiración es simplemente una combustión lenta de carbono y de hidrógeno, similar en todos los aspectos a lo que ocurre en una lámpara o vela encendida y, desde este punto de vista, los animales que respiran son en realidad cuerpos combustibles que arden y se consumen."

El trabajo de Ingenhousz amplió la carrera prematuramente terminada de Lavoisier, quien fue guillotinado el 8 de mayo de 1794 durante la Revolución Francesa, (al juez que presidía el caso se le atribuye el haber dicho: "La República no tiene necesidad de sabios"). Adoptando rápidamente las ideas de Lavoisier acerca de los gases, Ingenhousz propuso la hipótesis de que la planta no intercambiaba simplemente "buen aire" por "mal aire", haciendo de este modo al mundo habitable para la vida animal. Durante las horas de luz solar, sugirió, una planta absorbe el carbono del dióxido de carbono, "arrojando al mismo tiempo sólo el oxígeno libre y manteniendo el carbono para sí como alimento".

Nicholas Theodore de Saussure (1767-1845) mostró posteriormente que volúmenes iguales de CO2 y de O2 se intercambian durante la fotosíntesis y que la planta retiene en verdad el carbono. Mostró también que, durante la fotosíntesis, la planta ganaba más peso que el que podía acumularse por el carbono incorporado como dióxido de carbono. En otras palabras, el carbono en la materia seca de las plantas proviene del dióxido de carbono pero, con igual importancia, el resto de la materia seca, con excepción de los minerales del suelo, proviene del agua. Así fueron identificados todos los componentes: dióxido de carbono, agua y luz, y resultó posible escribir la ecuación fotosintética general.

Con estos descubrimientos se inició la comprensión de un proceso muy importante para la vida el "CICLO DEL CARBONO" www.virtual.unal.edu.co/cursos/ciencias/2000051/lecciones/cap02/02_10.htm

www. bio-cl.iespana.es/bio-cl/foto4.htm