Análisis computacional no lineal de estructuras de acero ...

94
Escuela de Ingeniería Civil en Obras Civiles “ANÁLISIS COMPUTACIONAL NO LINEAL DE ESTRUCTURAS DE ACERO, INCORPORANDO AISLADORES SÍSMICOS DE COMPORTAMIENTO LINEAL Y NO LINEAL EN SU BASE” Memoria para optar al Título de Ingeniero Civil en Obras Civiles Profesor Patrocinante : Sr. José Soto M. Ingeniero Civil M. Sc. Eng. Civil Profesor Copatrocinante : Sr. Julio Lopetegui T. Ingeniero Civil, Doctor en Ingeniería Profesor Examinador : Sr. Adolfo Castro B. Ingeniero Civil M. Sc. Eng. Civil EDUARDO JAVIER PELDOZA ANDRADE VALDIVIA, 2002

Transcript of Análisis computacional no lineal de estructuras de acero ...

Page 1: Análisis computacional no lineal de estructuras de acero ...

Escuela de Ingeniería Civil en Obras Civiles

“ANÁLISIS COMPUTACIONAL NO LINEAL DE

ESTRUCTURAS DE ACERO, INCORPORANDO AISLADORES

SÍSMICOS DE COMPORTAMIENTO LINEAL Y NO LINEAL

EN SU BASE”

Memoria para optar al Título de Ingeniero Civil en Obras Civiles

Profesor Patrocinante : Sr. José Soto M. Ingeniero Civil M. Sc. Eng. Civil

Profesor Copatrocinante : Sr. Julio Lopetegui T.

Ingeniero Civil, Doctor en Ingeniería

Profesor Examinador : Sr. Adolfo Castro B.

Ingeniero Civil M. Sc. Eng. Civil

EDUARDO JAVIER PELDOZA ANDRADE VALDIVIA, 2002

Page 2: Análisis computacional no lineal de estructuras de acero ...

AGRADECIMIENTOS

Quisiera aprovechar este espacio para agradecer primero que nada a Dios, que me ha bendecido y acompañado durante todos estos años.

A mi familia, quien me ha brindado cariño y comprensión en todos mis proyectos de vida.

A los profesores Sr. Julio Lopetegui Torres y Sr. José Soto Miranda, por las horas de apoyo teórico y la disponibilidad de material bibliográfico y equipo necesario.

A todos mis compañeros de la carrera de Ingeniería Civil en Obras Civiles, que esperaron (pacientemente) los resultados de esta tesis con grandes expectativas.

Page 3: Análisis computacional no lineal de estructuras de acero ...

ÍNDICE DE MATERIAS

Capitulo Página

1. Introducción. 1

2. Descripción del Programa Computado-nal Estructural Utilizado (PLANT). 2

2.1. Introducción. 2

2.2. Hipótesis de cálculo estructural utilizadas por el programa. 2

2.2.1. Reacciones internas en el estado deformado. 2

2.2.2. Desplazamientos rígidos y propios. 3

2.2.3. Superposición de las rotaciones resultantes. 4

2.2.4. Transformación de sistemas de coordenadas. 6

2.2.5. Descripción de la posición de un elemento deformado. 7

2.2.6. Estados de carga - deformación. 10

2.2.7. Trabajo y energía de deformación. 11

2.2.8. Trabajo de una carga sobre el desplazamiento causado por otra carga. 12

2.2.9. Ejemplo de solución aproximada. 13

2.2.10. Resolución de grandes sistemas de ecuaciones. 15

2.2.11. Análisis de sistemas no lineales. 17

2.2.12. Control por desplazamientos. 18

2.3. Modalidades de cálculo del programa. 20

2.4. Entrada de datos al programa. 20

2.4.1. Representación espacial de la estructura. 20

2.4.2. Descripción de las secciones transversales. 21

2.4.3. Soficttaciones de carga. 22

2.5. Cálculos dinámicos utilizando PLANT. 23

2.5.1. El método de Newmark. 23

2.5.2. Adaptación del método de Newmark al programa PLANT 25

3. Programas de Computación para Análisis de Estructuras Aisladas Existentes en el

Mercado. 30

3.1. Programa N - PAD. 30

3.2. Programa 3D - BASIS. 30

3.3. Programa ETABS. 31

3.4. Programa SAP2000 Nonlinear. 32

Page 4: Análisis computacional no lineal de estructuras de acero ...

4. Modelos de Ablación Sísmica. 33

4.1. El objetivo de la aislación sísmica. 33

4.2. Aislador de goma con bajo amortiguamiento (Low-damping rubber bearíng: LDB). 35

4.3. Aislador de goma de alto amortiguamiento (High-damping rubber bearíng: HDB). 36

4.4. Aislador de goma con núcleo de plomo (Lead-rubber bearíng: LRB). 37

4.5. Aislador Bectriáté de France (EDF). 40

4.6. Aislador elástico - friccionante (Resilient-fríction base isolator: R-FBI). 41

4.7. Aislador de péndulo friccionante (Friction pendulum system: FPS). 42

5. Método Utilizado para Incorporar el Modeb de Aislación Sísmica al Programa PLANT

Original. 44

5.1. Modelo de aislación utilizado. 44

5.2. Resolución de la ecuación diferencial asociada al modelo. 47

5.2.1. Solución por medio del método de Euler. 47

5.2.2. Solución por medio del método de Runge - Kutta de quinto orden. 48

5.3. Adaptación de las soluciones del modelo de Wen al programa PLANT. 50

6. Presentación de Resultados. 52

6.1. Aislador solo. 52

6.2. Marco plano con aislación basal. 55

6.3. Estructura tridimensional de un piso con aislación basal. 62

7. Conclusiones. 66

Resumen. 67

Summary. 68

Bibliografía. 69

Anexo A: Diagrama de Flujo para la Subrutina DYNAM. 71

Anexo B: Entrada de datos para cálculos dinámicos con PLANT. 80

Anexo C: Input de los ejemplos del Capítulo VI en formato de PLANT. 85

Page 5: Análisis computacional no lineal de estructuras de acero ...

CAPÍTULO I : INTRODUCCIÓN

En la actualidad, el computador se ha convertido en una herramienta indispensable para

la Ingeniería Civil. No sólo ha mejorado enormemente la velocidad y precisión de los cálculos,

también ha posibilitado el tratamiento y la operatoria de algoritmos y modelos matemáticos que

hasta hace unas décadas atrás eran impracticables y que sólo pertenecía al ámbito puramente

teórico. Ello ha abierto innumerables posibilidades para solucionar satisfactoriamente una

amplia gama de problemas que requieren complejas simulaciones numéricas o el manejo de

grandes cantidades de información en forma casi instantánea.

En el campo de la Ingeniería Estructural, el computador ha posibilitado entre otras cosas

el análisis del comportamiento de estructuras frente a variadas formas de solicitaciones de

cargas. Para el caso del diseño sismorresistente, es de especial interés el estudio de la

respuesta estructural frente a la aceleración basal debida a un terremoto. Como se trata de una

solicitación de duración e intensidad aleatoria, lo ideal es representar la estructura de manera lo

más fidedigna posible, considerando que muchos de sus elementos pueden sufrir algún tipo de

falla que comprometa su estabilidad y capacidad de soporte.

En la década de los ochenta, un grupo de ingenieros del Lehrstühl für Stahlbau de

Aachen (Alemania) desarrolló el programa computacional PLANT con el objetivo de llevar a

cabo numerosas modalidades de cálculo estructural que incluyesen la posible plastificación de

algún elemento. Dicho programa abarca la determinación de la carga última, estabilidad

estructural (pandeo), y análisis dinámico (frecuencias propias y método de Newmark). A través

de los años, este programa ha sido corregido y aumentado en varias oportunidades, según

sean los requerimientos de los usuarios y las nuevas tecnologías implementadas.

La presente tesis trata sobre la inclusión del modelo de Wen en las subrutinas de cálculo

dinámico del programa PLANT, el cual hace posible la simulación de aisladores sísmicos de

base de comportamiento elastoplástico, a fin de disponer de una herramienta de cálculo que,

además de describir la respuesta de una estructura aislada, también verifique si ésta incurre en

algún tipo de falla que implique plastificación. Se incluyen los fundamentos teóricos del

programa, como así también algunos ejemplos de cálculo de estructura aislada.

1

Page 6: Análisis computacional no lineal de estructuras de acero ...

CAPÍTULO II : DESCRIPCIÓN DEL PROGRAMA COMPUTACIONAL ESTRUCTURAL

UTILIZADO (PLANT)

2.1. Introducción. El programa de cálculo estructural PLANT fue creado en 1980 en el Lehrstühl für

Stahlbau de Aachen (Alemania) por los Drs. J. Lopetegui, A. Saleh y Ch. Stutzki. Fue concebido

como un programa de análisis experimental que simulase test de carga sobre estructuras,

incorporando modelos de comportamiento de materiales y las condiciones del sistema

analizado (barras, nudos, apoyos, secciones, etc.) (LOPETEGUI, 1983; SALEH, 1982;

STUTZKI, 1982).

El programa fue escrito en lenguaje FORTRAN, a fin de hacer comprensible su

funcionamiento al usuario, además de dejar abierta la posibilidad de incorporar nuevas

subrutinas, según sean los futuros requerimientos de análisis (LOPETEGUI et al., 1987).

2.2. Hipótesis de cálculo estructural utilizadas por el programa. Los algoritmos de PLANT se fundamentan en el equilibrio de las fuerza de reacción

interiores de una estructura deformada y las cargas que se obtienen directamente por la matriz

de rigidez elástica que se genera de los elementos que componen dicha estructura. Esto

permite saber si comportamiento del sistema está dentro del rango elástico, o bien ha

incursionado en valores que producen la plastificación de algún elemento. La teoría que

sustenta estos cálculos es la que se explica a continuación.

2.2.1. Reacciones internas en el estado deformado. Para un elemento estructural tipo barra, la teoría de cálculo de matriz de rigidez utiliza un

sistema de coordenadas locales asociado a los extremos del elemento. Con ello es posible

describir la barra tanto en su posición inicial como deformada, puesto que en cada sección

transversal existen las siguientes posibilidades de deformación (SEDLACEK et al., 1985):

1) Tres desplazamientos (u, v, w)

2) Tres rotaciones (ϕx, ϕy, ϕz)

3) Un ángulo de alabeo (ϕx’)

Además, a cada deformación le corresponde una reacción interna:

1) Tres fuerzas (Qx, Qy, Qz)

2) Tres momentos (Mx, My, Mz)

3) Un bimomento (Mw)

2

Page 7: Análisis computacional no lineal de estructuras de acero ...

X

Mwi

Mwk

Mxk

Myk

Mxi

Qxi

Y

Mzi

QykQxk

Qzk

Qyi Myi

Qzi Mzk

Xϕxk

ϕxi

Ui

Y

Z

ϕzi

ϕ'xkϕykVk

Uk

Wk

Viϕyi

Wi ϕzk

ϕ'xi

Z

FIGURA 2.1 Definición de las posibles deformaciones y sus reacciones internas

asociadas.

El equilibrio de las fuerzas interiores de los extremos de las barras con las fuerzas

exteriores en los extremos de las mismas lleva a la ecuación en notación matricial que expresa

esta relación:

vKFext ⋅= (2.1)

donde Fext es el vector de las fuerzas exteriores, K es la matriz de rigidez del elemento, y v

es el vector de las deformaciones antes mencionadas.

2.2.2. Desplazamientos rígidos y propios. En un elemento perteneciente a una estructura bajo carga, y atendiendo a un sistema

global de coordenadas, se pueden distinguir dos tipos de desplazamientos:

1) Desplazamientos rígidos: corresponden a los desplazamientos y giros del elemento

analizado en los cuales no están comprometidas sus propiedades mecánicas, sino que

se deben a deformaciones de los elementos aledaños.

2) Desplazamientos propios: corresponden a los desplazamientos y giros que se producen

al aplicar directamente algún tipo de solicitación de carga sobre el elemento.

3

Page 8: Análisis computacional no lineal de estructuras de acero ...

A

C

P

A

B P B

C

(a) (b)

FIGURA 2.2 Ejemplos de desplazamiento rígido y propio.

La FIGURA 2.2 es un ejemplo simple de ambos casos de desplazamiento. En (a) el

elemento BC presenta una desplazamiento rígido, pues se traslada por efecto de la

deformación propia del elemento AB bajo la carga P. En (b) el desplazamiento de BC se debe

tanto a su deformación propia como a la que presenta AB por transmisión de momento, es

decir, hay tanto desplazamiento propio como rígido.

2.2.3. Superposición de las rotaciones resultantes. En el análisis de una estructura tridimensional compuesta, un problema a resolver es la

adecuada transformación y superposición de las deformaciones de los elementos, que se

traducen en desplazamientos y rotaciones de los puntos que sirvieron de referencia para las

posiciones iniciales; más aún si se trata de un análisis elástoplástico, en donde se pueden

alcanzar grandes deformaciones.

Es de especial interés lo que sucede con las rotaciones, pues se debe considerar que en

el caso tridimensional se debe convertir de un sistema particular de coordenadas (el de cada

extremo de una barra) a uno global o viceversa, además de separar las rotaciones rígidas de

las propias en cada elemento; pero los vectores de rotación no se pueden “sumar” o “restar” en

cada paso iterativo.

En el programa PLANT se plantean las fórmulas del Dr. A. Saleh que son especialmente

útiles para la conversión de grandes rotaciones de un sistema a otro, utilizando una matriz de

transformación que se calcula en base a un vector de rotación obtenido en cada iteración de

carga. Para un cuerpo sometido a dos rotaciones sucesivas, digamos A y a continuación B, el

vector de giro resultante se obtiene a partir de la siguiente fórmula (SALEH, 1981):

BA

BABAC⋅−×−+

=1

(2.2)

4

Page 9: Análisis computacional no lineal de estructuras de acero ...

en notación condensada: ( ) CBA, ⇒

Es posible invertir el proceso para obtener la diferencia entre dos rotaciones, o sea, el

vector de giro A a partir de C y B :

BC

CBBCA⋅+×+−

=1

(2.3)

Como la fórmula no es conmutativa, es decir, ( ) ( )AB,BA, ≠ , el orden de sucesión de

las rotaciones necesariamente debe tenerse en cuenta (SALEH, 1981).

Una forma de describir la posición de un elemento en el espacio respecto de un sistema

global de coordenadas es mediante un vector. Aplicando el concepto del vector de giro, se

puede determinar su longitud, dirección y sentido iniciales con la siguiente información:

Δx0 : diferencia de coordenadas entre los extremos de las barras, calculada a lo largo

del eje X.

Δy0 : diferencia de coordenadas entre los extremos de las barras, calculada a lo largo

del eje Y.

Δz0 : diferencia de coordenadas entre los extremos de las barras, calculada a lo largo

del eje Z.

l0 : longitud del elemento indeformado.

La relación entre los valores anteriores es:

20

20

200 zyxl Δ+Δ+Δ= (2.4)

De acuerdo a la FIGURA 2.3, los ángulos que señalan la dirección del elemento en el

espacio son:

( )( )00

20

20

arcsenarcsen

lzzlyo

Δ−=

Δ−Δ=

βα

(2.5a y 2.5b)

Existe además un tercer ángulo, denominado γ , que viene dado por la geometría del

sistema y que determina la posición de la sección en el eje principal del elemento.

5

Page 10: Análisis computacional no lineal de estructuras de acero ...

20

20 zl Δ−

Y’’

Δz0

Y X

Z

Z’’

X’’

Δx0Δy0

γ

β α

FIGURA 2.3 Ángulos que definen la posición del elemento en el espacio.

Estos ángulos forman los siguientes vectores de giro:

T

T

T

tan

tan

tan

⎟⎠⎞

⎜⎝⎛=

⎟⎠⎞

⎜⎝⎛=

⎟⎠⎞

⎜⎝⎛=

002

02

0

200

γ

β

α

C

B

A

(2.6a, 2.6b y 2.6c)

2.2.4. Transformación de sistemas de coordenadas.

Si tomamos en cuenta la FIGURA 2.3, para transformar el sistema de coordenadas

globales al sistema de coordenadas local del elemento, se le somete a la siguiente secuencia

(SEDLACEK et al., 1985):

1) El sistema se traslada en forma paralela hasta la posición del extremo inicial de la barra.

2) El sistema se rota alrededor del eje Z en el ángulo α que se encuentra contenido dentro

del plano XY. Los ejes X e Y se convierten en X’ e Y’ respectivamente.

3) En la nueva posición, el sistema se rota alrededor del eje Y’ en el ángulo β ;este paso

hará coincidir el eje X’ con el eje longitudinal del elemento, transformándose en el eje

X’’.

4) Finalmente, el sistema en su nueva posición se rota alrededor del eje X’’ en el ángulo γ

para hacerlo coincidir con el sistema local de coordenadas, convirtiendo los ejes X’ e Y’

6

Page 11: Análisis computacional no lineal de estructuras de acero ...

en X’’ e Y’’ respectivamente y completándose así la transformación.

Para realizar el proceso anterior mediante vectores de giro, la transformación de

coordenadas globales a coordenadas locales se puede obtener con la doble aplicación de la Ec.

2.2, lo que en notación resumida es (SALEH, 1982):

( )( ) DAB,C, ⇒ (2.7)

Para realizar la conversión de un sistema de coordenadas local a otro global, se aplica la

siguiente matriz T dada por la fórmula (SALEH, 1982):

( ) ( )

( ) (( ) ( ) ⎥

⎥⎥

⎢⎢⎢

−+−++−+−−+−+

+=

⎥⎥⎥

⎢⎢⎢

⎡=

22

22

22

2

333231

232221

131211

212222122221

11

DDDDDDDDDDDDDDDDDDDDDDDD

DTTTTTTTTT

zxzyyzx

xzyyyyx

yzxzyxx

T ) (2.8)

T : Matriz de transformación.

D : Vector de giro.

Dx,y,z : Componentes del vector de giro.

D2 : Cuadrado del módulo del vector de giro.

La forma en que opera esta matriz T es multiplicándose a ambos lados de la matriz de

rigidez local K , dando como resultado una matriz de rigidez global K G .

2.2.5. Descripción de la posición de un elemento deformado. Un elementos en su posición deformada se le define por la deformación que presentan

sus puntos extremos. Después de n iteraciones para el cálculo de la deformación final, la

posición de un nudo en el espacio en coordenadas cartesianas se puede expresar

vectorialmente como:

(2.9) ( ) (∑=

+=+n

j

Tj

T wvuzyx1

0000 ,,,,vx )

La rotación de un nudo se define como la rotación de su sistema local de coordenadas,

el cual inicialmente se encuentra paralelo al sistema global de coordenadas. Estos ángulos de

rotación para un paso iterativo cualquiera en notación vectorial son:

( )zyxj ϕϕϕ ,,=Φ (2.10)

7

Page 12: Análisis computacional no lineal de estructuras de acero ...

o como vector de rotaciones:

⎟⎟

⎜⎜

⎛ Φ

Φ

Φ=

2j

j

jj tanF (2.11)

La rotación total después de n pasos iterativos se compone de varias rotaciones

parciales Fj, las cuales se superponen por medio de la Ec. 2.2. Debido a la traslación y rotación

de los nudos, el eje de la viga se torna una línea curva tridimensional, presentándose los

desplazamientos rígidos y propios descritos en el Párrafo 2.2.2. ; esto produce la traslación del

eje principal de inercia. La relación entre los vectores de giro que describen la posición final que

adopta la viga al cabo de n pasos iterativos está dada por la siguiente relación, que toma en

cuenta la Ec. 2.2 (SALEH, 1982; SEDLACEK et al., 1985):

( )( ) EABC ⇒nnn ,, (2.12)

A y B : Vectores de rotación que contienen el movimiento total del elemento debido a

desplazamientos tanto rígidos como propios de la barra.

C : Vector de rotación en el sentido del desplazamiento del eje de la viga; este

resultado corresponde al valor medio de la torsión del elemento.

E : Vector de rotación correspondiente a la rotación rígida del eje longitudinal de la

viga desde su posición inicial indeformada hasta su posición final.

Los vectores anteriores se muestran como ejemplo para una viga en el espacio en la

FIGURA 2.4 (SEDLACEK et al., 1985).

X

Y Z

Xn

kn

αn

βn

Y0

Δy i0,n

k0

Δx

An

ln

Δz

Cn

Bn

X0

Z0

Zn

Yn

FIGURA 2.4 Vectores de giro que definen la posición deformada.

8

Page 13: Análisis computacional no lineal de estructuras de acero ...

Una vez determinado el vector de rotación E , es posible mediante la Ec. 2.2 determinar

el vector que relaciona la posición en coordenadas globales con la posición deformada (SALEH,

1982; SEDLACEK et al., 1985):

( ) nDDE ⇒0, (2.13)

Además, también es posible determinar la rotación relativa de los extremos de la viga,

separando la rotación total de la rotación rígida:

( )( ) *

*

,

,

jnjn

inin

FFE

FFE

⇒−

⇒− (2.14a y b)

en donde:

: Rotaciones de los nudos en los extremos de las vigas en la n-ésima jnin FF ,

iteración, con respecto a los ejes locales iniciales (X0, Y0, Z0).

E : Rotación rígida del eje de la viga.

: Rotaciones relativas de los nudos extremos de la viga, las cuales causan ** , jnin FF

las deformaciones.

También se pueden aprovechar las Ecs. 2.6a, b y c, para obtener los ángulos de

rotación de los extremos de la viga (SALEH, 1982; SEDLACEK et al., 1985).

(2.15) ⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎧=

⎪⎭

⎪⎬

⎪⎩

⎪⎨

z

y

x

z

y

x

jin

FarctanFarctanFarctan

2*

*

*

*,

ϕϕϕ

Con esta información se pueden calcular las fuerzas de reacción elástica mediante la

teoría lineal clásica, pues las deformaciones relativas son pequeñas. Los valores para los

momentos (M

*nϕ

x, My, Mz) y las fuerzas (Fx, Fy, Fz) se obtienen en los extremos de la viga mediante

el método de las deformaciones. Con la fuerzas internas elásticas es posible determinar la

deformación del material en los extremos del elemento (SEDLACEK et al., 1985; STUTZKI,

1980):

Melwx

yely

zelz

elx

CEM

JEMw

JEMv

AEQu

−=′′

−=′′′

−=′′

=′

ϕ

(2.16a - d)

9

Page 14: Análisis computacional no lineal de estructuras de acero ...

con la expresión para la deformación:

( ) xwzvyuwzyx ϕωε ′′⋅−′′⋅−′′⋅−′⋅= 1,,, (2.17)

Por medio de las relaciones esfuerzo - deformación del material, se obtiene la

distribución de tensiones en la sección. Las fuerzas internas se calculan por integración de

estas tensiones en las secciones transversales. Estas fuerzas de reacción en la sección son a

la vez las reacciones del elemento en sus extremos. Para calcular las fuerzas de reacción de la

estructura completa, se suman las fuerzas internas de los elementos producidas en los puntos

nodales. Para poder ejecutar este cálculo, las fuerzas en los extremos de las vigas son

transformadas por medio de la matriz TnT de la Ec. 2.8, desde un sistema local de

coordenadas a uno global (SEDLACEK et al., 1985).

2.2.6. Estados de carga - deformación.

Un estado de carga - deformación se define como un par de vectores P y v que

satisfacen la expresión correspondiente a la Ec. 2.1. Esta ecuación expresa una

correspondencia única en el caso de vectores lineales; esto se puede denotar

(LOPETEGUI,1983; SEDLACEK et al., 1985):

vP ↔ (2.28)

Se define la ortogonalidad de dos estados cualesquiera de carga - deformación, digamos

y , si la carga de una de las configuraciones no tiene una contribución de

trabajo en la otra configuración:

11 vP ↔ 22 vP ↔

01221 =⋅=⋅ vPvP (2.29)

Dos vectores de carga o dos vectores de deformación son paralelos cuando existe un

escalar, digamos x , tal que o bien 21 PP x= 21 vv x= .

La ortogonalización de dos estados de carga - deformación es siempre posible. Una

forma es expresar un vector de carga, por ejemplo P2 , en dos componentes: una paralela al

otro vector de carga conocido, digamos P1 , y otra perpendicular al vector deformación

conocido, digamos v1 :

*211222

11 PPPPP vP +=+= ⊥ x (2.30)

es la componente de la cual es ortogonal a : *2P 2P 1v

10

Page 15: Análisis computacional no lineal de estructuras de acero ...

(2.31) 1122*

21 PPPP v x−== ⊥

El escalar x1 se calcula a partir de la condición de ortogonalidad entre P y v : 2*

1

( )

11

121

1112 0

vPvPvPP

⋅⋅

=⇒

=⋅−

x

x (2.32)

El vector de desplazamiento también se puede expresar por medio de dos

componentes; una paralela al vector de desplazamiento y la otra componente ortogonal al

vector de carga:

2v

1v

*211222

11 vvvvv Pv +=+= ⊥ y (2.33)

*2v es la componente de la cual es ortogonal a P2v 1 . El escalar y1 también se puede calcular

usando la doble condición de ortogonalidad, es decir, : 0*21 =⋅ vP

( )

11

211

1112 0

vPvPPvv

⋅⋅

=⇒

=⋅−

y

y (2.34)

Si consideramos el principio general de Betti, obtenemos la expresión (LOPETEGUI y

SEDLACEK, 1986; LOPETEGUI y SEDLACEK, 1988; SEDLACEK et al., 1985):

1221 vPvP ⋅=⋅ (2.35)

Si a la Ec. 2.35 le aplicamos la Ec. 2.32 y la Ec. 2.34, entonces se llega a la conclusión

que ; luego, el segundo estado ortogonal se puede expresar como : 11 yx = *2

*2 vP ↔

(2.36a y b) 1122

*2

1122*

2

1

1

vvvv

PPPPP

v

y

x

−==

−==⊥

2.2.7. Trabajo y energía de deformación. La ecuación que expresa el trabajo para un estado de carga - deformación en un

sistema estructural es:

11

Page 16: Análisis computacional no lineal de estructuras de acero ...

1121 vP ⋅=W (2.37)

donde P1 es un vector generalizado de carga, y es su correspondiente vector generalizado

de deformación.

1v

La Ec. 2.37 expresa el trabajo realizado por el vector de carga P1 sobre el estado de

deformación, representado por el desplazamiento . Este trabajo es almacenado como

energía de deformación. La energía de deformación en estructuras almacenada inicialmente por

medio de la flexión puede escribirse:

1v

∑∫ ′′=l

xdxvIEU0

2)(21 (2.38)

Donde v x( ) es la función de desplazamiento. De acuerdo a la teoría clásica de flexión

en vigas: E I v x M x′′ = −( ) ( ) , lo cual aplicado a la Ec. 2.38:

∑∫=l

xdIExMU

0

2)(21 (2.39)

2.2.8. Trabajo de una carga sobre el desplazamiento causado por otra carga.

Considerando dos estados de carga - deformación denotados como 11 vP ↔ y

y a partir de lo planteado en el Párrafos 2.2.6 y 2.2.7, se tienen los siguientes

resultados (LOPETEGUI y SEDLACEK, 1986; LOPETEGUI y SEDLACEK, 1988):

22 vP ↔

( )∑∫

∑∫

=

′′′′=⋅=⋅

l

l

xdIExMxM

xdxvxvIE

021

0211221

)()(

)()(vPvP (2.40a y b)

representa el diagrama de momento de flexión en la estructura debido a )(xM iP

Es posible trabajar a nivel global en la estructura con estados de carga - deformación de

la misma manera que con funciones de Ritz en un medio continuo. Si existen estados de carga -

deformación disponibles, o si éstos pueden ser generados usando una matriz de rigidez

existente, entonces se pueden aplicar todos los métodos de análisis estático, reemplazando las

funciones e integrales con estados de carga - deformación. Para el análisis de sistemas no

lineales, la matriz de rigidez necesaria para generar los estados de carga - deformación podría

12

Page 17: Análisis computacional no lineal de estructuras de acero ...

ser la del sistema lineal o simplificado (LOPETEGUI y SEDLACEK, 1986; LOPETEGUI y

SEDLACEK, 1988).

2.2.9. Ejemplo de solución aproximada. A continuación, se expondrá un ejemplo de solución aproximada con un subespacio

definido por algunos estados de carga - deformación. Sean 11 vP ↔ , , ... , 22 vP ↔ nn vP ↔

estados de carga - deformación para un sistema estructural bajo un vector de carga externa F0 .

Una solución aproximada para un campo de desplazamiento se puede escribir (LOPETEGUI y

SEDLACEK, 1986; LOPETEGUI y SEDLACEK, 1988; SEDLACEK et al., 1985):

nnxxx vvvv +++= K2211 (2.41)

Las fuerzas de reacción correspondientes al estado deformado son:

nnxxx PPPR −−−−= K2211 (2.42)

Las fuerzas residuales corresponden a fuerzas que no están en balance, las cuales se

pueden expresar como:

nnxxx PPPFRFF −−−−=+= K221100 (2.43)

El estado deformado se varía sucesivamente, de tal manera que cada componente de la

deformación es aumentado de hasta iix v ( ) iii xdx v+ . La nueva deformación está dada por:

, con . ivv Δ+ iii xd vv =Δ

El diferencial d xi es un escalar. El trabajo correspondiente a la variación puede ser

expresado como:

idv

(2.44) ( iinn

ii

xdxxxdUd

vPPPFvF

⋅−−−−=⋅=

K22110

*

)

El trabajo virtual es cero cuando el producto escalar idvF ⋅ es cero. Si se fijan las

variaciones en cero, se puede obtener un sistema de ecuaciones: *iUd

13

Page 18: Análisis computacional no lineal de estructuras de acero ...

(2.45)

⎪⎪⎭

⎪⎪⎬

⎪⎪⎩

⎪⎪⎨

⋅⋅

=

⎪⎪⎭

⎪⎪⎬

⎪⎪⎩

⎪⎪⎨

⎥⎥⎥⎥

⎢⎢⎢⎢

⋅⋅⋅

⋅⋅⋅⋅⋅⋅

nnnnnn

n

n

x

xx

vF

vFvF

vPvPvP

vPvPvPvPvPvP

0

20

10

2

1

21

22221

11211

MM

L

MOMM

L

L

El sistema de ecuaciones tiene una solución si la matriz de coeficientes no es singular y

éste es el caso cuando los estados de carga - deformación son linealmente independientes.

La mejor aproximación posible al vector de deformación v de la estructura viene dada

por la Ec. 2.41, y la correspondiente fuerza residual es F de la Ec. 2.43. La solución

proporcionada será una solución exacta cuando el vector de carga dado sea una combinación

lineal de vectores de carga conocidos Pi . La matriz de coeficientes es una matriz diagonal

cuando los estados de carga - deformación son ortogonales, es decir, los productos 0=⋅ ki vP

para , los escalares xki ≠ i (LOPETEGUI y SEDLACEK, 1986; LOPETEGUI y SEDLACEK,

1988):

ii

iix

vPvF⋅⋅

= 0 (2.46)

Si los estados de carga - deformación no fuesen ortogonales, puede efectuarse un

procedimiento de ortogonalización.

Otra forma de llegar al mismo resultado es descomponiendo el vector de carga F0 en

componentes paralelas a las cargas individuales Pi y en una componente perpendicular a

todos los vectores de desplazamiento de los estados de carga - deformación (LOPETEGUI y

SEDLACEK, 1986; LOPETEGUI y SEDLACEK, 1988).

*

2211

,,,00000

2121

FPPP

FFFFF vvvPPP

++++=

++++= ⊥

nnxxx

nn

K

K K

(2.47)

Esto lleva a una expresión de la componente ortogonal antes mencionada:

(2.48) nnxxx PPPFF −−−−= K22110*

La condición de ortogonalidad nos lleva también al sistema planteado en la

Ec. 2.45 (LOPETEGUI y SEDLACEK, 1988).

0* =⋅ ivF

14

Page 19: Análisis computacional no lineal de estructuras de acero ...

2.2.10. Resolución de grandes sistemas de ecuaciones lineales.

A fin de resolver grandes sistemas de ecuaciones lineales con el método de estados de

carga - deformación, dichos estados deben ser calculados. A continuación se da un algoritmo

para encontrar los estados en caso que el sistema de ecuaciones esté particionado como se

indica (LOPETEGUI y SEDLACEK, 1986; LOPETEGUI y SEDLACEK, 1988):

⎩⎨⎧

=+=+

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

bba

aba

b

a

b

a

PVAVAPVAVA

PP

VV

AAAA

2221

1211

2221

1211

(2.49)

Primero, se intentará resolver el siguiente sistema de ecuaciones:

⎩⎨⎧

=+−=+

bba

aba

PVAVAPPVAVA

2221

001211 (2.50)

Donde están dadas las matrices 2,1,, =kikiA y los vectores Pa y Pb ; la solución que se

busca es Va , Vb y P00 . Una posible estrategia de solución podría ser primero resolver Va en la

siguiente ecuación (LOPETEGUI y SEDLACEK, 1986; LOPETEGUI y SEDLACEK, 1988):

aa PVA =11 (2.51)

Conocido el vector Va , luego se resuelve el siguiente sistema:

abb VAPVA 2122 −= (2.52)

Se puede entonces obtener una solución para el vector de desplazamientos Vb . El

vector P00 , el cual es desconocido hasta este momento, se puede determinar (LOPETEGUI y

SEDLACEK, 1988):

bVAP 1200 −= (2.53)

El vector P00 en el análisis estructural es el vector de las fuerzas residuales, las cuales

están presentes cuando el vector de deformación es V . El vector P00 tiene componentes

distintas de cero solamente en su parte superior. Cuando cada estado de carga - deformación

no tiene componentes en su parte inferior de su vector de carga, el método de ortogonalización

15

Page 20: Análisis computacional no lineal de estructuras de acero ...

resulta ser muy ventajoso pues los productos escalares ki vP ⋅ sólo necesitan ser evaluados en

la parte superior de los vectores (LOPETEGUI y SEDLACEK, 1988).

Para la solución de un sistema de ecuaciones lo más recomendable es, en primer lugar,

determinar un vector de deformación v0 y una fuerza residual 001 PP = . La solución luego se

postula de la siguiente forma (LOPETEGUI y SEDLACEK, 1988):

nnxxx vvvvv ++++= K22110 (2.54)

El procedimiento de cálculo consta de los siguientes pasos (LOPETEGUI y SEDLACEK,

1988):

1) Determinación de vi y Pi,i usando Pi (donde i = 1, 2, ..., n). El estado de carga -

deformación es: iiii vPP ↔− ,

2) El estado de carga - deformación es ortogonalizado para i > 1 . Cada caso de carga -

deformación que se obtenga con este algoritmo será ortogonal a todos los estados

anteriores excepto el último, por tanto necesita ser ortogonalizado solamente a partir de

las componentes del último estado de carga - deformación. El estado ortogonalizado se

denota así:

(2.55) **ii vP ↔

3) Se mejora la aproximación a la solución:

(2.56) *iiantesnueva x vvv +=

donde v es el vector de deformación del estado de carga - deformación ortogonal, y el

coeficiente xi*

i es:

**

*

ii

iiix

vPvP⋅⋅

= (2.57)

4) Las fuerzas residuales correspondientes a son: nuevav

(2.58) *1 iiii x PPP −=+

16

Page 21: Análisis computacional no lineal de estructuras de acero ...

5) Si no se alcanza la precisión requerida, el procedimiento debe reiniciarse desde el paso

(1) con i = i + 1.

2.2.11. Análisis de sistemas no lineales.

En el caso de sistemas no lineales, también es posible calcular el vector de deformación

si se conocen numerosos estados de carga - deformación del tipo . El asterisco indica

que los estados de carga - deformación son semi - ortogonales, es decir si i > k

(LOPETEGUI, 1983).

**ii vP ↔

0** =⋅ ki vP

La aproximación en la deformación que define el estado de equilibrio deseado es:

(2.59) **22

*11 nnxxx vvvv +++= K

El siguiente procedimiento se realiza para construir un sistema de estados de carga -

deformación ortogonalizados y para mejorar simultáneamente la aproximación del vector

deformación. Sea una estructura no lineal en el estado deformado , cargada con las

fuerzas residuales . Se calcula un vector de deformación con la matriz de rigidez inicial y

con como vector de carga. La nueva aproximación para el vector de deformación es:

antesv

iF iv

iF

iantesnueva vvv += (2.60)

En el siguiente paso, las fuerzas residuales se calculan con el sistema real no lineal

en el estado deformado . El nuevo estado de carga - deformación se define:

iiF

nuevav

iiii vFF ↔− (2.61)

En el lado izquierdo está la diferencia entre las fuerzas residuales correspondientes a las

deformaciones y , y al lado derecho el incremento de deformación . antesv nuevav iv

Si se conoce otro estado de carga - deformación, el nuevo debe ser ortogonalizado con

respecto a todos los estados anteriores. Esto sólo requiere que el vector de carga de este

nuevo estado no realice trabajo en el vector deformación de todos los anteriores. Si el nuevo

estado de carga - deformación es ii vP ↔ y los anteriores son

entonces:

)1,...,2,1(** −=↔ ikkk vP

17

Page 22: Análisis computacional no lineal de estructuras de acero ...

(2.62a y b) **

**

kkii

kkii

z

z

vvv

PPP

−=

−=

donde: **

*

kk

kiiz

vPvP⋅⋅

=

Este estado de carga - deformación ortogonalizado se varía bajo el supuesto de

linealidad en los alrededores de , lo que significa que también es válido. La

nueva aproximación para el vector deformación:

nuevav **iiii xx vP ↔

(2.63) *iiantesnueva x vvv +=

El factor se determina de tal manera que el producto escalar de las fuerzas residuales

así calculadas multiplicadas con sea cero.

ix

*iv

**

*

ii

iiix

vPvF⋅⋅

= (2.64)

La fuerza residual para el siguiente paso es : 1+iF

(2.65) *1 iiii x PFF −=+

2.2.12. Control por desplazamientos. Para cálculos con desplazamiento controlado, se determina una línea inicial de

deformación y una variación de la misma, de tal manera que la amplitud en el vector de

deformación se mantenga suficientemente cerca de un valor constante para reducir las fuerzas

residuales al mínimo. Para una deformada , se calcula la fuerza R requerida para mantener

el sistema en equilibrio. Esto se asume (LOPETEGUI

1v

1v

et al., 1987; LOPETEGUI y SEDLACEK,

1988):

FFR += 0λ (2.66)

donde:

λ : Factor de carga.

F0 : Carga que recibe el sistema.

F : Fuerzas residuales.

18

Page 23: Análisis computacional no lineal de estructuras de acero ...

El factor de carga es entonces determinado para que las fuerzas residuales no realicen

ningún trabajo en la deflexión : 1v

( )

10

1

10 0

vFvRvFR

⋅⋅

=⇒

=⋅−

λ

λ (2.67a y b)

Con ayuda de la fuerza residual F se calcula un incremento de deformación v , y la

deformación resultante se normaliza de tal manera que tiene una amplitud muy

cercana a la de . Se dan a continuación dos posibilidades:

2

( 21 vv + )

))

1v

1) El nuevo vector ( se multiplica por un factor de reducción a , para que el vector 21 vv +

total de deformación ( 21 vv +a y el vector tengan igual longitud: 1v

( )

( )∑

∑∑

=

=

==

+=⇒

+=

n

iii

n

ii

n

iii

n

ii

a

a

1

221

1

21

1

221

2

1

21

vv

v

vvv

(2.68a y b)

2) La deformación es la única multiplicada por el factor a , para que las longitudes de

los

2v

vectores y ( sean iguales: 1v )21 vv a+

∑∑

∑∑∑∑⋅

−=⇒

+⋅+=

22

21

22

221

21

21

2

2

i

ii

iiiii

vvv

a

vavvavv

(2.69a y b)

Se calcula la fuerza la cual mantiene al sistema en la posición deformada . El

incremento de la deformación mejorado es

1R nuevav

1vv −nueva . El estado de carga deformación más

reciente es:

11 vvRR −↔− nueva (2.70)

La iteración se realiza de la misma forma explicada en el Párrafo 2.2.11. La longitud del

vector deformación es mantenida constante sólo para la determinación de los estados de carga

- deformación (LOPETEGUI et al., 1987; LOPETEGUI y SEDLACEK, 1988).

19

Page 24: Análisis computacional no lineal de estructuras de acero ...

2.3. Modalidades de cálculo del programa. En cuanto a la forma de cálculo, PLANT considera la teoría de primer, segundo y tercer

orden, contemplando los estados elástico y elastoplástico del material, dentro de lo cual existen

las siguientes opciones de procedimientos de análisis (KUCK y HOFFMEISTER, 1988;

LOPETEGUI et al., 1987):

1) Cálculo con deformaciones iniciales.

2) Carga última por medio de deformación controlada.

3) Estabilidad, pandeo longitudinal.

4) Estabilidad, pandeo torsional.

5) Estabilidad, pandeo con volcamiento.

6) Cálculo con deformación controlada.

7) Cálculo con factor de carga controlado por historial de carga.

8) Cálculo con factor de carga controlado por iteración corregida.

9) Cálculo con deformación controlada por historial de carga.

10) Análisis dinámico, cálculo de frecuencias propias.

11) Análisis dinámico, método de Newmark para integrar la ecuación de movimiento.

2.4. Entrada de datos al programa. A fin de ingresar los datos que representen a la estructura, PLANT está diseñado con

una orden de leer un archivo de input en formato ASCII, el cual debe contar con los siguientes

códigos descriptivos (KUCK y HOFFMEISTER, 1988; LOPETEGUI et al., 1987):

1) Procedimiento de análisis requerido.

2) Representación espacial de la estructura.

3) Características de las secciones, tanto geométricas como del material constituyente.

4) Solicitaciones de carga.

2.4.1 Representación espacial de la estructura. PLANT trabaja por medio de estructuras planteadas en base a barras descritas por

medio de sus puntos extremos, con su respectiva ubicación espacial dada en coordenadas

cartesianas. A estos puntos se les asocian los grados de libertad correspondientes a las

condiciones de conexión dadas por el problema, tales como nudos desplazables o fijos, con o

sin transmisión de momento (KUCK y HOFFMEISTER, 1988; LOPETEGUI et al., 1987).

20

Page 25: Análisis computacional no lineal de estructuras de acero ...

19 23 2620 24Y

2521

14

10

6

2

16

12

8

4

18 22

15 Z 17

13

11 7 9

53

1

FIGURA 2.2 Descripción de una estructura simple mediante barras y nudos.

2.4.2. Descripción de las secciones transversales. Como se consideran tanto el análisis elástico y plástico de las estructura, se han incluido

dos formas de representar las secciones transversales de los elementos (KUCK y

HOFFMEISTER, 1988; LOPETEGUI et al., 1987):

1) Para los cálculos de tipo elástico, se ingresan directamente los valores de área de la

sección, momentos de inercia y torsionales, módulo de elasticidad y corte, distancia

entre el centro de gravedad y corte, constante de alabeo y área interna de Brent (para

secciones tipo cajón).

2) Para los cálculos de tipo elastoplástico, la descripción geométrica del perfil debe hacerse

mediante láminas. Dichas láminas se describen mediante coordenadas de inicio y fin,

referidas a un sistema que tiene como origen el centro de gravedad de la sección.

Además para cada lámina se incluirá el espesor y los valores de ordenadas de alabeo y

tensiones residuales de cada extremo. A estos datos se les debe adjuntar información general

de la sección como módulo de elasticidad y corte, esfuerzo de fluencia y distancia del centro de

gravedad al centro de corte (LOPETEGUI et al., 1987).

21

X

Page 26: Análisis computacional no lineal de estructuras de acero ...

1,9

15,015,0

1,1

Y

14,05

14,05

1,9

Z

Lámina

e

[cm]

yi

[cm]

zi

[cm]

Wi

[cm2]

yk

[cm]

zk

[cm]

Wk

[cm2] σi

[kN/cm2]

σi

[kN/cm2]

1 1,9 -15,0 -14,05 210,0 15.0 -14,05 -210,0 0,0 0,0

2 1,1 0,0 -14,05 0,0 0,0 14,05 0,0 0,0 0,0

3 1,9 -15,0 14,05 -210,0 15,0 14,05 210,0 0,0 0,0

FIGURA 2.2 Ejemplo de un perfil representado con tres láminas para cálculos

elastoplásticos.

2.4.3. Solicitaciones de carga.

Se puede distinguir tres tipos de cargas aplicables a la estructura (KUCK y

HOFFMEISTER, 1988; LOPETEGUI et al., 1987):

1) Cargas puntuales, ingresadas en forma vectorial con respecto a un sistema global de

coordenadas.

2) Momentos, ingresados en forma vectorial.

3) Cargas dinámicas, ingresadas como aceleraciones basales por medio de un archivo de

datos.

Además, de acuerdo a la modalidad de análisis realizada, a dichas solicitaciones se les

debe adjuntar un código que exprese el uso que deberán tener dentro de los cálculos, los

cuales son:

1) Cargas multiplicadas por un factor adimensional, a fin de estudiar su comportamiento

frente a las reacciones internas de la estructura (por ejemplo, en análisis de carga

última).

22

Page 27: Análisis computacional no lineal de estructuras de acero ...

2) Cargas que permanecen constantes durante el análisis completo (por ejemplo, las de

peso propio).

3) Cargas que producen perturbaciones iniciales en la estructura, y por ello solamente se

incluyen en la primera iteración del análisis (por ejemplo, para calcular pandeo de

columnas se necesita incluir, además de la carga compresiva axial, una carga

perpendicular al eje del elemento, ubicada en un punto conveniente).

4) Cargas para el cálculo de valores propios (por ejemplo, frecuencias propias).

2.5. Cálculos dinámicos utilizando PLANT. Por medio de la integración de los esfuerzos que provocan las deformaciones, PLANT

permite calcular las reacciones internas de la sección en cada extremo de la barra. El vector de

las fuerzas resultantes se obtiene mediante la suma de las fuerzas de reacción. Para el caso de

un vector de fuerzas que incluye momentos, dicha suma se calcula aplicando la superposición

de vectores de rotación para distintos sistemas de coordenadas que fue explicada en los

Párrafos 2.2.3, 2.2.4 y 2.2.5 (KUCK y HOFFMEISTER, 1988; LOPETEGUI et al., 1987).

La intención de crear un programa que obtenga reacciones por medio de integración es

precisamente abarcar los casos en que la solicitación implica un mayor riesgo, y detectar si es

que en alguno de los extremos de las barras en las cuales se ha discretizado la estructura se ha

producido alguna plastificación que pueda inducir deformaciones adicionales, o bien

comprometer la capacidad de soporte.

En lo referente al cálculo de estructuras sometidas a terremotos, PLANT posee

subrutinas adaptadas para el análisis dinámico, basado en la ecuación que expresa la relación

de equilibrio entre la aceleración del suelo y las reacciones de la estructura frente a los

desplazamientos (LOPETEGUI et al., 1987):

)(tQyKyCyM =++ &&& (2.71)

La resolución se efectúa mediante las ecuaciones de Newmark, que expresan la

integración de la velocidad y el desplazamiento en pequeños intervalos de tiempo.

2.5.1. El método de Newmark. Este método propuesto originalmente por N. Newmark (1959) incluye en su formulación

variados métodos que usan intervalos de tiempo para la solución de ecuaciones lineales y no

lineales. Dentro de las ecuaciones se utilizan los parámetros β y γ, los cuales sirven para

expresar la forma en que varía la aceleración a través del tiempo (PAZ, 1997).

23

Page 28: Análisis computacional no lineal de estructuras de acero ...

La expresión para el incremento de la velocidad, considerando intervalos de tiempo de

igual longitud (PAZ, 1997):

tt ΔΔ+Δ=Δ yyy i &&&&& γ (2.72)

Además, el incremento del desplazamiento, considerando también intervalos de tiempo

de igual longitud (PAZ, 1997):

22

21 ttt ΔΔ+Δ+Δ=Δ yyyy ii &&&&& β (2.73)

Con respecto al parámetro γ, se han observado que su valor óptimo es γ = 12 , ya que

cualquier valor distinto a éste introduce un efecto de amortiguación superfluo al problema.

Atendiendo a esto, y combinando las Ecs. 2.72 y 2.73, es posible hallar las siguientes

expresiones para el incremento de la aceleración y la velocidad (PAZ, 1997):

ii yyyy &&&&&βββ 2111

2 −Δ

−ΔΔ

=Δtt

(2.74)

ii yyyy &&&& tt

Δ⎟⎟⎠

⎞⎜⎜⎝

⎛−+−Δ

Δ=Δ

βββ 411

21

21 (2.75)

Además, si se considera la Ec. 2.71 de movimiento de la estructura en forma

incremental, se tiene:

QyKyCyM Δ=Δ+Δ+Δ &&& (2.76)

Si en la Ec. 2.76 se introduce lo obtenido en las Ecs. 2.74 y 2.75, es posible hallar una

expresión que relacione el incremento del desplazamiento con el resto de las fuerzas que

participan en el movimiento (PAZ, 1997):

iiiii

iii yCyMy

CyMQyK

CM&&&& ⎟⎟

⎞⎜⎜⎝

⎛−Δ−++

Δ+Δ=Δ⎟⎟

⎞⎜⎜⎝

⎛+

Δ+

Δ ββββββ 411

2222 tttt

(2.77)

En la Ec. 2.77 es posible asumir lo siguiente:

ii*

i KCMK +Δ

=tt ββ 22 (2.78)

24

Page 29: Análisis computacional no lineal de estructuras de acero ...

Y además:

iiiii

i* yCyMy

CyMQQ &&&& ⎟⎟

⎞⎜⎜⎝

⎛−Δ−++

Δ+Δ=Δ

ββββ 411

22t

t (2.79)

Reemplazando las Ecs. 2.78 y 2.79 en la Ec. 2.77 se obtiene:

**i QyK Δ=Δ (2.80)

En todas las ecuaciones anteriores, iC y iK son las matrices de amortiguación y

rigidez respectivamente, evaluadas en el instante de tiempo inicial t del intervalo de tiempo

(PAZ, 1997).

i

ii ttt −=Δ +1

En el uso del método de Newmark se debe seleccionar primeramente un valor numérico

para el parámetro β; el autor sugiere que 21

61 ≤≤ β . Para 6

1=β el método asume una

variación lineal de la aceleración, si bien los cálculos resultan ser condicionalmente estables.

Para 41=β , el método asume una variación lineal de la velocidad, lo que conlleva a considerar

la aceleración como constante dentro del intervalo de tiempo. Este segundo caso es el más

usado, pues ha demostrado ser estable en forma incondicional, además de poseer una

precisión satisfactoria en sus resultados (PAZ, 1997).

2.5.2. Adaptación del método de Newmark al programa PLANT. Para el cálculo de los desplazamientos, velocidades y aceleraciones resultantes en una

estructura debido a un terremoto, PLANT recoge los conceptos planteados por Newmark para

su aplicación en algoritmos que equilibran las fuerzas de reacción (inercia, amortiguación y

restauración) con las producidas por aceleraciones basales (LOPETEGUI et al., 1987).

Retomando lo expuesto en el Párrafo 2.5.1. , Newmark plantea las siguientes

ecuaciones para calcular el incremento de la velocidad y desplazamiento en un intervalo de

tiempo dado:

tt ΔΔ+Δ=Δ yyy i &&&&& γ (2.72)

22

21 ttt ΔΔ+Δ+Δ=Δ yyyy ii &&&&& β (2.73)

Si consideramos que la variación de la aceleración comprende la diferencia entre los

valores extremos del intervalo, entonces se tiene que:

25

Page 30: Análisis computacional no lineal de estructuras de acero ...

i1i yyy &&&&&& −=Δ + (2.81)

Con la Ec. 2.81 es posible ampliar las Ecs. 2.72 y 2.73. Recordando además que los

valores óptimos para el análisis son β = 14 , γ = 1

2 , se obtiene (KUCK y HOFFMEISTER, 1988;

LOPETEGUI et al., 1987):

( tt Δ−+Δ=Δ + iii yyyy &&&&&&& 121 ) (2.82)

( ) 21

2

41

21 ttt Δ−+Δ+Δ=Δ + iiii yyyyy &&&&&&& (2.83)

De la Ec. 2.83 es posible obtener la siguiente expresión para &&yi 1+ :

ii1i yyyy &&&&& −Δ

−ΔΔ

=+ tt44

2 (2.84)

La Ec. 2.84 puede sustituirse en la Ec. 2.82, a fin de expresar la variación de la

velocidad en función de los valores para el instante t = ti :

iyyy && 22−Δ

Δ=Δ

t (2.85)

Además, teniendo presente que Δ& & &y y yi 1 i= −+ , se obtendrá de la Ec. 2.85 una nueva

expresión:

ii yyy && −ΔΔ

=+ t2

1 (2.86)

Como se observa, las Ecs. 2.84 y 2.86 establecen una relación entre desplazamiento,

velocidad y aceleración en los instantes t = ti+1 y t = ti . Si además retomamos la Ec. 2.71,

ésta puede quedar determinada para el instante t = ti+1 , resultando (LOPETEGUI et al., 1987):

1i1i1i1i QyKyCyM ++++ =++ &&& (2.87)

Como , se tiene de la Ec. 2.87 : yyy i1i Δ+=+

i1i1i1i yKQyKyCyM −=Δ++ +++ &&& (2.88)

26

Page 31: Análisis computacional no lineal de estructuras de acero ...

Es posible ahora sustituir las Ecs. 2.84 y 2.86 en la Ec. 2.88 :

i1iiii yKQyKyyCyyyM −=Δ+⎟⎠⎞

⎜⎝⎛ −ΔΔ

+⎟⎠⎞

⎜⎝⎛ −

Δ−Δ

Δ +&&&&ttt

2442 (2.89)

De la Ec. 2.89 se puede separar iyΔ a un lado de la igualdad:

iii1i yKyMyCMQyKCM −+⎟⎠⎞

⎜⎝⎛ +Δ

+=Δ⎟⎠⎞

⎜⎝⎛ +

Δ+

Δ + &&&ttt

4242 (2.90)

En la Ec. 2.90 es posible asumir los siguientes valores auxiliares:

KCMK S +Δ

=tt

242 (2.91)

ii1iS

1i yMyCMQQ &&& +⎟⎠⎞

⎜⎝⎛ +Δ

+= ++ t4

(2.92)

Reemplazando las Ecs. 2.91 y 2.92 en la Ec. 2.90, se obtiene una expresión equivalente

a un problema estático (LOPETEGUI et al., 1987):

iS

1iS yKQyK −=Δ + (2.93)

Para el caso de la Ec. 2.93, el programa obtiene las reacciones que equivalen a iyK

mediante integración, mientras que iyΔ se calcula por los métodos clásicos de resolución de

sistemas de ecuaciones (KUCK y HOFFMEISTER, 1988; LOPETEGUI et al., 1987).

Para optimizar el resultado de iyΔ que se obtiene de la Ec. 2.93, se debe retomar lo

planteado en la Ec. 2.90, y establecer que las fuerzas de reacción para yyy i1i Δ+=+ se

determinen por medio de integración de las secciones, es decir (KUCK y HOFFMEISTER, 1988;

LOPETEGUI et al., 1987):

( )yyKyMyCMQyCM iii1i Δ+−+⎟⎠⎞

⎜⎝⎛ +Δ

+=Δ⎟⎠⎞

⎜⎝⎛

Δ+

Δ + &&&ttt

4242 (2.94)

De manera análoga a la Ec. 2.93, en la Ec. 2.94 posible distinguir fuerzas que dependen

de las reacciones internas ( ) , otras que dependen de factores asociados al problema sR

27

Page 32: Análisis computacional no lineal de estructuras de acero ...

dinámico como son masa, amortiguamiento y tiempo ( ) , lo que se resume en las siguientes

fórmulas (LOPETEGUI

MR

et al., 1987):

( )yyKR iS Δ+= (2.95)

yCMRM Δ⎟⎠⎞

⎜⎝⎛

Δ+

Δ=

tt24

2 (2.96)

Reemplazando las Ecs. 2.95 y 2.96 en la Ec. 2.94, y aprovechando la sustitución de la

Ec. 2.92, se tiene:

(2.97) SS

1iM RQR −= +

Lo anterior sólo se cumple si los desplazamientos obtenidos en la Ec. 2.93 por medio de

la solución del sistema de ecuaciones satisfacen lo planteado en la Ec. 2.97, cosa que no

siempre sucede debido a que es la resultante que se obtiene mediante la integración de las

reacciones, la cual también considera la plastificación de alguna parte de la sección si ésta

alcanza esfuerzos superiores al de fluencia del material; es por ello que se producen fuerzas

residuales que rompen el equilibrio, las cuales se pueden calcular reordenando la Ec. 2.97 de la

siguiente forma (LOPETEGUI

SR

et al., 1987):

(2.98) MSS

1ides RRQF −−= +

Dicho vector de fuerzas residuales es controlado por algoritmos del programa PLANT,

puesto que es utilizado para aplicar los siguientes criterios de convergencia:

1) El módulo del vector de las fuerzas residuales deberá ser menor que un valor de

tolerancia establecido previamente.

2) El módulo del vector de las fuerzas residuales para el presente paso de tiempo deberá

ser menor que el del paso de tiempo anterior.

3) El trabajo realizado por las fuerzas residuales deberá ser menor que el trabajo realizado

por las fuerzas que solicitan la estructura.

4) El trabajo realizado por las fuerzas residuales en el presente paso de tiempo deberá ser

menor que el trabajo realizado por las fuerzas residuales del paso de tiempo anterior.

28

Page 33: Análisis computacional no lineal de estructuras de acero ...

Si alguna de las condiciones anteriores no se cumple, entonces el programa ejecuta una

subrutina de optimización de cargas y deformaciones, en donde a las fuerzas residuales se les

restan sus componentes que no realizan trabajo en los estados de carga - deformación que se

obtienen por integración. Dicha condición se determina mediante la ortogonalización de estados

de carga y deformación que fue explicada en el Párrafo 2.2 (LOPETEGUI et al., 1987).

29

Page 34: Análisis computacional no lineal de estructuras de acero ...

CAPÍTULO III : PROGRAMAS DE COMPUTACIÓN PARA ANÁLISIS DE ESTRUCTURAS

AISLADAS EXISTENTES EN EL MERCADO

3.1. Programa N-PAD. Fue el primer programa desarrollado específicamente para el cálculo de estructuras

aisladas sísmicamente. Funciona en computadores IBM o compatibles, y es propiedad de Base

Isolation Consultants of San Francisco (California). En él se modela explícitamente el

comportamiento no-lineal del aislador, pero se simplifica el modelamiento de la superestructura.

La aproximación se debe al supuesto que el aislador, al modificar el período y aumentar la

energía disipada, reduce la transmisión de esfuerzos a través de la base a tal punto que la

superestructura permanece dentro del rango elástico. En la representación de ésta se asumen

diafragmas rígidos, de tal manera que hay sólo dos grados de libertad posibles en cada piso:

dos de traslación y uno de rotación. Se puede especificar un amortiguamiento viscoso

equivalente para cada modo de la superestructura (NAEIM y KELLY, 1999).

Este programa trabaja con dos modelos de comportamiento de material para representar

la aislación: elastoplástico y bilineal, aparte de éstos también se puede representar el

comportamiento lineal. Estos modelos consideran que las relaciones fuerza - deformación se

producen dentro de un plano de corte. También se puede incluir para el aislador un coeficiente

de amortiguación viscosa y la rigidez vertical (NAEIM y KELLY, 1999).

La configuración de la superestructura y los aisladores en el N-PAD tienden a resultados

eficientes desde el punto de vista computacional. La desventaja de este programa radica en que

no está diseñado para obtener el comportamiento completo de la superestructura, además de la

falta de un modelo que considere el endurecimiento posterior a la fluencia que presentan

algunos tipos de aisladores (NAEIM y KELLY, 1999; SKINNER et al., 1996).

3.2. Programas 3D-BASIS. Corresponde a una serie de programas ampliamente difundidos para el cálculo de

estructuras con aislación sísmica. Su primera versión fue desarrollada en la State University of

New York con sede en Buffalo el año 1989, y fue posteriormente actualizada en 1991. En él se

representa la superestructura con un modelo lineal elástico similar al del N-PAD, pero además

se incorporan variados modelos para representar los comportamientos bilineales, friccionales o

lineales viscosos que pueda presentar un aislador. El modelo bilineal está representado con el

modelo de Wen, pero la respuesta está desacoplada en las dos direcciones horizontales (WEN,

1976). Los elementos friccionales consideran cargas bidireccionales e incorporan un coeficiente

de fricción que varía con la velocidad de deslizamiento. Los soportes elásticos con

amortiguación moderada se pueden representar también con elementos elásticos lineales y

30

Page 35: Análisis computacional no lineal de estructuras de acero ...

viscosos lineales. El 3D-BASIS no incorpora ninguna capacidad vertical de análisis (NAEIM y

KELLY, 1999).

En el 3D-BASIS se implementó un esquema de solución eficiente, en el cual las fuerzas

de los elementos no lineales se trasladan al lado derecho de la ecuación y se resuelven

iterativamente. Sin embargo, al igual que el N-PAD, no tiene la capacidad de modelar una

superestructura general en tres dimensiones ni considerar el posible endurecimiento del

aislador. Actualmente existen versiones del 3D-BASIS para diferentes tipos de plataformas y

estaciones de trabajo. También se han creado versiones adaptadas para diferentes

necesidades de cálculo estructural, como el 3D-BASIS-M (para varias estructuras soportadas

por una única base aislada), el 3D-BASIS-ME (para estanques con aislación sísmica), y el 3D-

BASIS-TABS (interface con el programa de análisis estructural ETABS). La distribución del 3D-

BASIS se hace a través del National Center for Earthquake Engineering Research (NCEER) de

la State University of New York en Buffalo (EE.UU.), y también en el National Information

Service for Earthquake Engineering (NISEE) de la University of California en Berkeley (NAEIM y

KELLY, 1999).

3.3. Programa ETABS. El programa ETABS es uno de los más populares para el análisis dinámico estructural

en la zona oeste de Estados Unidos. Ha sido desarrollado por Computer and Structures of

Berkeley (California). A partir de su sexta versión se le han introducido numerosos elementos

no-lineales, los cuales son apropiados para la modelación de aisladores sísmicos. Éstos

incluyen elementos bilineales simples con endurecimiento constante y elementos viscosos con

velocidades de exponente variable. Al combinar estos elementos se puede modelar el

comportamiento de aisladores de elastómero de alto amortiguamiento, con núcleo de plomo, o

del tipo friccional. En un análisis de historial de tiempo el modelo de una superestructura

tridimensional completa de comportamiento lineal se descompone en sus formas modales y

luego se combina con los elementos no-lineales. Estos elementos no-lineales concentrados

también se pueden usar dentro de la superestructura, por ejemplo, para modelar disipadores

pasivos de energía. El uso de elementos especiales como aberturas (“gaps”) y resortes

(“springs”) hace posible la modelación de la tensión neta y el levantamiento del aislador. En este

caso, sin embargo, las masas no producen efecto en el sentido vertical, por lo que se subestima

la fuerza de impacto que se produce cuando un aislador levantado retorna a su posición de

equilibrio. Una característica importante de este programa es la facilidad con que se pueden

modelar losas de piso no-rígidas (NAEIM y KELLY, 1999).

31

Page 36: Análisis computacional no lineal de estructuras de acero ...

3.4. Programa SAP-2000 Nonlinear. El programa SAP-2000 pertenece a una serie de programas desarrollados por Edward L.

Wilson en la University of California (Berkeley, EE.UU.) desde los primeros años de la década

del ‘70. En dicha época, las versiones más populares de esta serie eran SAP-IV, NONSAP y

SOLIDSAP. Posteriormente, con la aparición de los computadores personales, aparecen

nuevas versiones para este formato a cargo de la Computer and Structures (Berkeley,

California). La última generación es la SAP-2000, diseñada para ejecutarse en ambiente

Microsoft Windows, e incluye interfases gráficas que permiten entre otras cosas la visualización

de la estructura diseñada, deformaciones a escala, y animaciones en tiempo real de

desplazamientos en un historial de carga a través del tiempo (CSI, 1997; NAEIM y KELLY,

1999).

La serie SAP-2000 está compuesta por los programas SAP-2000, SAP-2000 PLUS y

SAP-2000 Nonlinear. Todos estos programas incluyen sistemas rápidos de solución de

ecuaciones, solicitaciones estructurales de cargas o deformaciones, vigas no prismáticas,

elementos tipo cáscara de alta precisión, análisis dinámico con vectores propios o de Ritz,

diferentes tipos de sistemas coordenados, opciones de constricción de puntos, fusión de mallas

creadas en forma independiente, elementos de resorte para todos los grados de libertad,

múltiples análisis dinámicos en un sólo cálculo, y el diseño y optimización de estructuras de

acero o concreto. La versión SAP-2000 Nonlinear es de especial interés para el modelamiento

de edificios aislados sísmicamente, pues incluye variados elementos no lineales que simulan el

comportamiento de aisladores elastoplásticos o friccionales, amortiguadores viscosos, entre

otras no-linealidades localizadas. El SAP-2000 Nonlinear utiliza un esquema de solución similar

al del 3D-BASIS, en el cual las fuerzas de los elementos no-lineales se colocan en el lado

derecho de la ecuación de movimiento, que luego se resuelve en forma iterativa hasta alcanzar

la convergencia (CSI, 1997; NAEIM y KELLY, 1999).

32

Page 37: Análisis computacional no lineal de estructuras de acero ...

CAPÍTULO IV : MODELOS DE AISLACIÓN SÍSMICA

4.1. El objetivo de la aislación sísmica. Un aislador sísmico pasivo, a la luz del análisis estructural, es un elemento conector que

en virtud de sus propiedades mecánicas produce un desacople del movimiento de una

estructura con respecto a su base. Su objetivo principal es producir una concentración de

deformaciones en la base, de tal manera que la inercia y la rigidez relativa mayor que tiene la

estructura montada sobre él produzcan un efecto análogo al que tendría un cuerpo rígido

apoyado sobre una base muy blanda, es decir, mientras el suelo se desplaza, la estructura

tiende a mantener su posición original. Como se muestra en la FIGURA 4.1. , este hecho hace

ventajosa la implementación de aisladores, puesto que los efectos más dañinos para las

estructuras se deben precisamente a los esfuerzos resultantes del desplazamiento relativo

entre pisos (“drift”) (BOZZO, 1996; ASOCIACIÓN CHILENA DE SISMOLOGÍA E INGENIERÍA

SISMICA (ACHISINA), 2001).

abab

FIGURA 4.1 Comportamiento de una estructura de base fija y con aislación basal.

En términos generales, cuando se habla de un modelo de aislación, el concepto va

enfocado a representar mediante una ecuación las fuerzas restauradoras (lineales o no lineales,

según sea el caso) localizadas en la base de una estructura (BOZZO, 1996; ORDÓÑEZ, 1996).

Es decir, para un elemento aislador:

)(tFfxcxm rbaisbb =++ &&& (4.1)

mb : Masa asociada al aislador, generalmente referida a la base de la estructura.

cais : Amortiguamiento viscoso correspondiente al aislador.

xb : Grado de libertad donde está involucrado el efecto del aislador.

33

Page 38: Análisis computacional no lineal de estructuras de acero ...

: Función que representa la fuerza restauradora que varía según el tipo de rf

aislador.

F(t) : Función que representa la solicitación de carga sobre el aislador en un instante

de tiempo determinado.

Al incluir este elemento aislador en las ecuaciones correspondientes al sistema

estructural analizado, se obtiene la siguiente ecuación matricial (ORDÓÑEZ, 1996; SKINNER et

al., 1996):

( ) )(taisLaisL FRXKXCCXM =++++ &&& (4.2)

X : Vector de los grados de libertad del sistema que forman la estructura y el

aislador.

M : Matriz de masa del sistema.

LC : Matriz de amortiguación para la estructura como cuerpo libre.

aisC : Matriz que contiene los amortiguamientos viscosos de los aisladores en los

grados de libertad correspondientes, y ceros en las restantes posiciones.

LK : Matriz de rigidez de la estructura como cuerpo libre.

: Vector que contiene las fuerzas restauradoras en los grados de libertad aisR

correspondientes, y ceros en las otras posiciones.

: Vector de las fuerzas que solicitan la estructura en un instante de tiempo. )(tF

M2

M1

Mb Rais

K2 , C2

K1 , C1

K2 , C2

K1 , C1

MbRais

X2

X1

Xb

M1

M2

ab ab

FIGURA 4.2 Ejemplo de una estructura lineal de dos pisos montada sobre un sistema

de aislación.

34

Page 39: Análisis computacional no lineal de estructuras de acero ...

Sin embargo, los planteamientos anteriores conllevan a dos hechos sustanciales dentro

de la teoría y la ejecución del análisis de una estructura aislada (BOZZO, 1996; ORDÓÑEZ,

1996):

1) La concepción de modelos matemáticos que representen el comportamiento a través del

tiempo del dispositivo aislador utilizado.

2) La necesidad de revisar y adaptar los procedimientos de análisis estructural dinámico

convencionales a estos nuevos elementos.

A continuación se presentan algunos de los dispositivos de aislación pasiva usados en la

actualidad; junto a ellos está su correspondiente modelo matemático adecuado para el análisis

estructural (BOZZO, 1996).

4.2. Aislador de goma con bajo amortiguamiento (Low-damping rubber bearing: LDB). Históricamente, el primer uso de un dispositivo elástomérico de bajo amortiguamiento

con fines antisísmicos data de 1969, durante la construcción del Colegio Pestalozzi en Skopje

(Macedonia). En aquel entonces, un grupo de ingenieros suizos ideó una forma de desacoplar

la estructura de su base, montado ésta sobre bloques macizos de goma natural (NAEIM y

KELLY, 1999).

En la actualidad, estos dispositivos de aislación son fabricados con varias capas

horizontales de neopreno (o goma natural) alternadas con planchas delgadas de acero; éste

conjunto se somete a calor y presión para adherir ambas fases por vulcanización. Esta

composición le confiere al aislador una gran rigidez axial y una gran flexibilidad al corte

(ACHISINA, 2001; BOZZO, 1996; NAEIM y KELLY, 1999).

Desde el punto de vista numérico, este tipo de aislador es el más directo de tratar.

Básicamente es un elemento con alta rigidez vertical (o axialmente indeformable, en el caso de

un análisis pseudo-tridimensional), rigidez horizontal lineal baja y amortiguación viscosa baja o

nula; esto le permite ser analizado por los métodos convencionales de la dinámica de

estructuras. La siguiente es su ecuación de fuerza restauradora (ACHISINA, 2001; BOZZO,

1996; NAEIM y KELLY, 1999; SKINNER et al., 1996):

baisr xkf = (4.3)

En la ecuación anterior se debe tener presente:

35

Page 40: Análisis computacional no lineal de estructuras de acero ...

1) La rigidez lineal del aislador será mucho menor que la rigidez obtenida por

condensación estática de la estructura para cualquier otro grado de libertad incluido en

el análisis.

aisk

2) El amortiguamiento viscoso del aislador será muy bajo o prácticamente nulo.

Xb

FIGURA 4.3 Esquema de un aislador LDB junto a su modelo dinámico.

Las ventajas de este sistema de aislación radican en su bajo costo de producción y

mantenimiento, además de su fácil modelamiento matemático (BOZZO, 1996; NAEIM y KELLY,

1999). Su desventaja está en que a la mayoría de los edificios aislados les conviene incluir un

elemento de amortiguación adicional que disipe energía dinámica, por lo que es necesario

considerar la instalación de estos amortiguadores adicionales (NAEIM y KELLY, 1999).

4.3. Aislador de goma de alto amortiguamiento (High-damping rubber bearing: HDB). El primer dispositivo aislador de goma que incluía entre sus propiedades un alto

amortiguamiento data de 1982, y fue creado en la Malaysian Rubber Producers’ Reseach

Association. Se obtuvo un notable incremento de la amortiguación al añadir a la goma algunos

aditivos tales como bloques de carbón extrafino, aceites y resinas; el resto de las características

de fabricación son las mismas de los aisladores LDB (NAEIM y KELLY, 1999).

Numéricamente, este aislador tiene el mismo tratamiento de los LDB (BOZZO, 1996;

NAEIM y KELLY, 1999). Sin embargo, se debe tener presente que en este caso el dispositivo

tiene su propia amortiguación inherente a su composición (NAEIM y KELLY, 1999).

Kais

Kais

Mb

Cais

Mb

Placas de goma alternadas con placas de acero

Placas de acero para conexión

Xb

Placas de goma con aditivos, alternadas con placas de acero

Placas de acero para conexión

FIGURA 4.4 Esquema de un aislador HDB junto a su modelo dinámico.

36

Page 41: Análisis computacional no lineal de estructuras de acero ...

Considerando lo anterior, la fuerza restauradora del aislador HDB será la misma

expresada en la Ec. 4.3, pero con un valor de amortiguación significativamente alto (BOZZO,

1996).

Las ventajas del aislador HDB son su bajo costo de producción y mantenimiento (puesto

que requiere de la misma tecnología de un LDB), además de no requerir la instalación de

dispositivos adicionales para agregar amortiguamiento a la estructura como en el caso de los

LDB (NAEIM y KELLY, 1999). Su desventaja se encuentra precisamente en la modelación

matemática de dicha amortiguación. Los ensayos de laboratorio han demostrado que el

amortiguamiento varía significativamente en función de la deformación (ACHISINA, 2001;

NAEIM y KELLY, 1999). Teniendo en cuenta el valor ζ (cuociente entre el amortiguamiento

viscoso y el amortiguamiento crítico del aislador), se ha observado que para valores de hasta el

20% de deformación por corte se tiene un ζ de alrededor del 0.3 , mientras que entre 20% y

120% de deformación por corte, el valor de ζ se reduce a 0.05. Esto conlleva a que el

comportamiento de este aislador no esté claramente definido; si bien lo aceptado para el diseño

es usar un valor de ζ = 0.1 y asumir el modelo clásico de las Ecs 4.1 y 4.3 (BOZZO, 1996;

NAEIM y KELLY, 1999), es decir:

)(tFxkxcxm baisaisbb =++ &&& (4.4)

4.4. Aislador de goma con núcleo de plomo (Lead - rubber bearing: LRB). Este dispositivo de aislación fue creado en Nueva Zelanda el año 1975 por el ingeniero

William H. Robinson (SKINNER et al., 1996). Básicamente, se trata de un aislador LDB que

tiene incorporado en el centro un cilindro de plomo que lo atraviesa longitudinalmente, el cual

está firmemente confinado por las placas de acero del aislador (NAEIM y KELLY, 1999;

SKINNER et al., 1996). Debido a que el plomo tiene la capacidad de recuperar la configuración

cristalina a temperatura ambiente luego de una deformación plástica, además de poseer un

límite de fluencia al corte más bajo que el de la mayoría de los metales (10 MPa), se observa en

este tipo de aislador un comportamiento elastoplástico, el cual se hace evidente en la forma

histerética de la curva de carga versus deformación del LRB sometido a un test de carga cíclica

(ACHISINA, 2001; SKINNER et al., 1996). En lo referente al análisis numérico, existen dos

modelos utilizados para representar este comportamiento. El primero es el modelo bilineal, en el

cual la histéresis obtenida en el test de carga cíclica es aproximada por medio de rectas

(ACHISINA, 2001; SKINNER et al., 1996).

F(t)

37

Page 42: Análisis computacional no lineal de estructuras de acero ...

fy

δy

k f

k i

k i

X(t)

FIGURA 4.5 Curva histerética, aproximada mediante modelo bilineal.

Como se observa en la FIGURA 4.5, mediante este modelo es posible además obtener

valores que sirven para caracterizan al aislador LRB (SKINNER et al., 1996):

1) Una rigidez inicial ( ki ), asociada a la reacción del aislador frente a cargas de baja

magnitud. Se obtiene al trazar una recta tangente a las zonas de menor carga del ciclo.

2) Una rigidez post - fluencia ( kf ), asociada a la reacción del aislador frente a las cargas

más altas del ciclo. Se obtiene al trazar una recta tangente a la curva que pase por el

punto de mayor desplazamiento de la histéresis.

3) Una carga de fluencia ( fy ), con su correspondiente desplazamiento de fluencia ( δy ),

que establecen un valor convencional de transición entre las relaciones carga -

deformación antes mencionadas. Se obtiene en el punto de intersección de la recta de

rigidez post - fluencia con la de rigidez inicial, esta última debe pasar por el origen de

coordenadas (representando así el estado previo a la primera fluencia del aislador en el

ciclo).

La principal ventaja de este modelo es su simplicidad, pues mediante algoritmos

sencillos es posible determinar si el aislador LRB está sometido a una carga que comprometa

su rigidez inicial o de post - fluencia (SKINNER et al., 1996). Su desventaja radica en que la

región de transición en el estado elastoplástico se aproxima mejor con una curva y no con una

38

Page 43: Análisis computacional no lineal de estructuras de acero ...

recta, por lo que se están considerando deformaciones mucho menores que las reales

(ACHISINA, 2001).

El segundo método utilizado para representar el comportamiento de un aislador LRB es

el modelo histerético de Bouc - Wen, en el cual se descompone la reacción elastoplástica en

una componente directamente proporcional al desplazamiento (resorte lineal) y otra

dependiente de la variable z, como se observa en la Ec. 4.5 (ACHISINA, 2001; BOZZO, 1996;

COMPUTER AND STRUCTURES INC. (CSI), 1997; ORDÓÑEZ, 1996; WEN,1976):

( ) zfxkf ybir αα −+= 1 (4.5)

La variable z es adimensional y su comportamiento viene dado por la siguiente

ecuación diferencial (ACHISINA, 2001; BOZZO, 1996; CSI, 1997; ORDÓÑEZ, 1996;

WEN,1976):

( )nb

nbb

y

zxzxzxAz &&&& γβδ

−−= −11 (4.6)

Los valores ki , fy , δy , son los mismos utilizados para caracterizar el modelo bilineal,

mientras que α = kf / ki (BOZZO, 1996; CSI, 1997; ORDÓÑEZ, 1996). Los parámetros A , β, γ, n

que aparecen en la Ec. 4.6 están relacionados con el tipo de reacción elastoplástica a través del

tiempo que se desea obtener (ACHISINA, 2001; BOZZO, 1996; ORDÓÑEZ, 1996; WEN,1976).

La principal ventaja de este modelo es su refinamiento y exactitud, pues al variar sus

parámetros es posible emular una gran variedad de comportamientos elastoplásticos que sirven

para caracterizar la respuesta de un aislador LRB en el tiempo (ACHISINA, 2001; BOZZO,

1996; CSI, 1997; ORDÓÑEZ, 1996; WEN,1976). Su desventaja radica en que se trata de un

modelo descrito mediante una ecuación diferencial, el cual al ser incorporado a la expresión

general del aislador en movimiento (Ec. 4.1) se tiene:

( )

( )⎪⎩

⎪⎨

−−=

=−+++

− nb

nbb

y

ybibaisbb

zxzxzxAz

tFzfxkxcxm

&&&&

&&&

γβδ

αα

11

)(1 (4.7)

Los problemas surgen al buscar un algoritmo que combine y resuelva satisfactoriamente

tanto el comportamiento del edificio analizado como el de los aisladores LRB incorporados,

particularmente la fuerza expresada por el parámetro z de la Ec. 4.6 (ORDÓÑEZ, 1996).

39

Page 44: Análisis computacional no lineal de estructuras de acero ...

Kais

CaisMb

Xb

Placas de goma alternadas con placas de acero

Cilindro de plomo

Placas de acero para conexión

FIGURA 4.5 Esquema de un aislador LRB junto a su modelo dinámico.

4.5. Aislador Electricité de France (EDF). Este sistema de aislación fue desarrollado durante los años ‘70 para su aplicación en la

central de energía nuclear de Koeberg (Sudáfrica) (NAEIM y KELLY, 1999). El aislador EDF se

compone de un bloque de neopreno reforzado, sobre el cual se adhiere una placa de aleación

de bronce y plomo, sobre ésta va una placa de acero inoxidable simplemente apoyada, la cual

está fijada a la base de la estructura. Esta disposición produce un efecto tal que para

solicitaciones de baja intensidad el movimiento es controlado por el bloque de neopreno

reforzado, de tal manera que reacciona análogamente a un aislador HDB. Si la solicitación

aumenta, entonces se produce el deslizamiento entre las placas de bronce - plomo y acero,

provocando una fuerza de roce con la consecuente disipación de energía (BOZZO, 1996;

NAEIM y KELLY, 1999). Se ha comprobado que para este tipo de aisladores el efecto del

neopreno reforzado rige hasta desplazamientos no mayores a 5 cm., luego de lo cual el

deslizamiento de las placas provee una fuerza de roce con un μ = 0.2 (NAEIM y KELLY, 1999).

El modelo matemático asociado a un aislador EDF consta de dos fases. Para la fase

previa al deslizamiento, es la misma Ec. 4.4 utilizada para representar un aislador HDB. En la

fase donde existe deslizamiento de las placas, éstas producen una fuerza de roce dada por la

siguiente ecuación (BOZZO, 1996):

( )ebtroce xxsignmgf && −= μ (4.8)

En la ecuación anterior, μ es el coeficiente de roce entre las superficies deslizantes, g

es la aceleración de gravedad, mt es la masa de la estructura sobre dicho aislador (no sólo la

masa de la base), sign es la función signo, xb es el desplazamiento de la base del edificio

relativo al suelo y xe es la deformación del elastómero. Al respecto, si consideramos que las

fuerzas del elastómero se encuentran en serie con las de rozamiento, entonces se tiene la

siguiente ecuación (BOZZO, 1996):

40

Page 45: Análisis computacional no lineal de estructuras de acero ...

( ) 0=−−+ ebtee xxsignmgxkxc &&& μ (4.9)

Al aplicar estás ecuaciones, se debe tener presente que en la fase inicial previa al

deslizamiento las fuerzas de corte generadas por la aceleración basal a no superan a las

fuerzas de roce generadas por la carga sobre el aislador (BOZZO, 1996): b

btt amgm >μ (4.10)

La ventaja de este aislador es que el bloque de neopreno le proporciona buena

amortiguación frente a sismos de baja intensidad, mientras que sus placas deslizantes

producen gran disipación de energía cuando las solicitaciones aumentan (BOZZO, 1996;

NAEIM y KELLY, 1999). El principal inconveniente de este sistema es que para solicitaciones

muy severas la fuerza restauradora del elastómero no es suficiente para recentrarlo, por lo que

puede incurrir en deformaciones permanentes (NAEIM y KELLY, 1999).

xe xb

Cais

Kais

Mt

μ

Placa de acero Placa de aleación bronce - plomo

Neopreno reforzado

Placas de acero para conexión

FIGURA 4.6 Esquema de un aislador EDF junto a su modelo dinámico.

4.6. Aislador elástico - friccionante (Resilient - friction base isolator: R-FBI). Este sistema aprovecha las fuerzas de roce provocadas por la velocidad relativa entre

dos superficies de distinta naturaleza que permanecen en contacto. Un aislador R-FBI está

compuesto de varias capas intercaladas de acero inoxidable y Teflón (politetrafluorotileno), en

su núcleo posee un cilindro de elastómero que lo atraviesa longitudinalmente. La idea de una

composición multilaminar es repartir en varios desplazamientos pequeños el desplazamiento

total, que de otra manera generaría una excesiva fuerza de roce debido al μ significativamente

alto que existe entre el acero y el Teflón. El propósito del cilindro central de elastómero es

proporcionar fuerza restauradora al aislador para recentrarlo después de un desplazamiento

(BOZZO, 1996; NAEIM y KELLY, 1999).

El modelo matemático de un aislador R-FBI representa la acción en paralelo del núcleo

de elastómero y las placas de Teflón (BOZZO, 1996):

)()( tFxsignmgxkxcxm btbaisbaisbb =+++ &&&& μ (4.11)

41

Page 46: Análisis computacional no lineal de estructuras de acero ...

La Ec. 4.11 no se cumple si la fuerza de corte basal junto a la fuerza restauradora

elástica del aislador son inferiores a las fuerzas de roce generadas por la carga normal sobre el

aislador (BOZZO, 1996):

xkamgm aisbtt +>μ (4.12)

Con respecto al coeficiente de roce, el valor de μ usado para el diseño es del rango de

0.03 a 0.05, el cual es bastante menor si se le compara con el μ = 0.2 utilizado para el diseño

de un aislador EDF (BOZZO, 1996). Se ha comprobado mediante ensayos de laboratorio que el

núcleo de elastómero no evita la concentración de deformaciones en una sola capa de Teflón,

por lo que se han creado aisladores R-FBI que incluyen una barra de acero que pasa por el

centro del elastómero a fin de mantener una distribución uniforme de los desplazamientos

(NAEIM y KELLY, 1999).

FIGURA 4.7 Esquema de un aislador R-FBI junto a su modelo dinámico.

4.7. Aislador de péndulo friccionante (Friction pendulum system: FPS). Este sistema fue desarrollado durante los años ‘80 en Estados Unidos (BOZZO, 1996).

Al igual que el aislador R-FBI, se basa en la disipación de energía por rozamiento. Este aislador

consiste en un apoyo esférico cubierto con Teflón montado sobre una placa cóncava de acero

pulimentado. Al desplazarse lateralmente el aislador, se rompe el equilibrio estable de la esfera

sobre la superficie cóncava, lo que produce una fuerza lateral que tiende a centrar nuevamente

el apoyo y que actúa como fuerza restauradora (ACHISINA, 2001; BOZZO, 1996; NAEIM y

KELLY, 1999).

El modelo matemático asociado a un aislador FPS es (ACHISINA, 2001; BOZZO, 1996):

( )xsigngmxR

gmf tt

r &μ+= (4.13)

Cais

Kais

μ Mb

Xb

Placas de Teflón alternadas con placas de acero

Cilindro de elastómero

Placas de acero para conexión

42

Page 47: Análisis computacional no lineal de estructuras de acero ...

R es el radio de curvatura de la placa cóncava de acero. Se puede observar que en la

Ec. 4.13 se puede obtener una analogía de la rigidez elástica en la expresión que multiplica el

desplazamiento del aislador (ACHISINA, 2001):

R

gmk t

ais = (4.14)

Como en los demás casos de aisladores friccionantes, se debe considerar que existe

una condición que impide el deslizamiento:

bt

btt xR

gmamgm +>μ (4.15)

Para el diseño de los aisladores FPS se recomienda que la presión de contacto entre el

Teflón y el acero no exceda los 40 Mpa (ACHISINA, 2001), y el coeficiente de fricción μ se

encuentre dentro del rango de 0.05 a 0.15 (BOZZO, 1996). Valores por debajo de este rango

pueden provocar que la estructura sea susceptible a moverse por acción del viento. Por otra

parte, valores por sobre el rango bloquean el deslizamiento, cancelando la mecánica aisladora

(BOZZO, 1996).

μ

Kais

Mb

Xb

Placas de conexión

Apoyo esférico recubierto de Teflón

Placa cóncava de acero

FIGURA 4.8 Esquema de un aislador FPS junto a su modelo dinámico.

43

Page 48: Análisis computacional no lineal de estructuras de acero ...

CAPÍTULO V : MÉTODO UTILIZADO PARA INCORPORAR EL MODELO DE

AISLACIÓN SÍSMICA AL PROGRAMA PLANT ORIGINAL

5.1. Modelo de aislación utilizado. Frente a las posibilidades de escoger un modelo matemático para incluir un dispositivo

de aislación sísmica dentro del programa de cálculo estructural PLANT a partir de lo enunciado

en el Capítulo IV, se ha optado por el modelo de WEN (1976). Dicha elección se debe a que

con esta ecuación es posible simular variadas respuestas elastoplásticas como así también

bilineales o lineales (BOZZO, 1996; ORDÓÑEZ, 1996; WEN, 1976; WEN, 1980). Otra razón

importante es el hecho que éste modelo está incorporado como elemento no lineal en el

programa de cálculo estructural SAP-2000® Nonlinear, el cual servirá como punto de

comparación con los resultados incluidos dentro de esta tesis (CSI,1997; NAEIM y KELLY,

1999).

El modelo de Wen se compone de una fuerza restauradora que utiliza como variable el

desplazamiento, además de una variable adimensional denominada z (WEN, 1976; WEN,

1980):

( ) zkxkzxFres αα −+= 1),( (5.1)

El comportamiento de la variable z está descrito por la siguiente ecuación diferencial

(WEN, 1976; WEN, 1980):

nn zxzxzxAz &&&& γβ −−= −1 (5.2)

Los parámetros A , α , β , γ , n que aparecen en la Ec. 5.2 son números adimensionales

que regulan cada una de las características del comportamiento del modelo (ORDÓÑEZ, 1996;

WEN, 1976):

A : Factor de escala general.

α : Razón de proporción entre la fuerza lineal y la fuerza no lineal.

β , γ : Determinan la forma de la curva.

n : Regula la suavidad de la transición entre la región lineal y no lineal.

La influencia que tienen los parámetros β y γ en la variable z se puede visualizar al

trazar la gráfica de dicha variable versus el desplazamiento, con una solicitación externa de tipo

periódica (sinusoidal a través del tiempo). Dicha solicitación debe afectar a un oscilador de un

44

Page 49: Análisis computacional no lineal de estructuras de acero ...

grado de libertad en el cual se incluyen las fuerzas de inercia, de amortiguación (viscoelástica) y

la restauradora representada por el modelo de Wen:

⎪⎪⎩

⎪⎪⎨

−−=

−+==++

− nnres

res

zxzxzxAz

zkxkzxFtPzxFxcxm

&&&&

&&&

γβ

αα1

)1(),()(),(

(5.3)

En la FIGURA 5.1 se presentan ejemplos de z versus x con ( )ttP π21sen)( = ,

m = 0.4 , c = 1 , k = 1 , α = 0.5 , A = 1 , n = 1 para diferentes valores de β y γ (WEN, 1976).

-1.0

-0.5

0.0

0.5

1.0

-3 -2 -1 0 1 2 3

X

Z

-1.0

-0.5

0.0

0.5

1.0

-3 -2 -1 0 1 2 3

X

Z

-1.0

-0.5

0.0

0.5

1.0

-2.5 -1.5 -0.5 0.5 1.5 2.5

X

Z

-4

-2

0

2

4

-3 -2 -1 0 1 2 3

X

Z

-6

-3

0

3

6

-3 -2 -1 0 1 2 3

X

Z

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

X

Z

β = 0.5 γ = 0.5

β = 0.1 γ = 0.9

β = 0.9 γ = 0.1

β = 0.5 γ = - 0.5

β = 0.25 γ = - 0.75

β = 0.75 γ = - 0.25

FIGURA 5.1 Comportamiento de la variable z con A = 1 , α = 0.5 y n = 1 para diferentes

valores de β y γ.

45

Page 50: Análisis computacional no lineal de estructuras de acero ...

Con respecto al parámetro [ [∞+∈ ,1n , entre más alto sea el valor utilizado, más dura

es la curva de transición, como se observa en la FIGURA 5.2 (ORDÓÑEZ, 1996; WEN, 1976).

Dado lo anterior, para eliminar completamente la porción curva, se entiende que +∞→n ,

aunque en la práctica se ha observado que es suficiente tomar valores del orden de n > 20

(CSI, 1997).

Z

N=1N=3N=7N=50

1.0

0.8

0.6

0.4

0.2

0 3.0 X 1.5 2.01.0 2.50.5

FIGURA 5.2 Comportamiento de la variable z con A = 1 , α = 0.5 , β = γ = 0.5 , y distintos

valores de n.

Si bien el modelo de Wen puede resultar muy versátil a la hora de representar un

comportamiento elastoplástico, sus parámetros no tienen una interpretación clara para el campo

de la ingeniería estructural. Es por ello que para el cálculo y diseño de aisladores, algunos

autores han reescrito la ecuación de la fuerza restauradora, adaptando algunos de los términos

de la versión original (BOZZO, 1996; CSI, 1997; ORDÓÑEZ, 1996;):

⎪⎩

⎪⎨⎧

−−=

−+=− nn

y

yires

zxzxzxAz

zfxkzxF

&&&& γβδ

αα1

)1(),( (5.4)

ki : Rigidez inicial (previa a la fluencia).

α : Cuociente entre la rigidez post fluencia ( kf ) y la rigidez inicial

fy : Esfuerzo de fluencia

δy : Desplazamiento de fluencia

La interpretación de los términos ki , α , fy , δy es la misma que se mencionó en el

Párrafo 4.4. Por otra parte, los parámetros A , β , γ y n conservan el significado asignado

originalmente por Y. Wen (ORDÓÑEZ, 1996). Esta versión usa z como variable adimensional,

mientras que el término δy se ha introducido para mantener la concordancia entre las unidades

46

Page 51: Análisis computacional no lineal de estructuras de acero ...

de la ecuación que representa a con las unidades de la ecuación de la fuerza restauradora

(BOZZO, 1996; CSI, 1997; ORDÓÑEZ, 1996).

z&

Con respecto a los valores más comunes utilizados para la modelación de aisladores,

los autores recomiendan A = 1 (BOZZO, 1996; CSI, 1997; DE LUCA et al., 1994; ORDÓÑEZ,

1996; WEN,1976; WEN, 1980). En cuanto a los parámetros β y γ , BOZZO (1996) propone

β = 1.4 y γ = -0.54 , mientras que la herramienta para el cálculo de aisladores del programa

SAP2000® Nonlinear utiliza β = γ = 0.5 (CSI, 1997). Como se señaló en el Párrafo 4.4, los

valores de fy y δy son convencionales y dependerán del tipo de aislador que se desee modelar

(SKINNER et al., 1996). Para la mayoría de los autores el valor más representativo para estimar

la curva de transición es n = 1 , aunque en el programa SAP2000® Nonlinear se utiliza una

variante bidireccional del modelo, la cual fue propuesta por PARK et al. (1986), y que es

equivalente a la fórmula de Wen pero con n = 2 (CSI, 1997).

5.2. Resolución de la ecuación diferencial asociada al modelo.

El modelo de Wen representa el comportamiento no lineal por medio de la variable z , la

cual está definida mediante la fórmula diferencial en la Ec. 5.3. Como en este problema la

derivada de z a través del tiempo es una función implícita de la velocidad, es necesario

resolver la ecuación mediante un método numérico que discretice la solución; esta alternativa

tiene la ventaja adicional que posibilita su incorporación al programa computacional de análisis

estructural original PLANT. En esta tesis se estudiaron dos opciones: el método de Euler y el

método de Runge - Kutta de quinto orden.

5.2.1. Solución por medio del método de Euler. Este método numérico resuelve ecuaciones diferenciales de la forma:

),( yxfxdyd

= (5.5)

Para ello, predice un valor de yi+1 por medio de la pendiente (es decir, la primera

derivada) en el i - ésimo valor que se extrapola en forma lineal sobre el intervalo de tamaño Δ x

(CHAPRA et al., 1988):

( ) xyxfyy iiii Δ+=+ ,1 (5.6)

Como el modelo de Wen también consiste en una ecuación diferencial análoga a la

planteada en la Ec. 5.5, es posible postular una solución de similares características:

47

Page 52: Análisis computacional no lineal de estructuras de acero ...

( )nn

y

zxzxzxAtxftdzd

&&&& γβδ

−−== −11),( (5.7)

Si se aplica lo planteado en la Ec. 5.6, se tiene para el paso i +1 - ésimo:

( )nii

niiii

yii zxzxzxAtzz &&& γβ

δ−−

Δ+= −

+1

1 (5.8)

Por lo tanto, la solución para zi se calcula en función de los valores de la velocidad y de

la variable z que se obtuvieron en el paso anterior. Como el problema dinámico de una

estructura sometida a vibraciones siempre parte del reposo, entonces para el primer instante de

tiempo (donde i = 1) se tienen = 0 , z0x& 0 = 0 .

5.2.2. Solución por medio del método de Runge - Kutta de quinto orden. La solución por el método de Euler tiene la ventaja de ser muy sencilla desde el punto de

vista numérico y computacional, pues se basa en una aplicación directa de la definición de

derivada de z . Sin embargo, al ser implementada dentro de un programa computacional en

lenguaje FORTRAN que simulaba un oscilador con un grado de libertad, se pudo ver que los

resultados en su mayoría presentaban un alto porcentaje de error frente a los generados por el

programa SAP2000® Nonlinear. Según CHAPRA et al. (1988) ello puede deberse a que esta

solución es muy susceptible a errores de truncamiento (es decir, debido al tipo de aproximación

utilizada). Entonces fue necesario implementar una nueva solución mediante un algoritmo más

refinado, como es el caso del método de Runge - Kutta de quinto orden.

Este es otro método de resolución de ecuaciones diferenciales que tienen la forma

planteada en la Ec. 5.5. Todos los métodos de Runge - Kutta tienen un esquema general que se

puede resumir en la siguiente expresión (CHAPRA et al., 1988):

( )hhyxyy iiii ,,1 φ+=+ (5.9)

La expresión φ se conoce como función de incremento, la cual puede interpretarse

como una pendiente representativa sobre el intervalo de x . La constante h corresponde al

mismo Δ x definido para el método de Euler. En el caso de Runge - Kutta de quinto orden, la

función de incremento toma la siguiente forma (CHAPRA et al., 1988):

( ) ( )65431 73212327901,, kkkkkhyx ii ++++=φ (5.10)

48

Page 53: Análisis computacional no lineal de estructuras de acero ...

Los términos presentes en la Ec. 5.10 corresponden a relaciones de recurrencia

definidas de la siguiente manera (CHAPRA

ik

et al., 1988):

( )( )( )( )( )( )hkhkhkhkhkyhxfk

hkhkyhxfkhkhkyhxfkhkhkyhxfk

hkyhxfkyxfk

ii

ii

ii

ii

ii

ii

578

4712

3712

272

173

6

4169

1163

43

5

3221

21

4

281

181

41

3

141

41

2

1

,,,,,

,

+−++−+=

+++=

+−+=

+++=

++=

=

(5.11a - f)

Este método es preferible al de Euler, pues genera resultados de mayor exactitud,

debido a que el error de acuerdo a serie de Taylor es de quinto orden (CHAPRA et al., 1988).

Para aplicar esta solución será necesario redefinir el modelo de Wen de la manera

propuesta por ORDÓÑEZ (1996) donde la variable independiente es el desplazamiento,

teniendo como punto de partida la expresión de la ecuación de Wen en notación diferencial:

⎟⎟⎠

⎞⎜⎜⎝

⎛−−= −

tdxdz

tdxdzz

tdxdA

tdzd nn

y

γβδ

11 (5.6)

Expresando la Ec.(5.6) en forma discretizada:

⎟⎟⎠

⎞⎜⎜⎝

ΔΔ

−ΔΔ

−ΔΔ

=ΔΔ −

txz

txzz

txA

tz nn

y

γβδ

11 (5.7)

Como Δ t es una constante positiva para todos los valores del input (en este caso,

aceleración basal), se puede omitir el valor absoluto en el término que multiplica a β en el

segundo miembro:

⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ

−ΔΔ

−ΔΔ

=ΔΔ −

txz

tx

zztxA

tz nn

y

γβδ

11 (5.8)

Lo anterior hace posible que se pueda simplificar la ecuación por Δ : t

( )xzxzzxAz nn

y

Δ−Δ−Δ=Δ − γβδ

11 (5.9)

49

Page 54: Análisis computacional no lineal de estructuras de acero ...

La Ec. 5.9 concuerda con lo planteado por ORDÓÑEZ (1996) respecto a expresar z

como función del desplazamiento. Además, es posible arreglar la Ec. 5.9 considerando que

( ) xxsignx ΔΔ=Δ , donde sign es la función signo, la cual toma el valor 1 si su argumento es

un número mayor o igual a cero, y valor -1 si su argumento es un número menor que cero:

( )( )xzxxsignzzxAz nn

y

Δ−ΔΔ−Δ=Δ − γβδ

11 (5.10)

Ahora es posible factorizar Δ x en el lado derecho:

( )( ) xzxsignzzAz nn

y

Δ−Δ−=Δ − γβδ

11 (5.11)

Entonces, la Ec. 5.11 puede resolverse mediante Runge - Kutta de quinto orden:

( )( ) xzxsignzzAzz ni

nii

yii Δ−Δ−+= −

−−−− 1

1111

1 γβδ

(5.12)

La función de incremento φ en este caso será:

( )( )nn

y

zxsignzzA γβδ

φ −Δ−= −11 (5.13)

5.3. Adaptación de las soluciones del modelo de Wen al programa PLANT. Para realizar un análisis elastoplástico, el programa PLANT aplica inicialmente la carga a

la estructura, asumiendo que ésta se deforma elásticamente. Tales deformaciones son

introducidas en un algoritmo que obtiene las reacciones internas correspondientes por medio de

integración de las secciones. Este proceso de integración toma en cuenta el comportamiento

del material, de manera que si una parte de la sección alcanza un esfuerzo correspondiente al

valor de fluencia, entonces la porción de área implicada cesa de incrementar su capacidad de

soporte, es decir, plastifica. Para llevar a cabo esta integración, el programa tiene como punto

de partida las propiedades geométricas y constitutivas de las secciones del elemento, como fue

señalado en el Párrafo 4.1.

Para el caso del aislador sísmico representado por medio del modelo de Wen sucede lo

contrario, pues no se conoce la sección, pero sí la ley que rige su comportamiento. Por ello fue

necesario trabajar en la parte del programa que equilibra las fuerzas de acción con las de

reacción, de manera tal que se incluyeron las reacciones producidas por la variable z a una

barra que funcionara axialmente en forma análoga a un resorte.

50

Page 55: Análisis computacional no lineal de estructuras de acero ...

Como el programa utiliza como aproximación el resultado elástico, entonces también era

necesario buscar una aproximación sencilla a los resultados del modelo de Wen. Para ello se

usó la solución por medio del método de Euler como fue planteada en la Ec. 5.8. Con este valor

tentativo de z se calcula la reacción del aislador como primera aproximación para incluirla en la

corrección de las fuerzas por medio de la integración. Para la corrección, se utiliza la solución

por el método de Runge - Kutta de quinto orden; como ésta es más exacta que la anterior, sirve

para mejorarla de la misma manera que la reacción calculada por integración optimiza la

obtenida por cálculo elástico. A este resultado se le aplican los algoritmos de convergencia de

PLANT para obtener una solución que satisfaga los test de tolerancia, y así continuar con el

paso siguiente. El diagrama de flujo que corresponde a esta rutina del programa es el que se

presenta en el Anexo 1, con la diferencia de que en las fuerzas de reacción obtenidas

matricialmente se deben incluir las correspondientes al modelo de Wen calculado por el método

de Euler, y en las fuerzas de reacción obtenidas por integración se deben incluir las del modelo

de Wen obtenidas por el método de Runge - Kutta de quinto orden.

51

Page 56: Análisis computacional no lineal de estructuras de acero ...

CAPÍTULO VI : PRESENTACIÓN DE RESULTADOS

Una vez implementadas las subrutinas que representan el modelo de Wen, se calcularán

a continuación ejemplos de estructuras típicas con aislación de tipo elastoplástica, sometidas a

solicitaciones de aceleración basal. Paralelamente, las mismas estructuras fueron analizadas

con el programa comercial de cálculo estructural SAP2000® Nonlinear. Se incluyen gráficos

que comparan los resultados obtenidos con ambos programas.

6.1. Aislador solo. Se calculó el comportamiento de un aislador elástoplástico tipo LRB, representado

mediante un oscilador de un grado de libertad compuesto de una barra de comportamiento

elástico empotrada en uno de sus extremos; en el otro extremo sólo está permitido el

desplazamiento axial. A este elemento se le ha asociado una masa de 100 KN·s2/m, una

amortiguación viscoelástica de 100 KN·s/m y las siguientes propiedades para la aplicación del

modelo de Wen:

1) Rigidez inicial ki : 2000 KN / m

2) Cuociente α : 0,1

3) Esfuerzo de fluencia fy : 20 KN

4) Factor de escala A : 1

5) Parámetro de forma β : 0,5

6) Parámetro de forma γ : 0,5

7) Parámetro de transición n : 2

La solicitación aplicada al aislador consistió en la aceleración basal ( )tta π3sen2)( =

m/s2 , con un paso de tiempo =Δt 0,01 seg. La duración de la solicitación es de 20 segundos

(2000 pasos).

FIGURA 6.1 Aislador LRB.

Cais

α Ki

ZM

Xb

a(t)

52

Page 57: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento del aislador con aceleración basal a(t)=sen(3*pi*t)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 2 4 6 8 10 12 14 16 18 20

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Histéresis del aislador con aceleración basal a(t)=sen(3*pi*t)

-40

-30

-20

-10

0

10

20

30

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

Desplazamiento (m)

Fuer

za (K

N)

53

Page 58: Análisis computacional no lineal de estructuras de acero ...

Histéresis del aislador con aceleración basal a(t)=sen(3*pi*t) (Estado de régimen)

-30

-20

-10

0

10

20

30

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Desplazamiento (m)

Fuer

za (K

N)

54

Page 59: Análisis computacional no lineal de estructuras de acero ...

6.2. Marco plano con aislación basal. Se calculó el comportamiento de un marco plano cuyos pilares son perfiles de acero

A42-27ES del tipo HN 30×180 de 3 metros de longitud. En el lugar correspondiente a las vigas y

la base de la estructura, se colocaron elementos de rigidez infinita para emular losas . Las

masas de la estructura están incluidas como puntuales en los vértices de ésta con un valor de

20 KN s2/m. Bajo la base se colocaron aisladores elastoplásticos tipo LRB con las siguientes

propiedades para la aplicación del modelo de Wen:

1) Amortiguación viscoelástica Cais : 100 KN·s/m

2) Rigidez inicial ki : 2000 KN / m

3) Cuociente α : 0,5

4) Esfuerzo de fluencia fy : 20 KN

5) Factor de escala A : 1

6) Parámetro de forma β : 0,5

7) Parámetro de forma γ : 0,5

8) Parámetro de transición n : 2

La solicitaciones aplicadas al sistema fueron:

1) Aceleración basal ( )tta π3sen2)( = m/s2 , con =Δt 0,01 seg., y 20 segundos de

duración (2000 pasos).

2) Aceleración basal correspondiente a la componente N-S del terremoto de Northridge

expresada en m/s2, con =Δt 0,02 seg., y 60,24 segundos de duración (3012 pasos).

3) Aceleración basal correspondiente a la componente N-S del terremoto de Valparaíso

expresada en m/s2, 0,005 seg., y 54,57 segundos de duración (10914 pasos). =Δt

M

M

M

M

M

xb

x3

x2

x1

M

M

M

Elemento rígido

Columna HN30X180 de largo 3 m.

Aislador

a(t)

FIGURA 6.2 Marco plano con aislación basal.

55

Page 60: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento de la base del marco plano con aceleración basal a(t) = sen (3*pi*t)

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Desplazamiento del marco plano del primer piso con aceleración basal a(t)=sen(3*pi*t)

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

56

Page 61: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento del segundo piso del marco plano con aceleración basal a(t)=sen(3*pi*t)

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Desplazamiento del tercer piso del marco plano con aceleración basal a(t)=sen(3*pi*t)

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

57

Page 62: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento de la base del marco plano con el terremoto de Northridge

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50 55 60

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Desplazamiento del primer piso del marco plano con el terremoto de Northridge

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50 55 60

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

58

Page 63: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento del segundo piso del marco plano con el terremoto de Northrigde

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50 55 60

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Desplazamiento del tercer piso del marco plano con el terremoto de Northridge

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50 55 60

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

59

Page 64: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento de la base del marco plano con el terremoto de Valparaíso

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40 45 50 55

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Desplazamiento del primer piso del marco plano con el terremoto de Valparaíso

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40 45 50 55

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

60

Page 65: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento del segundo piso del marco plano con el terremoto de Valparaíso

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40 45 50 55

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Desplazamiento del tercer piso del marco plano con el terremoto de Valparaíso

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40 45 50 55

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

61

Page 66: Análisis computacional no lineal de estructuras de acero ...

6.3. Estructura tridimensional de un piso con aislación basal. Se calculó el comportamiento de una estructura tridimensional de un piso, compuesta de

cuatro pilares de acero A42-27ES del tipo HN 30×180 de 3 metros de longitud. En la base y el

techo de la estructura, se colocaron elementos de rigidez infinita para emular losas. Las masas

incluidas en la estructura son de tipo puntual en los vértices de ésta con un valor de 50 KN s2/m.

Bajo la base se colocaron aisladores elastoplásticos tipo LRB con las siguientes propiedades

para la aplicación del modelo de Wen:

1) Amortiguación viscoelástica Cais : 120 KN·s/m

2) Rigidez inicial ki : 2000 KN / m

3) Cuociente α : 0,4

4) Esfuerzo de fluencia fy : 30 KN

5) Factor de escala A : 1

6) Parámetro de forma β : 0,5

7) Parámetro de forma γ : 0,5

8) Parámetro de transición n : 2

La solicitaciones aplicadas al sistema en la dirección X fueron:

1) Aceleración basal ( )tta π3sen2)( = m/s2 , con =Δt 0,01 seg., y 20 segundos de

duración (2000 pasos).

2) Aceleración basal correspondiente a la componente N-S del terremoto de Northridge

expresada en m/s2, con =Δt 0,02 seg., y 60,24 segundos de duración (3012 pasos).

3) Aceleración basal correspondiente a la componente N-S del terremoto de Valparaíso

expresada en m/s2, 0,005 seg., y 54,57 segundos de duración (10914 pasos). =Δt

Elemento rígido

Columna HN30X180

3 m Z

Aislador X

a(t) Y

FIGURA 6.3 Estructura tridimensional con aislación basal.

62

Page 67: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento de la base de la estructura tridimensional con la aceleración basal a(t)=sen(3*pi*t) aplicada en la dirección X

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 5 10 15 20

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Desplazamiento del primer piso de la estructura tridimensional con la aceleración basal a(t)=sen(3*pi*t) aplicada en la dirección X

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 2 4 6 8 10 12 14 16 18 20

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

63

Page 68: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento de la base de la estructura tridimensional con el terremoto de Northridge aplicado en la dirección X

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25 30 35 40 45 50 55 60

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Desplazamiento del primer piso de la estructura tridimensional con el terremoto de Northridge aplicado en la dirección X

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25 30 35 40 45 50 55 60

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

64

Page 69: Análisis computacional no lineal de estructuras de acero ...

Desplazamiento de la base de la estructura tridimensional con el terremoto de Valparaíso aplicado en la dirección X

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 5 10 15 20 25 30 35 40 45 50 55

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

Desplazamiento del primer piso de la estructura tridimensional con el terremoto de Valparaíso aplicado en la dirección X

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 5 10 15 20 25 30 35 40 45 50 55

Tiempo (seg)

Des

plaz

amie

nto

(m)

SAP2000PLANT

65

Page 70: Análisis computacional no lineal de estructuras de acero ...

CAPÍTULO VII : CONCLUSIONES

El programa PLANT ha sido diseñado mediante algoritmos que equilibran las

solicitaciones externas con fuerzas de reacción calculadas por integración de las secciones,

todo ello mediante el tratamiento de las fuerzas residuales a través de la energía potencial

involucrada. Este principio ha permitido la implementación del modelo de Wen como un vector

adicional calculado mediante algoritmos y agregado al vector de fuerzas de reacción en los

grados de libertad correspondientes.

Como lo han afirmado diferentes autores, el modelo de Wen permite la representación

de una amplia gama de comportamientos elastoplásticos a través del tiempo. El programa

SAP2000 posee una versión de este modelo cuyos parámetros de forma A, β y γ vienen ya

fijados, lo cual es una desventaja desde el punto de vista de la caracterización de un aislador,

pues el verdadero potencial de este modelo radica precisamente en la variabilidad que estos

parámetros le otorgan, como se explicó en el Párrafo 5.1. La ecuación diferencial de Wen ha

demostrado ser también una expresión muy flexible, pues es posible obtener tanto versiones en

función de la velocidad o del desplazamiento, sin diferencias en los resultados obtenidos en

cada caso.

Los resultados obtenidos con el programa PLANT para el cálculo de estructuras con

aislación basal no presentaron diferencias significativas de los producidos con SAP2000 con las

mismas estructuras y solicitaciones. Cabe señalar que PLANT utiliza el método de Newmark

para calcular la integración en el paso de tiempo, pero en los manuales de SAP2000 no está

especificado cuál es el método aplicado. Con respecto a la posible plastificación de la estructura

montada sobre aisladores, PLANT no registró en ninguno de los elementos algún tipo de

fluencia, lo que ratificaría la ventaja de la aislación basal para la protección de la estructura. Sin

embargo, se debe tener presente que PLANT fue diseñado para detectar plasticidad provocada

por esfuerzos de flexión y no de corte, y son precisamente éstos últimos los que provocan

mayores daños en las estructuras sometidas a sismos. Esto último se debe más que nada a la

dificultad que ha representado hasta ahora el modelar los mecanismos de falla referidos al

corte, por lo que tampoco han sido incluidos en este programa.

Los cálculos de PLANT con la estructura tridimensional de un piso con aislación de base

sólo pudieron ser ejecutados con una aceleración basal en la dirección global X, pues al

introducir una aceleración basal en la dirección global Y, el programa experimentaba problemas

de convergencia y de overflow. Más tarde se comprobó que dicho problema se presentaba

también en estructuras tridimensionales sin aislación. Este hecho imposibilitó la comprobación

de la efectividad del programa en terremotos aplicados en ambas direcciones.

66

Page 71: Análisis computacional no lineal de estructuras de acero ...

RESUMEN

La presente tesis fue realizada en la Facultad de Ciencias de la Ingeniería de la

Universidad Austral de Chile, en el período comprendido entre abril de 2000 y marzo de 2002.

Su objetivo principal fue la implementación de un modelo matemático que simulara el

comportamiento de un aislador sísmico pasivo en el programa de cálculo estructural PLANT, el

cual fue creado en 1980 en el Lehrstühl für Stahlbau de Aachen (Alemania). La principal

característica de este programa es su capacidad de realizar cálculos considerando la

plastificación de las secciones sometidas a grandes deformaciones.

Primeramente, se expone la teoría aplicada en el programa para el cálculo de

estructuras sometidas a grandes deformaciones y el sistema utilizado para la optimización de

los resultados. También se exponen los diferentes modelos matemáticos de aislación sísmica, y

se incluye una reseña de los programas estructurales existentes en el mercado.

En la elección del modelo matemático de aislación incorporado en PLANT, se optó por el

modelo de Wen, debido a la versatilidad de éste para representar diversas variedades de

comportamiento elástico o elastoplástico. Otra razón importante fue que este modelo también

está incorporado en el programa de cálculo estructural SAP2000, el cual sirvió para la

verificación de los resultados obtenidos.

La parte experimental fue realizada simultáneamente con los programas PLANT y

SAP2000. Se analizaron tres tipos de estructuras: un dispositivo aislador solo, un marco plano

de tres pisos hecho de acero y con aislación de base, y una estructura tridimensional de un piso

hecha de acero y con aislación de base. Las solicitaciones aplicadas fueron aceleraciones

basales correspondientes a una función sinusoidal, el terremoto de Northridge y el terremoto de

Valparaíso.

En todos los resultados obtenidos con los ejemplos anteriores, la diferencia entre ambos

programas no resultó significativa. El programa PLANT no acusó la plastificación de ninguno de

los elementos de acero de la estructura montada sobre aisladores, sin embargo se debe tener

presente que PLANT está diseñado para considerar la plastificación de una sección debida a

esfuerzos de flexión solamente, no incluyendo los esfuerzos de corte, que son precisamente los

que producen los mayores daños estructurales durante un terremoto.

67

Page 72: Análisis computacional no lineal de estructuras de acero ...

SUMMARY

The present thesis was carried out at the Faculty of Sciences of the Engineering of the

Universidad Austral de Chile, between April of 2000 to March of 2002. Its main goal was the

addition of a mathematical model that simulates the behavior of a passive seismic insolator on

the program of structural analysis PLANT, which was created in 1980 at the Lehrstühl für

Stahlbau of Aachen (Germany). The main feature of this program is its capacity to carry out

analysis considering the plastification of a frame section bearing large deformations.

At the first place, the theory applied in the program for the calculation of structures

subjected to large deformations and the system used for the improvement of the results are

stated. The several mathematical models of seismic isolation are also stated, and a review of the

another commercial programs for structural analysis is included.

In the selection of the mathematical model of isolation to be added in PLANT, it was

choosed the Wen’s model, due to its versatility in order to represent many elastic or elastoplastic

behaviors. Another important reason was that this model is also incorporate in the program of

structural analysis SAP2000, which it was used for the verification of the obtained results.

The experimental stage was carried out simultaneously with the programs PLANT and

SAP2000. Three kinds of structures were analyzed: a single insolation device, a three - storied

steel plane frame with base isolation, and a three-dimensional single - story steel structure with

base isolation. Basal accelerations corresponding to a sinusoidal function, the earthquake of

Northridge and the earthquake of Valparaíso were applied.

In all the results obtained with the previous examples, the difference between both

programs was not significant. PLANT didn't accuse the yielding of any of the steel members of

the structure over the insolators, however it should keep in mind that PLANT was designed in

order to consider yielding due to flextion only, not including the shear stresses, in fact those

shear stresses produce the major structural damages during an earthquake.

68

Page 73: Análisis computacional no lineal de estructuras de acero ...

BIBLIOGRAFÍA

ASOCIACIÓN CHILENA DE SISMOLOGÍA E INGENIERÍA SISMICA. 2001. Proposición de

código para el análisis y diseño de edificios con aislación sísmica. Santiago, Grupo de

protección sísmica de ACHISINA. 70 p.

BOZZO, L. 1996. Análisis de edificios con sistemas de aislamiento de base. En : BARBAT, A. ;

L. AGUIAR, eds. Ingeniería de estructuras. Escuela superior politécnica del ejército.

Quito, Ecuador. 1(1): 17-38.

COMPUTER AND STRUCTURES, INC. 1997. SAP 2000® integrated finite element analysis

and design of structures; basic analysis reference. Berkeley, California, EE.UU., Vol. 1.

CHAPRA, S.; R. CANALE. 1988. Métodos numéricos para ingenieros con aplicaciones en

computadores personales. Ciudad de México, Mc Graw - Hill Interamericana. 639 p.

DE LUCA, A.; G. FAELLA; C. PELLEGRINO; R. RAMASCO; F. SIANO. 1994. A refined model

for simulating the behavior of base isolation devices. Chicago, Proceeding of the Fifth

US National Conference on Earthquake. Vol. 1.

KUCK, J.; B. HOFFMEISTER. 1988. User manual for DYNACS; a program for dynamic

nonlinear analysis of composite and steel structures. Aachen, Alemania, Rheinland -

Westfalen Technik Hochschule. 55 p.

LOPETEGUI, J. 1983. Verfahren der orthogonalisierten Last - Verformungszustände zur

Lösung nichtlinearer Probleme der Stabstatik. Aachen, Alemania, Stahlbau - RWTH

Aachen. Vol. 2.

LOPETEGUI, J.; A. SALEH; C. STUTZKI. 1987. Programm PLANT; ein Stabwerksprogramm

für räumliche Stabwerke mit Berücksichtigung nichtlinearer Einflüße. 3ª ed. Aachen,

Alemania, Rheinland - Westfalen Technik Hochschule. 224 p.

LOPETEGUI, J.; G. SEDLACEK. 1986. Zur Lösung von Gleichungssystemen der Baumechanik

mittels Last - Verformungszuständen. Bauingenieur 61: 259-266.

LOPETEGUI, J.; G. SEDLACEK. 1988. Some applications of load-deformation states.

Londres, Proceeding of NUMETA. Vol. 1.

NAEIM, F.; J. KELLY. 1999. Desing of seismic isolated structures. New York, John Wiley &

Sons. 289 p.

69

Page 74: Análisis computacional no lineal de estructuras de acero ...

ORDÓÑEZ, D. 1996. Estudio comparativo de la respuesta estructural inelástica de edificios

sismorresistentes con aislamiento de base. Tesis Mag. Ing. Sísm. y Dinám. Estr.

Universidad Politécnica de Cataluña. 58 p.

PARK, Y.; Y. WEN; A. ANG. 1986. Random vibration of hysteretic system under bi-directional

ground motions. Earthquake engineering and structural dynamics 14: 543-557.

PAZ, M. 1997. Structural dynamics; theory and computation. 4ª ed. New York, Chapman &

Hall. 825 p.

SALEH, A. 1982. Traglastberechnung von räumlichen Stabwerken mit gropen Verformungen

und Plastizierung. Aachen, Alemania, Stahlbau - RWTH Aachen. Vol. 4.

SEDLACEK, G.; J. LOPETEGUI; C. STUTZKI; A. SALEH. 1985. Ein computerorientiertes

Verfahren zur statischen Berechnung räumlicher Stabwerke unter Berücksichtigung

nichtlinearer Effekte. Bauingenieur 60: 297-305.

SKINNER, R.; W. ROBINSON; G. McVERRY. 1996. An introduction to seismic isolation. New

York, John Wiley & Sons. 354 p.

STUTZKI, C. 1982. Traglastberechnung räumlicher Stabwerke unter berücksichtigung

verformbarer Auschlüsse. Aachen, Alemania, Stahlbau - RWTH Aachen. Vol. 3.

WEN, Y. 1976. Method of random vibration of hysteretic systems. Journal of the engineering

mechanic division. Abril. 102(EM2): 249-263.

WEN, Y. 1980. Equivalent linearization for hysteretic system under random excitation. Journal

of applied mechanics ASME. Marzo 47: 150-154.

70

Page 75: Análisis computacional no lineal de estructuras de acero ...

ANEXO A : Diagrama de Flujo para la Subrutina DYNAM

Ingreso de datos iniciales Label 63

ANF - ANFWE Valores iniciales y variables de

la subrutina quedan en cero

CHOL La matriz AA es reordenada en

bloques triangulares que quedan grabados como línea en el registro INE

MATRIX Formación del la matriz de

rigidez global de la estructura (matriz AA)

El vector P es almacenado enlos registros LAST y LAST1

LAS11 Definición del estado de carga para una posición deformada previa dada en el vector V. El

resultado es incluído en P

LASTVE Formación del vector de cargas externas.

Los valores se graban.en el registro LAST. Si las fuerzas son nulas, Go to 8

Label 21

CHOL2 Resuelve el sistema AA * V = P . El resultado

corresponde al vector de deformaciones y queda almacenado finalmente en V

Lee el registro de las fuerzas externas (LAST) con el vector V

1

71

Page 76: Análisis computacional no lineal de estructuras de acero ...

Label 10001

N(9) < 10NO

LAGEN Aplica transformaciones

geométricas para grandes deformaciones

SI

LASTVE Formación del vector de cargas externas. Los valores se graban

en el registro LAST

Hace P = 0 y agrega el vector V al vector W (deformaciones)

Escribe V en el registro IPE, luego lee el registro ISUM con el vector W

N(25) = 1

NO (no converge)

Go to 21

NARCOS Remueve las fuerzas y

desplazamientos residuales de las reacciones calculadas

elásticamente

Escribe P en elregistro LAST

FEHLG Calcula los esfuerzos internos para

las deformaciones dadas. Se obtiene en P las fuerzas residuales

Label 8

Lee del archivo con la información del terremoto: número de pasos, duración

del paso, factor de amplificación

SI (converge)

MATRIX Formación del la matriz de rigidez global de la estructura (matriz AA)

MATDYN Agrega el efecto dinámico adicional

a la matriz de rigidez AA

2

72

1

Page 77: Análisis computacional no lineal de estructuras de acero ...

2

Label 41

Lee del archivo con la información del terremoto:

tiempo, aceleración basal en la dirección X, aceleración

basal en la dirección Y

CHOL La matriz AA es reordenada en

bloques triangulares que quedan grabados como línea en el registro INE

Ciclo DO 1000 (para cada barra): - DEHN: Reacciones elásticas (R) debido a deformaciones (V) - SPANG: A partir de las deformaciones en cada barra, integra en las secciones para calcular reacciones internas, tomando en cuenta la elastoplasticidad - LAS: Crea vector de reacciones internas (P) para toda la estructura en base a lo calculado en SPANG

Escribe Q en el registro NORMy lee V del registro ISUM

PDACH Escribe en Q el vector de carga

dinámico:

ttbasal VmVCtmamQ &&& ⋅+⎥

⎤⎢⎣

⎡+

Δ+⋅=

4

Ciclo DO 131: Hace nulos los vectores P y Q

LAS11 Definición del estado de carga para una posición deformada previa dada en el vector V. El

resultado es incluído en P

3

73

Page 78: Análisis computacional no lineal de estructuras de acero ...

3

Label 121

Vector Q igual a las fuerzas de reacción estáticas (P) más los

esfuerzos dinámicos calculados en PDACH

Label 31 Lee el registro LAST con el vector Vy lo escribe en el registro LAST1

Hace DELV = 0, luego escribe Q en los registros LAST y LAST1

CHOL2 Resuelve el sistema AA * V = P . El resultado

corresponde al vector de deformaciones y queda almacenado finalmente en V

Escribe el vector V en el registro IPE, y lee ISUM con el vector W

Label 123 Al vector W le agrega V

Ciclo DO 143: Genera vector DELV: DELV = W - AUSL

(AUSL: vector desplazamiento de las masas concentradas en el paso anterior)

N(9) < 10NO

LAGEN Aplica transformaciones

geométricas para grandes deformaciones

SI

4

Escribe el vector W en el registro ISUM

74

Page 79: Análisis computacional no lineal de estructuras de acero ...

4

Ciclo DO 52 (para cada barra): - DEHN: Reacciones elásticas (R) debido a deformaciones (V) - SPANG: A partir de las deformaciones en cada barra, integra en las secciones para calcular reacciones internas, tomando en cuenta la elastoplasticidad - LAS: Crea vector de reacciones internas (P) para toda la estructura en base a lo calculado en SPANG

Label 35

LAS11 Definición del estado de carga para una posición deformada previa dada en el vector V. El

resultado es incluído en P

Lee NORM con el vector Q

Ciclo DO 145: Agrega al vector P el efecto dinámico

DELVtC

tmPP ⋅⎥

⎤⎢⎣

⎡Δ⋅

⋅+=

42

2

CN1 = CA / CB

Label 125

Ciclo DO 53: Genera: CA = Σ (Pi · Wi) CB = Σ (Qi · Wi)

Pi = Pi + Qi

A1 = Σ (Pi2)

C1 = Σ (Wi2)

Pi : vector fuerzas residuales A1 : módulo fuerzas residuales C1 : módulo desplazamiento

5

75

Page 80: Análisis computacional no lineal de estructuras de acero ...

5

Nº Iteración < 2SI

Go to 301

NO

A1 (i - 1) > A1 (i)

NO

Go to 301 SI

CN1 (i - 1) > 1y

CN1 (i) > 1 Go to 302

SI

CN1 (i - 1) < 1y

CN1 (i) < 1

SIGo to 303

NO

CN1 (i - 1) > 1SI

Go to 305

NO

NO

CC1 = 1 - CN (i - 1) CC2 = CN (i) - 1

CC1 > CC2

NO

Go to 304

Go to 301 SI

6

76

Page 81: Análisis computacional no lineal de estructuras de acero ...

6

CN1 (i) < CN1(i - 1)

NO

Label 303

Go to 301

Go to 304 SI

Label 305 CC1 = CN (i - 1) - 1 CC2 = 1 - CN (i)

CC1 > CC2

NO

Go to 304

Go to 301 SI

CN1 (i - 1) > CN1(i) Label 302 Go to 301 SI

Go to 31

Label 304 - Graba RW en ISUM y RP en LAST- Contador de iteraciones a cero (N(24) = 0)

NO

Ciclo DO 33: - Hace RP = P y RW = W - Si P > CN(3) ⇒ N(25) = 0 (CN(3): tolerancia)

Label 301 - Respalda CN1, A1 y C1 para el siguiente paso - Hace N(25) = 1

7

77

Page 82: Análisis computacional no lineal de estructuras de acero ...

N(25) = 1

SI (converge)

NO (no converge)

Go to 43

7

Escribe P en elregistro LAST

Nº Iteración ≤ 15 Go to 73 SI

Go to 31

Contador de Iteracionesa cero (N(24) = 0)

NO

Label 73 NARCOS

Remueve las fuerzas y desplazamientos residuales de las

reacciones calculadas elásticamente

Label 43 Lee el registro ISUM con el vector V

Go to 31

NEUWE Calcula y escribe en el archivo de salida:

desplazamiento, velocidad y aceleración de los puntos con las masas concentradas

UMS Reinicia los registros LGA y LGN

8

78

Page 83: Análisis computacional no lineal de estructuras de acero ...

8

Nueva acel. basal

END

NO

Go to 41 SI

79

Page 84: Análisis computacional no lineal de estructuras de acero ...

ANEXO B: Entrada de datos para cálculos dinámicos con PLANT

1) Constantes del sistema:

NS, NP, NT, N6, N9, IEIN, N88, N8, N7

(Formato FORTRAN: 6I5, I2, I3, I5)

NS : Cantidad de barras.

NP : Cantidad de puntos.

NT : Cantidad de secciones transversales.

N6 : Cantidad de nudos cargados.

N9 : Forma de cálculo:

N9 = 1 : Cálculo elasto - plástico con teoría de segundo orden.

IEIN : Sistema para determinar las secciones transversales.

IEIN = 1 : Las secciones transversales se determinan por medio de láminas.

N88 : Cantidad de propiedades para deslizamiento de holguras.

N8 : Cantidad de líneas características para la relación fuerza axial - deformación.

N7 : Tipo de cálculo:

N7 = 10 : Análisis dinámico de historial de tiempo (método de Newmark).

2) Descripción de los nudos:

X, Y, Z, ϕw, ϕx, ϕy, ϕz, u, v, w

(Formato FORTRAN: 3F10.0, 7I1)

X : Coordenada global X del nudo (m).

Y : Coordenada global Y del nudo (m).

Z : Coordenada global Z del nudo (m).

ϕw : Alabeo.

ϕx : Rotación en torno a X.

ϕy : Rotación en torno a Y.

ϕz : Rotación en torno a Z.

u : Desplazamiento en la dirección X.

v : Desplazamiento en la dirección Y.

w : Desplazamiento en la dirección Z.

(Para ϕw, ϕx, ϕy, ϕz, u, v, w : 0 es libre y 1 es bloqueado)

80

Page 85: Análisis computacional no lineal de estructuras de acero ...

3) Descripción de las secciones (IEIN = 1):

E, G, SFL, ym, zm, FD

(Formato FORTRAN: 6F10.3)

E : Módulo de elasticidad (KN/m2).

G : Módulo de corte (KN/m2).

SFL : Esfuerzo de fluencia (KN/cm2).

ym : Distancia entre el centro de gravedad y el centro de corte en la dirección local Y

(cm).

zm : Distancia entre el centro de gravedad y el centro de corte en la dirección local Z

(cm).

FD : Área interna para secciones tipo cajón (cm2).

t, yi, zi, wi, yk, zk, wk, σei, σek

(Formato FORTRAN: F6.1, 2F9.2, F10.2, 2F9.2, F10.2, 2F8.3, una línea por lámina)

t : Espesor de la lámina (cm).

yi : Coordenada local Y del extremo i (cm)

zi : Coordenada local Z del extremo i (cm)

wi : Ordenada de alabeo del extremo i (cm2)

yk : Coordenada local Y del extremo k (cm)

zk : Coordenada local Z del extremo k (cm)

wk : Ordenada de alabeo del extremo k (cm2)

σei : Tensión residual en el extremo i (KN/cm2)

σek : Tensión residual en el extremo k (KN/cm2)

La descripción de la sección se termina con una línea en blanco.

4) Descripción de los elementos:

M, N, LM, LN, QTYP, ITYP, KTYP, GAMMA

(Formato FORTRAN: BZ, 2I3, 2I1, 3.I2, F10.0)

M : Número del nudo inicial.

N : Número del nudo final.

LM : Condición de unión del nudo inicial.

LN : Condición de unión del nudo final.

81

Page 86: Análisis computacional no lineal de estructuras de acero ...

LM, LN = 0 : No hay transmisión de momentos Mx, My o Mz

LM, LN = 1 : Sí hay transmisión de momentos Mx, My o Mz

QTYP : Número de la sección transversal.

ITYP : Determinación de los esfuerzos internos.

ITYP = 0 : Integración del esfuerzo en las secciones.

ITYP = 1 : Deslizamiento de holguras.

ITYP = 2 : Líneas características.

KTYP : Número de la propiedad de deslizamiento o la línea característica

(sólo si ITYP = 1 o 2).

GAMMA : Ángulo de rotación en torno al eje local X (grados)

5) Descripción de las cargas:

NR, LSTF

(Formato FORTRAN: 2I5)

NR : Número del nudo cargado.

LSTF : Factor de carga.

LSTF = 1 : Las cargas van multiplicadas por el factor actual de carga.

LSTF = 0 : Las cargas permanecen constantes durante todo el análisis.

LSTF = -1 : Las cargas sirven para perturbar el sistema durante la primera

iteración solamente.

LSTF = -2 : Las cargas sirven para el cálculo de vectores y valores propios.

Mx, My, Mz, Vx, Vy, Vz

(Formato FORTRAN: 6F10.2)

Mx : Momento en torno al eje global X (KN·m).

My : Momento en torno al eje global Y (KN·m).

Mz : Momento en torno al eje global Z (KN·m).

Vx : Fuerza en dirección global X (KN).

Vy : Fuerza en dirección global Y (KN).

Vz : Fuerza en dirección global Z (KN).

82

Page 87: Análisis computacional no lineal de estructuras de acero ...

xp, yp, zp

(Formato FORTRAN: 3F10.2)

xp : Excentricidad de la carga en la dirección global X (m)

yp : Excentricidad de la carga en la dirección global Y (m)

zp : Excentricidad de la carga en la dirección global Z (m)

6) Constantes para modificación del análisis:

CN(1), CN(2), CN(3), CN(4), ITMAX

(Formato FORTRAN: BZ, 4F10.3, I5)

CN(1) : Factor de carga inicial.

CN(2) : Factor de aumento de carga.

CN(3) : Valor límite tolerable del módulo de las fuerzas residuales.

CN(4) : Valor límite tolerable del factor de carga.

ITMAX : Número máximo de iteraciones en el estado de equilibrio (opcional)

7) Parámetros para el análisis dinámico:

KF, SM, C(1), C(2), NW

(Formato FORTRAN: I5, 3F10.6, I5)

KF : Número del nudo con la masa asociada.

SM : Valor de la masa asociada al nudo (KN·s2/m).

C(1) : Amortiguación viscoelástica en la dirección global X (KN·s/m).

C(2) : Amortiguación viscoelástica en la dirección global Y (KN·s/m).

NW : Control para el modelo de Wen.

NW = 0 : Sin modelo de Wen.

NW = 1 : Con modelo de Wen.

Los parámetros dinámicos se terminan con una línea en blanco.

83

Page 88: Análisis computacional no lineal de estructuras de acero ...

8) Parámetros para el modelo de Wen (requeridos sólo si se especificó un NW =1 en el bloque

anterior):

FYW, SKI, AWE, ALF, BET, GAM, NEX

(Formato FORTRAN: 6F10.3, I5)

FYW : Fuerza de fluencia (KN).

SKI : Rigidez inicial (KN/m).

AWE : Parámetro de escala A del modelo de Wen.

ALF : Cuociente α entre la rigidez final e inicial.

BET : Parámetro de forma β del modelo de Wen.

GAM : Parámetro de forma γ del modelo de Wen.

NEX : Exponente N para la suavidad de transición.

84

Page 89: Análisis computacional no lineal de estructuras de acero ...

ANEXO C: Input de los ejemplos del Capítulo VI en formato de PLANT

1) Ejemplo 1: Aislador solo.

Aislador solo *El aislador es la barra horizontal; las masas van en KN*seg^2/m 1 2 1 1 1 1 0 0 10 0.0 0.0 0.0 1111111 1.0 0.0 0.0 1111011 2.000 0.000 999999. 0. 0. 10.0 0.0 -5.0 0.0 0.0 5.0 0.0 0.0 0.0 1 211 1 0.0000 1 0 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 1.000 1.000 .001 10.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 100. 100.0 0.0 1 20.000 2000.000 1.000 0.100 .500 0.500 2 �

2) Ejemplo 2: Marco plano con aislación basal.

Marco plano de tres pisos con aisladores en la base, con límite plástico * Las columnas son HN300X180 * fy=2700 kg/cm2 => 26476.2 kN/cm2 * 70 68 3 1 1 1 0 0 10 -1.0 0.0 0.0 1111111 1 0.0 0.0 0.0 1111011 2 0.0 0.0 -0.3 1101010 3 0.0 0.0 -0.6 1101010 4 0.0 0.0 -0.9 1101010 5 0.0 0.0 -1.2 1101010 6 0.0 0.0 -1.5 1101010 7 0.0 0.0 -1.8 1101010 8 0.0 0.0 -2.1 1101010 9 0.0 0.0 -2.4 1101010 10 0.0 0.0 -2.7 1101010 11 0.0 0.0 -3.0 1111010 12 0.0 0.0 -3.3 1101010 13 0.0 0.0 -3.6 1101010 14 0.0 0.0 -3.9 1101010 15 0.0 0.0 -4.2 1101010 16 0.0 0.0 -4.5 1101010 17 0.0 0.0 -4.8 1101010 18 0.0 0.0 -5.1 1101010 19 0.0 0.0 -5.4 1101010 20 0.0 0.0 -5.7 1101010 21 0.0 0.0 -6.0 1111010 22 0.0 0.0 -6.3 1101010 23 0.0 0.0 -6.6 1101010 24 0.0 0.0 -6.9 1101010 25 0.0 0.0 -7.2 1101010 26 0.0 0.0 -7.5 1101010 27 0.0 0.0 -7.8 1101010 28 0.0 0.0 -8.1 1101010 29 0.0 0.0 -8.4 1101010 30

85

Page 90: Análisis computacional no lineal de estructuras de acero ...

0.0 0.0 -8.7 1101010 31 0.0 0.0 -9.0 1111010 32 1.5 0.0 -9.0 1111010 33 3.0 0.0 -9.0 1111010 34 3.0 0.0 -8.7 1101010 35 3.0 0.0 -8.4 1101010 36 3.0 0.0 -8.1 1101010 37 3.0 0.0 -7.8 1101010 38 3.0 0.0 -7.5 1101010 39 3.0 0.0 -7.2 1101010 40 3.0 0.0 -6.9 1101010 41 3.0 0.0 -6.6 1101010 42 3.0 0.0 -6.3 1101010 43 3.0 0.0 -6.0 1111010 44 1.5 0.0 -6.0 1111010 45 3.0 0.0 -5.7 1101010 46 3.0 0.0 -5.4 1101010 47 3.0 0.0 -5.1 1101010 48 3.0 0.0 -4.8 1101010 49 3.0 0.0 -4.5 1101010 50 3.0 0.0 -4.2 1101010 51 3.0 0.0 -3.9 1101010 52 3.0 0.0 -3.6 1101010 53 3.0 0.0 -3.3 1101010 54 3.0 0.0 -3.0 1111010 55 1.5 0.0 -3.0 1111010 56 3.0 0.0 -2.7 1101010 57 3.0 0.0 -2.4 1101010 58 3.0 0.0 -2.1 1101010 59 3.0 0.0 -1.8 1101010 60 3.0 0.0 -1.5 1101010 61 3.0 0.0 -1.2 1101010 62 3.0 0.0 -0.9 1101010 63 3.0 0.0 -0.6 1101010 64 3.0 0.0 -0.3 1101010 65 3.0 0.0 0.0 1111011 66 4.0 0.0 0.0 1111111 67 1.5 0.0 0.0 1111011 68 21000.0 7980.0 26476.2 0. 0. 3.2 -15.0 -13.4 201.0 15.0 -13.4 201.0 0.0 0.0 1.6 0.0 -13.4 0.0 0.0 13.4 0.0 0.0 0.0 3.2 -15.0 13.4 -201.0 15.0 13.4 201.0 0.0 0.0 9999.99 9999.99 99999. 0. 0. 200.0 0.0 -100.00 0.0 0.0 100.00 0.0 0.0 0.0 10.00 0.00 99999. 0. 0. 10.0 0.0 -5.00 0.0 0.0 5.00 0.0 0.0 0.0 1 211 3 0.0000 1 2 311 1 0.0000 2 3 411 1 0.0000 3 4 511 1 0.0000 4 5 611 1 0.0000 5 6 711 1 0.0000 6 7 811 1 0.0000 7 8 911 1 0.0000 8 9 1011 1 0.0000 9 10 1111 1 0.0000 10 11 1211 1 0.0000 11 12 1311 1 0.0000 12 13 1411 1 0.0000 13 14 1511 1 0.0000 14 15 1611 1 0.0000 15 16 1711 1 0.0000 16 17 1811 1 0.0000 17 18 1911 1 0.0000 18 19 2011 1 0.0000 19 20 2111 1 0.0000 20 21 2211 1 0.0000 21 22 2311 1 0.0000 22 23 2411 1 0.0000 23

86

Page 91: Análisis computacional no lineal de estructuras de acero ...

24 2511 1 0.0000 24 25 2611 1 0.0000 25 26 2711 1 0.0000 26 27 2811 1 0.0000 27 28 2911 1 0.0000 28 29 3011 1 0.0000 29 30 3111 1 0.0000 30 31 3211 1 0.0000 31 32 3311 2 0.0000 32 33 3411 2 0.0000 33 34 3511 1 0.0000 34 35 3611 1 0.0000 35 36 3711 1 0.0000 36 37 3811 1 0.0000 37 38 3911 1 0.0000 38 39 4011 1 0.0000 39 40 4111 1 0.0000 40 41 4211 1 0.0000 41 42 4311 1 0.0000 42 43 4411 1 0.0000 43 44 4511 2 0.0000 44 45 2211 2 0.0000 45 44 4611 1 0.0000 46 46 4711 1 0.0000 47 47 4811 1 0.0000 48 48 4911 1 0.0000 49 49 5011 1 0.0000 50 50 5111 1 0.0000 51 51 5211 1 0.0000 52 52 5311 1 0.0000 53 53 5411 1 0.0000 54 54 5511 1 0.0000 55 55 5611 2 0.0000 56 56 1211 2 0.0000 57 55 5711 1 0.0000 58 57 5811 1 0.0000 59 58 5911 1 0.0000 60 59 6011 1 0.0000 61 60 6111 1 0.0000 62 61 6211 1 0.0000 63 62 6311 1 0.0000 64 63 6411 1 0.0000 65 64 6511 1 0.0000 66 65 6611 1 0.0000 67 66 6711 3 0.0000 68 66 6811 2 0.0000 69 68 211 2 0.0000 70 1 0 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 1.000 1.000 .0001 10.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20.00 100.00 0.0 1 12 20.00 0.00 0.0 0 22 20.00 0.00 0.0 0 32 20.00 0.00 0.0 0 34 20.00 0.00 0.0 0 44 20.00 0.00 0.0 0 55 20.00 0.00 0.0 0 66 20.00 100.00 0.0 1 20.000 2000.00 1.000 .500 .500 0.500 2�

87

Page 92: Análisis computacional no lineal de estructuras de acero ...

3) Ejemplo 3: Estructura tridimensional de un piso con aislación basal.

Estructura tridimensional simple: base y un piso, con l¡mite pl stico * Columnas son HN300X180 * 68 60 3 1 1 1 0 0 10 0.0 1.0 0.0 1111011 1 -1.0 0.0 0.0 1111111 2 0.0 0.0 0.0 1111011 3 0.0 0.0 -0.3 1101010 4 0.0 0.0 -0.6 1101010 5 0.0 0.0 -0.9 1101010 6 0.0 0.0 -1.2 1101010 7 0.0 0.0 -1.5 1101010 8 0.0 0.0 -1.8 1101010 9 0.0 0.0 -2.1 1101010 10 0.0 0.0 -2.4 1101010 11 0.0 0.0 -2.7 1101010 12 0.0 0.0 -3.0 1111010 13 3.0 -3.0 -3.0 1111010 14 1.5 -3.0 -3.0 1111010 15 0.0 -3.0 -3.0 1111010 16 0.0 -3.0 -2.7 1101010 17 0.0 -3.0 -2.4 1101010 18 0.0 -3.0 -2.1 1101010 19 0.0 -3.0 -1.8 1101010 20 0.0 -3.0 -1.5 1101010 21 0.0 -3.0 -1.2 1101010 22 0.0 -3.0 -0.9 1101010 23 0.0 -3.0 -0.6 1101010 24 0.0 -3.0 -0.3 1101010 25 0.0 -3.0 0.0 1111011 26 0.0 -4.0 0.0 1111011 27 -1.0 -3.0 0.0 1111111 28 0.0 -1.5 0.0 1111011 29 4.0 -3.0 0.0 1111111 30 3.0 -4.0 0.0 1111011 31 3.0 -3.0 0.0 1111011 32 3.0 -1.5 0.0 1111011 33 4.0 0.0 0.0 1111111 34 3.0 1.0 0.0 1111011 35 3.0 0.0 0.0 1111011 36 1.5 -3.0 0.0 1111011 37 3.0 -3.0 -0.3 1101010 38 3.0 -3.0 -0.6 1101010 39 3.0 -3.0 -0.9 1101010 40 3.0 -3.0 -1.2 1101010 41 3.0 -3.0 -1.5 1101010 42 3.0 -3.0 -1.8 1101010 43 3.0 -3.0 -2.1 1101010 44 3.0 -3.0 -2.4 1101010 45 3.0 -3.0 -2.7 1101010 46 3.0 -1.5 -3.0 1111010 47 3.0 0.0 -3.0 1111010 48 0.0 -1.5 -3.0 1111010 49 1.5 0.0 -3.0 1111010 50 3.0 0.0 -2.7 1101010 51 3.0 0.0 -2.4 1101010 52 3.0 0.0 -2.1 1101010 53 3.0 0.0 -1.8 1101010 54 3.0 0.0 -1.5 1101010 55 3.0 0.0 -1.2 1101010 56 3.0 0.0 -0.9 1101010 57 3.0 0.0 -0.6 1101010 58 3.0 0.0 -0.3 1101010 59 1.5 0.0 0.0 1111011 60 21000.0 7980.0 26476. 0. 0.

88

Page 93: Análisis computacional no lineal de estructuras de acero ...

3.2 -15.0 -13.4 201.0 15.0 -13.4 201.0 0.0 0.0 1.6 0.0 -13.4 0.0 0.0 13.4 0.0 0.0 0.0 3.2 -15.0 13.4 -201.0 15.0 13.4 201.0 0.0 0.0 99999.0 9999.99 99999. 0. 0. 200.0 0.0 -100.00 0.0 0.0 100.00 0.0 0.0 0.0 8.00 0.0 99999. 0. 0. 10.0 0.0 -5.0 0.0 0.0 5.0 0.0 0.0 0.0 1 311 3 0.0000 1 2 311 3 0.0000 2 3 411 1 0.0000 3 4 511 1 0.0000 4 5 611 1 0.0000 5 6 711 1 0.0000 6 7 811 1 0.0000 7 8 911 1 0.0000 8 9 1011 1 0.0000 9 10 1111 1 0.0000 10 11 1211 1 0.0000 11 12 1311 1 0.0000 12 13 1400 2 0.0000 13 14 1511 2 0.0000 14 15 1611 2 0.0000 15 16 1711 1 0.0000 16 17 1811 1 0.0000 17 18 1911 1 0.0000 18 19 2011 1 0.0000 19 20 2111 1 0.0000 20 21 2211 1 0.0000 21 22 2311 1 0.0000 22 23 2411 1 0.0000 23 24 2511 1 0.0000 24 25 2611 1 0.0000 25 26 2711 3 0.0000 26 26 2811 3 0.0000 27 26 2911 2 0.0000 28 29 311 2 0.0000 29 3 3200 2 0.0000 30 30 3211 3 0.0000 31 31 3211 3 0.0000 32 32 3311 2 0.0000 33 33 3611 2 0.0000 34 34 3611 3 0.0000 35 35 3611 3 0.0000 36 36 2600 2 0.0000 37 26 3711 2 0.0000 38 37 3211 2 0.0000 39 32 3811 1 0.0000 40 38 3911 1 0.0000 41 39 4011 1 0.0000 42 40 4111 1 0.0000 43 41 4211 1 0.0000 44 42 4311 1 0.0000 45 43 4411 1 0.0000 46 44 4511 1 0.0000 47 45 4611 1 0.0000 48 46 1411 1 0.0000 49 14 4711 2 0.0000 50 47 4811 2 0.0000 51 48 1600 2 0.0000 52 16 4911 2 0.0000 53 49 1311 2 0.0000 54 13 5011 2 0.0000 55 50 4811 2 0.0000 56 48 5111 1 0.0000 57 51 5211 1 0.0000 58 52 5311 1 0.0000 59 53 5411 1 0.0000 60 54 5511 1 0.0000 61 55 5611 1 0.0000 62

89

Page 94: Análisis computacional no lineal de estructuras de acero ...

56 5711 1 0.0000 63 57 5811 1 0.0000 64 58 5911 1 0.0000 65 59 3611 1 0.0000 66 36 6011 2 0.0000 67 60 311 2 0.0000 68 1 0 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 1.000 0.200 .0001 10.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 50.0 120.0 120.0 1 13 50.0 0.0 0.0 0 14 50.0 0.0 0.0 0 16 50.0 0.0 0.0 0 26 50.0 120.0 120.0 1 32 50.0 120.0 120.0 1 36 50.0 120.0 120.0 1 48 50.0 0.0 0.0 0 30.000 2000.00 1.000 .400 .500 0.500 2

90