Analisis de Suelos de Satipo

35
 CARACTERIZACIÓN DE SUELOS DEL PROGRAMA DE DESARROLLO ALTERNATIVO EN SATIPO CON FINES DE FERTILIDAD, JUNÍN – PERÚ Ing. Carlos Hugo Egoávil De la Cruz Agosto, 2014

description

Caracterización de los suelos de 21 productores beneficiarios del Programa de Desarrollo Alternativo en Satipo (Junín - Perú), con fines de fertilidad para los cultivos de cacao, café y cítricos. Con el propósito de implementar un plan de fertilización orgánica en cada una de las unidades de producción evaluadas.

Transcript of Analisis de Suelos de Satipo

Page 1: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 1/35

 

CARACTERIZACIÓN DE SUELOS DEL PROGRAMA DE

DESARROLLO ALTERNATIVO EN SATIPO CON FINES

DE FERTILIDAD, JUNÍN – PERÚ

Ing. Carlos Hugo Egoávil De la Cruz

Agosto, 2014

Page 2: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 2/35

 

CARACTERIZACIÓN DE SUELOS DEL PROGRAMA DE

DESARROLLO ALTERNATIVO EN SATIPO CON FINES DE

FERTILIDAD, JUNÍN – PERÚ 

I.  Introducción

II. 

Justificación

III.  Objetivos

IV.  Revisión Bibliográfica

V.  Materiales y Métodos

VI.  Anexos

1

Page 3: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 3/35

CARACTERIZACIÓN DE SUELOS DEL PROGRAMA DE DESARROLLO

ALTERNATIVO EN SATIPO CON FINES DE FERTILIDAD, JUNÍN – PERÚ

I. INTRODUCCIÓN

Con respecto a la fertilidad de los suelos podemos afirmar que, un suelo fértil es capaz de

contener todos los elementos nutritivos para las plantas, el contenido de materia orgánica

necesario para el crecimiento y desarrollo de los cultivos, cantidades suficientes de macro

organismos (lombrices, insectos beneficiosos, etc.) y micro organismos (bacterias, hongos,

actinomicetos, algas, micorrizas, entre otros.), capaces de mantener el necesario equilibrio

biológico en el suelo, todo lo cual contribuye a las buenas condiciones físicas, químicas y

biológicas de los suelos.

La fertilidad del suelo en su conjunto, es una cualidad del suelo que resulta de la interacción de ungrupo de características (contenidos de elementos que se denominan nutrimentos esenciales, pH,

sales, propiedades físicas etc.) con un conjunto de exigencias de las plantas que son de interés. La

evaluación de la fertilidad en los suelos con fines agronómicos es el proceso mediante el cual se

diagnostican problemas nutricionales en suelos y/o cultivos y en base a ellos se hacen

recomendaciones de fertilizantes. Un diagnóstico completo no sólo incluye los problemas de

fertilidad si no también, como las condiciones ambientales (suelo-planta-clima) podrían incidir en

una mejor producción del cultivo. 

Para obtener altos rendimientos de los cultivos y buena calidad del producto cosechado, los

cultivos deben manejarse con prácticas tales como: preparación del suelo, siembra en la época

oportuna, fertilización y control de plagas. Aunque esto parece obvio, son pocos los agricultores

que prestan suficiente atención al manejo de la fertilización, especialmente durante la etapa de

floración y fructificación; sin embargo, la mayoría son conscientes de la poca duración y baja

productividad de sus cultivos en su región.

En general, los nutrientes del suelo no están disponibles en las cantidades y proporciones

requeridas por las especies cultivadas para maximizar sus rendimientos y calidad nutritiva; por lo

tanto es necesario determinar la concentración de estos en el suelo, y sobre la base de dichos

resultados, definir las fuentes y cantidades de correctivos y/o fertilizantes, acorde con los

requerimientos de cada especie cultivada. Varias técnicas se han utilizado para el diagnóstico de

la fertilidad de los suelos y para determinar las necesidades de nutrientes de las plantas, entre las

cuales se destacan las siguientes:

a.  Análisis de suelos, utilizado por agricultores innovadores,

b.  Análisis de tejidos vegetales, empleado principalmente en cultivos de exportación,

c.  Síntomas de deficiencia de nutrientes de la planta, lo más común entre los agricultores, y

d.  A través de ensayos de invernadero o de campo, más de carácter académico.

El análisis de suelos es un valioso instrumento que utilizado en forma adecuada puede ayudar en

el diagnóstico de los desórdenes nutricionales en las especies cultivadas, ocasionados por losdesbalances en los nutrientes del suelo; sin embargo, por si solo no soluciona los problemas de la

2

Page 4: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 4/35

baja productividad de los cultivos. Por otra parte, aunque se han realizado estudios de

caracterización de suelos a nivel de regiones naturales o micro regiones, de reconocimiento o al

detalle, dichos resultados son de carácter inventarial y por lo tanto, no reflejan de manera alguna

el estado de la fertilidad real de los suelos en las zonas cultivadas ubicadas en dicha área.

Al respecto, se han detectado amplias diferencias de fertilidad entre lotes de una misma área, con

condiciones similares de topografía y aptitud de uso; las cuales están relacionadas en gran parte

con las diferencias de manejo impuesto a los lotes a través del tiempo, tales como el tipo de

manejo del cultivo (arroz secano o bajo riego por ejemplo), o de especies usadas (café o cacao por

ejemplo); la aplicación de prácticas tradicionales de laboreo, fertilización aplicada, ciclos

continuos del mismo cultivo sin descanso intermedio, manejo de la fertilización orgánica, etc.

El principal objetivo del diagnóstico químico es evaluar la capacidad del suelo para suministrar

nutrientes a la planta sobre la base a una adecuada interpretación de dicho análisis, se pueden

diagnosticar las deficiencias y/o toxicidades; por lo tanto, se considera un paso esencial para laformulación de recomendaciones de manejo, tendientes a aplicar los niveles óptimos de

correctivos y de nutrientes en los cultivos. Evitando el exceso de fertilización y por lo tanto una

economía en el gasto de este insumo.

En la provincia de Satipo del departamento de Junín, de acuerdo a Mesozonificación Ecológica y

Económica (IIAP – 2010: Uso Actual de la Tierra), el café es uno de los cultivos que predomina en

área cultivada (37,434 Has.) y el cultivo de cacao apenas cubre una extensión de 7,696 Has.,

concentrándose en el distrito de Río Tambo con 3,110 Has. seguido por el distrito de Pangoa con

2,535 Has.

Los productores de los distritos de San Martín de Satipo, San Martín de Pangoa y Mazamari, están

preocupados por el problema de la baja producción y productividad del cultivo de cacao y café.

Quienes identifican que las causas de los bajos rendimientos se debe a que las plantaciones ya

cumplieron con su ciclo de vida, la baja calidad de los granos cosechados se debe al inadecuado

manejo de post-cosecha; por último, el bajo nivel en conocimientos sobre gestión agrícola

empresarial se debe principalmente a los escasos programas de Extensión, Capacitación y

Asistencia Técnica y a la débil organización de los productores.

Es necesario realizar una tipología de productores para tener una idea de las características y de la

homogeneidad o heterogeneidad, tanto de las parcelas como del sistema de producción; de estamanera los planes de fertilización a desarrollar estarán orientados a la factibilidad que posea cada

productor.

3

Page 5: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 5/35

II.  JUSTIFICACIÓN

Según información de la Agencia Agraria de la provincia de Satipo, la extensión cultivada al año

2007 alcanzó a 88,375 Has., siendo los cultivos más abundantes el café con 37,434 Has., plátano

con 10,250 Has., cítricos con 8,890 Has., pastos con 8,544 Has., cacao con 7,696 Has., yuca con

4,936 Has., maíz con 3,068 Has., piña con 1,401 Has. y papaya con 1,320 Has. Sobresaliendo como

los distritos con mayor desarrollo agropecuario Pangoa, Río Negro, Satipo, Río Tambo y Mazamari

(IIAP – 2010: Uso Actual de la Tierra).

De acuerdo a la información estadística de la Agencia Agraria Satipo, el área de cacao se ha

incrementado de 806 Has existentes en Marzo del 2013 se incrementó a 1,002 Has en Marzo del

2014, que representa un 24.4% de incremento. Mientras que para el cultivo de café el proceso es

inverso, de 7,900 Has existentes en Marzo del 2013 se redujo a 4,814 Has en Marzo del 2014, que

representa un 39.1% de reducción.

Con respecto a la productividad, se obtenía 97 Kg de granos de cacao/Ha. en el 2013 y en el 2014

se está obteniendo 116 Kg/Ha., que representa un 19.8% de incremento. En el caso del cultivo de

café de 108 Kg de grano de café/Ha que se obtenía en el año 2013, se redujo el año 2014 a 59

Kg/Ha de grano de cacao, que representa un45.9% de reducción.

Los productores de la provincia de Satipo, nunca antes habían tenido la preocupación de conocer

las características de sus suelos y tampoco de como realizar las practicas agronómicas para los

cultivos sin que estas causen impacto alguno sobre los mismos. Debido a esto se sabe que esta

zona productora no cuenta con ningún registro de análisis de suelos; y motivados por los

rendimientos que vienen presentando los rubros sembrados, se quiere hacer una caracterización

con fines de fertilidad para estos suelos, realizando análisis físicos y químicos, y de esta manera se

implementará un plan de fertilización para los cultivos de café y cacao, que más predomina en la

zona, y darles el mejor requerimiento a los cultivos trae consecuentemente un mayor

rendimiento a la hora de las cosechas.

Un análisis de suelos brindará el conocimiento necesario para que los agricultores de la provincia

estén en la capacidad de darles el mejor manejo a los suelos sin causar impacto alguno; por otra

parte, se llevará un registro que aporte información necesaria de las parcelas.

Un plan de fertilización permite mantener un modelo sistemático (ya que precisa los detalles

necesarios) para cubrir los requerimientos nutricionales del cultivo mediante una fertilización

química y/u orgánica; estos planes se realizan de manera sencilla para que se adapte a las

condiciones presentes en la zona, logrando mejores resultados en la calidad de los frutos

cosechados. El objetivo es familiarizar a los diferentes productores con herramientas muy valiosas

con respecto a la fertilidad de suelos.

4

Page 6: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 6/35

III. OBJETIVOS

3.1 Objetivo General:

Caracterizar los suelos con fines de fertilidad de 21 productores beneficiarios del Programa de

Desarrollo Alternativo en Satipo (Junín), en los cultivos de cacao, café y cítricos, con el propósito

de implementar un plan de fertilización orgánica en cada una de las unidades de producción

evaluadas.

3.2 Objetivos Específicos:

-  Determinar las propiedades físico-químicas de los suelos de las parcelas evaluadas.

-  Elaborar un plan de manejo de la fertilización orgánica en cada una de las parcelas en función

de la caracterización física y química, y requerimiento de los cultivos y del sistema de

producción predominante (cultivos por establecer y/o en producción actual).

IV.  REVISIÓN BIBLIOGRÁFICA 

4.1 El suelo.

El suelo es considerado como uno de los recursos naturales más importantes, de ahí la necesidad

de mantener su productividad, para que a través de él y las prácticas agrícolas adecuadas se

establezca un equilibrio entre la producción de alimentos y el acelerado incremento del índice

demográfico.

El suelo es esencial para la vida, como lo es el aire y el agua, y cuando es utilizado de manera

prudente puede ser considerado como un recurso renovable. Es un elemento de enlace entre los

factores bióticos y abióticos y se le considera un hábitat para el desarrollo de las plantas. Gracias

al soporte que constituye el suelo es posible la producción de los recursos naturales, por lo cual es

necesario comprender las características físicas y químicas para propiciar la productividad y el

equilibrio ambiental (sustentabilidad).

4.2 Fertilidad del suelo

Fertilidad es el potencial que un suelo tiene para suplir los elementos nutritivos en las formas,

cantidades y proporciones requeridas para lograr un buen crecimiento y rendimiento de las

plantas. Esa disponibilidad de elementos nutritivos por el sistema radical puede ser inmediata,constituyendo la fertilidad activa y representada por los nutrimentos en forma soluble de fácil

absorción por las raíces.

Otros elementos nutritivos que no son de inmediata utilización por las plantas, como los que

forman parte de los minerales primarios y secundarios y algunas combinaciones orgánicas,

representan la fertilidad potencial de un suelo, y la producción de los cultivos depende en muchos

casos de la transformación de las formas potenciales a las formas activas.

Además, la disponibilidad de nutrimentos para las plantas puede ser aumentada al añadir

fertilizantes al suelo, los cuales poseen uno o más de los elementos esenciales para el crecimientode las plantas.

5

Page 7: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 7/35

4.3 Importancia del análisis de suelo

Debe tenerse conocimiento de que existen distintos tipos de análisis de suelos, según los

objetivos para los que estén orientados, ellos son: de rutina y con fines especiales. Los análisis de

rutina comprenden los simples o detallados. Los análisis simples tienen como objetivo las

principales variables (Conductividad, Nitrógeno, Fósforo, Potasio, pH, textura al tacto). Los análisis

detallados aportan una evaluación completa del nivel de fertilidad edáfica (los nutrientes

principales más capacidad de intercambio catiónico, niveles de cationes intercambiables,

Humedad equivalente, textura). Los análisis con fines especiales corrigen algunos aspectos como

salinidad, necesidad de fertilización, enmiendas, deficiencias, toxicidad etc. Se debe manifestar

claramente al laboratorio cuáles son los objetivos por el cual se manda la muestra de suelo y

según los objetivos asesorarse bien en la forma de tomar la muestra, el momento,

acondicionamiento, etc., porque según los objetivos las variables a medir son diferentes. 

Los análisis se utilizan habitualmente para evaluar la deficiencia de nutrientes, constituyendo sólo

una parte de un método de diagnóstico que incluye etapas como el muestreo y la calibración einterpretación de los resultados que, junto con información de naturaleza agronómica, permitirá

efectuar una recomendación de fertilización. Pero otra aplicación de los análisis de suelos es para

el monitoreo de la calidad del suelo, de tal forma que ayudan a decidir donde no hay que realizar

aplicaciones de fertilizantes y también permiten evaluar la presencia de elementos tóxicos.

4.4 Propiedades físicas

Las propiedades físicas son aquellas que se refieren al arreglo, tamaño y distribución espacial de

partículas y agregados, los cuales definen en gran parte a la proporción de macro y microporos

responsables de la aireación, infiltración de agua, retención de humedad y flujo de calor en el

suelo.

La textura es una propiedad física relacionada con la proporción de partículas de diferentes

tamaños existentes en un suelo, la cual influye de forma tal que suelos arenosos y arcillosos

contrastan en cantidad y tipo de porosidad. En los primeros, el espacio poroso va de 35 a 50%,

predominando los macroporos, mientras que en los segundos, éste alcanza valores de 40 a 60%,

estando dominado por microporos. Debido a ello, en los suelos arenosos hay un rápido

movimiento de aire y agua en el interior, mientras que en los suelos arcillosos, por la deficiente

circulación del aire y agua, la infiltración se ve limitada y genera un ambiente anaeróbico, que

afecta el desarrollo de la raíz y el crecimiento de las plantas en general.

Cuando el suelo posee buenas condiciones físicas permite un adecuado suministro de agua y aire,

facilita la absorción de nutrimentos por las plantas y constituye un medio que garantiza el

desarrollo de las raíces. Sin embargo, cuando sus condiciones son inadecuadas se presenta como

un impedimento mecánico que se resiste a la penetración de las raíces, con baja macroporosidad

que conlleva a excesos de humedad y déficit de oxígeno, que afectan al desarrollo y producción

de cultivos.

La densidad real (Dr) relaciona el peso de las partículas sólidas de un suelo con el volumen

ocupado por ellas sin tomar en cuenta la porosidad, por lo cual presenta valores relativamente

constantes, mientras que la densidad aparente (Da) es dependiente de la porosidad, y por esto

6

Page 8: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 8/35

mismo, adquiere valores muy variables aún en un mismo tipo de suelo, y es muy afectada por las

actividades de manejo y la cantidad de Materia Orgánica.

El contenido de humedad de los suelos es un importante factor que afecta al crecimiento y

desarrollo de las raíces de los cultivos, las raíces de las plantas se ven incapaces de absorber

suficientes nutrimentos en suelos secos, debido a la poca actividad radical y a las bajas tasas dedifusión de iones y del movimiento de agua. También los excesos de humedad ocasionan un

efecto negativo al desarrollo de las raíces ya que el aire del espacio poroso es desplazado.

4.5 Propiedades químicas

El pH del suelo  es una medida que refleja, en forma aproximada, la actividad de los iones

hidrógeno (H+) de la solución del suelo, los que tienen un efecto marcado sobre la fertilidad del

mismo. La reacción del suelo es una propiedad importante que tiene influencia sobre

características físicas, físico-químicas, químicas y biológicas de los suelos. El pH del suelo puede

evaluarse de diferentes maneras de acuerdo al objetivo perseguido; pH actual considera el H+ 

presente en la solución del suelo. Se evalúa en una relación suelo: agua de 1:1

La medida de la Conductividad Eléctrica  de los extractos obtenidos de un suelo permite

establecer una estimación aproximadamente cuantitativa de la cantidad de sales que contiene. La

relación suelo-agua tiene influencia sobre la cantidad y composición de las sales extraídas, siendo

necesario especificar la relación utilizada suelo-agua.

La materia orgánica viva de origen vegetal se caracteriza por una estructura celular abierta. Las

partículas de cortezas o corcho o las fibras vegetales tienen células en su interior que contribuyen

a aumentar la porosidad del suelo (porcentaje de poros), es decir, aumenta el número de poros

que son capaces de retener agua o aire sin aumentar el volumen total de suelo. Los espaciosvacíos que se forman en la interfase entre las partículas orgánicas y minerales pueden contribuir

al aumento de la conductividad hidráulica del suelo. Debido al efecto físico del tamaño de las

partículas, la materia orgánica aumenta la capacidad de retención de agua de suelos arenosos y

aumenta la capacidad de aireación de suelos arcillosos.

El nitrógeno  junto con el fósforo  son los macronutrientes que con mayor frecuencia limitan el

crecimiento de las plantas. El nitrógeno es muy versátil, existe en diferentes formas (inorgánicas y

orgánicas) y con distintos estados de oxidación. Más del 95% del nitrógeno total del suelo está en

forma orgánica y la relación con el carbono orgánico es cercana a (C/N) 10:1. Los vegetales lo

absorben del suelo en estado iónico (NO3- y NH4+). La evaluación o cuantificación del nitrógenotiene dos componentes: nitrógeno total (NT) y nitrógeno de nitratos (N-NO3).

Nitrógeno total  (NT) implica cuantificar la totalidad del nitrógeno existente en el suelo el que

puede variar entre 0,02% en subsuelos y 2,5% en casos extremos como las turbas. El método mas

difundido es el de Kjeldahl en sus tres escalas, macro, semimicro y micro. El principio general

consiste en determinar el N a través de la conversión de este en NH 4+ por una digestión con ácido

sulfúrico y el NH4+  se determina mediante la cuantificación de NH 3  liberado en un proceso de

destilación. Nitrógeno en forma de nitratos (N-NO 3): Es la forma mineral más importante y es el

resultado de los procesos de mineralización del resto de las formas de Nitrógeno del suelo, la cual

se cuantifica por extracción con sulfato de cobre y determinación por colorimetría del ácido

fenoldisulfónico.

7

Page 9: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 9/35

Page 10: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 10/35

árboles que ella tiene, el árbol del cacao sabe aprovechar bien la poca luz que pueda captar. Este

árbol debe vivir bajo sombra (una sombra alta es recomendable), sobre todo durante sus

primeros años de vida para poder tener un buen crecimiento. La buena sombra los puede

proteger de insectos, además con ello se necesitarán de menos podas.

El cacao requiere suelos muy ricos en materia orgánica, profundos, normalmente mayor de 1.5 m,franco arcillosos, con buen drenaje y topografía regular. El pH o reacción del suelo, normalmente

fluctúan entre 4 a 7.

El factor limitante del suelo en el desarrollo del cacao es la delgada capa húmica, lo cual es propio

de los suelos desarrollados bajo condiciones de selva, por ello al transplante la capa superficial es

la que sirva para cubrir el hoyo. Esta capa se degrada muy rápidamente cuando la superficie del

suelo queda expuesta al sol, al viento y a la lluvia directa.

Cuadro N° 1: Plan de Fertilización en Cacao

Guano de Islas

(g/planta)

Roca Fosfórica

(g/planta)

Sulfato de Potasio

(g/planta)

1er año - Establecimiento

Siembra a inicio de lluvias 350 90 100

3 meses 350 - 100

6 meses 350 - 100

2do año - Crecimiento

Antes de floración 650 90 230

3 meses 650 - 230

6 meses 650 - 230

3er año – Inicio de producciónAntes de la floración 300 90 125

4 meses 300 - 125

8 meses 300 - 125

4.7 Cultivo de Café.

El café es un cultivo permanente, se siembra y empieza a producir después de cuatro años. Su

vida productiva puede ser mayor a los 40 años, su producción se da una vez al año durante lo que

se llama ciclo cafetalero. Dependiendo de la zona y la altura es la época de cosecha. En el Perú

inicia en septiembre y concluye en marzo.

En sitios de alta precipitación no es necesario el riego suplementario. En aquellos lugares muy

soleados, el riego por surcos una vez a la semana, después que el cultivo se ha establecido, es

suficiente. La lámina de agua a aplicar debe ser suficiente para que humedezca completamente la

profundidad del cultivo.

El cafeto posee un sistema radicular poco extenso pero con alta demanda de oxígeno por lo que

exige suelos con buena estructura física, suelos con 50 cm mínimo de profundidad, con adecuada

aireación, buen drenaje interno, buena capacidad de retención de humedad, etc. Esta buena

condición física del suelo es tanta o más importante que la misma aplicación de fertilizante

9

Page 11: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 11/35

El cafeto se adapta mejor en suelos de reacción ácida a ligeramente ácida (pH de 5.5 a 6.0). Puede

crecer bien aun en suelos de pH más ácido, siempre y cuando el nivel de calcio y magnesio no sea

limitante. Es importante no incurrir en errores de sobre encalado, porque esto propicia de

inmediato las deficiencias de micronutrientes como hierro, zinc y boro, por lo que los

requerimientos de cal deben ser determinados con base a un análisis de laboratorio.

Una de las principales labores culturales en el cafeto debe estar encaminada a mantener en el

suelo un buen nivel de materia orgánica. En general el contenido ideal de M.O del suelo para

cafeto se dice que está alrededor del 10%. El uso de abono orgánico (estiércol, composta) resulta

muy adecuado en cafeto.

Cuadro N° 2: Plan de Fertilización en Café

Guano de Islas

(g/planta)

Roca Fosfórica

(g/planta)

Sulfato de Potasio

(g/planta)

1er año - Establecimiento

Siembra a inicio de lluvias 420 20 40

3 meses 420 - 40

6 meses 420 - 40

2do año - Crecimiento

Antes de floración 830 20 50

3 meses 830 - 50

6 meses 830 - 50

3er año – Inicio de producción

Antes de la floración 310 20 80

4 meses 310 - 80

8 meses 310 - 80

10

Page 12: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 12/35

V. MATERIALES Y MÉTODOS

5.1 Ubicación geográfica

Las parcelas evaluadas están ubicadas en 3 distritos de la provincia de Satipo (departamento de

Junín), de acuerdo al siguiente cuadro:

Nombres, Apellidos del productor Provincia Distrito PredioSistema deProducción

Cultivo

1. José Enrique Arce Perea Satipo Satipo La Encañada - Purma, 2 años

2. Víctor López Quintimari Satipo Pangoa López Convencional Cítrico, 20 años

3. Carindo Robín Alcorta Ñaco Satipo Pangoa Santa Lucia Orgánico Cacao, 8 años

4. Leónidas Mallma Roberto Satipo Pangoa Mallma Orgánico Cacao, 6 años

5. Percy Valderrama Cristóbal Satipo Pangoa Valderrama Orgánico Cacao, 10 años

6. Institución Educativa 31968 Satipo Pangoa Bajo Chavini Convencional Cítrico, 15 años

7. Aurelio Sánchez Casancho Satipo Satipo Santa Rosa Orgánico Café, 10 años

8. Juan Ignacio Villalva Huari Satipo Satipo Vista Alegre Convencional Cítrico, 35 años9. Nestor Ccorpa Huamán Satipo Satipo Rita - Purma, 2 años

10. Noé Ccorpa Huamán Satipo Satipo Ccorpa - Purma, 2 años

11. Lucas Llacsa Espinoza Satipo Satipo Llacsa Orgánico Café, 1ño

12. Máximo Antúnez Chacón Satipo Rio Tambo Antúnez Orgánico Cacao, 20 años

13. César Augusto Camacho Santos Satipo Rio Tambo Camacho Orgánico Cacao, 18 años

14. Luís Antonio Camacho Antúnez Satipo Rio Tambo Luis Orgánico Café, 3 años

15. Roy Poyentima Ríos Satipo Rio Tambo Roy Orgánico Cacao, 8 años

16. Modesto Chumpate Mahuanca Satipo Rio Tambo Chumpate Orgánico Cacao, 5 años

17. José Sánchez López Satipo Rio Tambo Sánchez Orgánico Cacao, 8 años

18. Leonardo Santos Armas Satipo Rio Tambo Leonardo Orgánico Cacao, 2 años 

19. Eduardo Martillo Shimati Satipo Rio Tambo Martillo Orgánico Cacao, 2 años 

20. Avelino Cárdenas Pérez Satipo Rio Tambo Cárdenas Orgánico Cacao, 2 años

21. Rufino Borquez Incaniteri Satipo Rio Tambo Borquez Orgánico Cacao, 10 años

5.2 Análisis

Posterior a la recolección, las muestras de suelos fueron llevadas al laboratorio; (Preparación de

muestras, secado y posterior tamizado) para la realización de los análisis necesarios para la

obtención de la información que se desea obtener.

5.2.1 Propiedades físicas

-  Textura (distribución y tamaño de las partículas): Método: Bouyucos.

-  Densidad aparente: utilizando la página web

http://www.pedosphere.ca/resources/bulkdensity/worktable_us.cfm 

5.2.2 Propiedades químicas

-   pH  potencial de iones Hidronio: Método potenciométrico con electrodo de vidrio

combinado.

-  Conductividad eléctrica: Método conductimétrico.

-  Materia orgánica: Método de Walkley y Black-  Nitrógeno: Método indirectamente de la materia orgánica

11

Page 13: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 13/35

-  Fósforo: Método de Olsen modificado a pH 8.5

-  Capacidad de intercambio catiónico: Método de determinación de cada una de los cationes

cambiables y por sumatoria estimar la capacidad de intercambio de cationes.

-  Acidez intercambiable: Método de extracción con KCl y titulación con NaOH.

5.3 Plan de fertilización

Luego de conocer el estado nutricional de los suelos mediante el análisis a realizar, y tomando en

cuenta los requerimientos nutricionales del cultivo y de la cantidad de plantas que se sembraran

así como también el tamaño de cada una de las parcelas; se procederá a diseñar el plan de

fertilización del mismo, para suplir las necesidades del suelo y del cultivo.

En función de las propiedades físicas y químicas que se estimarán en los análisis, podremos

conocer la fertilidad del suelo por medio del requerimiento que presenta el cultivo más lo que

este presente en el suelo, de esta manera podremos conocer el producto que se tenga que aplicar

y así elaborar el plan de fertilización, el cual se realizara de manera sencilla, basado en la época yrequerimiento nutricional del cultivo para cada ciclo; de manera que a los productores se les haga

fácil la aplicación y que los productos para dicha aplicación sean factibles.

Para programar el Plan de fertilización, primero se estableció la extracción de nutrientes por los

cultivos revisando la bibliografía nacional como tropical y sobre la base de lo indicado en los

Cuadros N° 1 y N° 2, suponiendo un nuevo establecimiento y un cultivo en producción.

Obteniéndose la siguiente formulación de extracción de nutrientes:

Cuadro N° 3: Extracción de Nutrientes por el cultivo de Cacao

N P2O5  K2O1er año – Establecimiento (Kg extraídos en 1 ha-año) 

Siembra a inicio de lluvias 67.50 22.90 96.40

2do año – Crecimiento (Kg extraídos en 1 ha-año) 

130.00 68.70 228.95

3er año – Inicio de producción (Kg extraídos en 1 ha-año, estimado de 600 Kg) 

30.00 18.32 48.20

Cacao en producción (Kg extraídos en 1 TM de grano-año)  

30.00 18.32 48.20

Fuente: INPOFOS (USA, 2002): Nutrición y Fertilización del Cacao

Cuadro N° 4: Extracción de Nutrientes por el cultivo de Café

N P2O5  K2O

1er año – Establecimiento (Kg extraídos en 1 ha-año) 

Siembra a inicio de lluvias 125.00 343.45 180.75

2do año – Crecimiento (Kg extraídos en 1 ha-año) 

250.00 687.00 361.50

3er año – Inicio de producción (Kg extraídos en 1 ha-año, estimado de 10 qq) 

Antes de la floración 279.99 103.03 379.58

Café en producción (Kg extraídos en 20 qq de grano-año)

42.03 4.99 85.02

Fuente: Associacao Brasileira para Pesquisa de Potassa e do Fosfato (Brasil, 2001)

12

Page 14: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 14/35

 

Segundo, con el resultado del análisis físico químico de suelos se procedió a los cálculos:

•  Al resultado de los análisis del suelo, se aplica los Coeficientes de Disponibilidad y de Uso

Aparente, para un mejor cálculo del valor real de los nutrientes

Elemento Coeficiente de Disponibilidad (%) Coeficiente Aparente de Uso (%)Nitrógeno 30 - 40 70

Fósforo 10 - 40 25

Potasio 40 70 - 80

•  En el establecimiento de la plantación, al contenido de nutrientes existente en el suelo se le

resta lo que extrae el cultivo (Cuadros N° 3 y N° 4).

•  El balance negativo resultante se tiene que compensar aplicando una cantidad equivalente al

doble de lo que extrae dicho cultivo.

•  Como se aplica el doble para el siguiente año se tiene un remanente en el suelo que servirá

para efectuar los cálculos siguientes, similares al primer paso, para el año siguiente.

El procedimiento descrito esta detallado en el Anexo N° 1: Principios a Tener en Cuenta para la

Interpretación de los Análisis de Suelos

13

Page 15: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 15/35

VI. RESULTADOS Y DISCUSIÓN

Para la discusión de los resultados determinados en los análisis físicos químicos de los suelos de

las localidades evaluadas, se tendrán en cuenta las siguientes escalas.

•  El pH se calificará según la siguiente escala:

Muy ácido 5.5 < pH

Ácido 5.6 < pH < 6.5

Neutro 6.6 > pH < 7.5

Ligeramente alcalino 7.6 > pH > 8.5

Muy alcalino pH > 8.6

•  El nivel de nutrientes de acuerdo a la siguiente tabla de interpretación para suelos del trópico:

ELEMENTO Dato Bajo Medio Alto

Materia Orgánica % < 2 2 - 4 > 4

Nitrógeno % < 0.1 0.1 – 0.2 > 0.2

Fosforo ppm < 12 12 – 24 > 24

Potasio meq/100 gr < 0.76 0.76 – 1.53 > 1.53

Para el Potasio se utiliza el valor determinado del Potasio intercambiable por

fotometría de llama del extracto de saturación, pues este valor generalmente se

multiplica por un factor para calcular el Potasio total en el suelo.

PARCELAS DE CACAO y CAFE:

1. 

PROPIEDADES FÍSICAS

Densidad aparente: La densidad aparente se define como el peso seco de una unidad de

volumen de suelo. Los factores que la afectan son principalmente tres: la textura, la

estructura y la presencia de materia orgánica. Suelos con texturas arenosas tienden a tener

densidades mayores que suelos más finos, al mismo tiempo en suelos bien estructurados los

valores son menores.

Textura: Existe una predominancia de arcillas en las diferentes parcelas evaluadas, que van

desde franco arcillo arenoso al arcilloso, lo que exige incrementar los niveles de materia

orgánica para favorecer un incremento de la Capacidad Intercambiable del Suelo.

2. 

PROPIEDADES QUIMICAS

pH o potencial de iones Hidronio: El pH del suelo  aporta una información de suma

importancia en diversos ámbitos de la edafología. Uno de los más importantes, deriva del

hecho de que las plantas tan solo pueden absorber los minerales disueltos en el agua,

mientras que la variación del pH modifica el grado de solubilidad de los minerales. Por

ejemplo, el aluminio y el manganeso son más solubles en el agua edáfica a un pH bajo, y

cuando tal hecho ocurre, pueden ser absorbidos por las raíces, siendo tóxicos a ciertas

concentraciones. En la naturaleza, existen especies vegetales adaptadas a ambientes

extremadamente ácidos y básicos.

La mayoría de promedios de los pH de los suelos de las localidades evaluadas en Satipo caendentro del rango de ácidos.

14

Page 16: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 16/35

Conductividad Eléctrica: Se tiene problemas de sales cuando el pH es mayor de 8.5 y la

conductividad eléctrica sobrepasa los 4 ds/m. En nuestro caso los valores de conductividad

eléctrica reflejan suelos no salinos para todos los casos, lo cual concuerda con la vegetación y

el clima, también influye el % de M.O. que interviene en la baja conductividad eléctrica.

Materia orgánica: Los niveles promedios en su mayoría son bajos (menor del 2%). La cantidadde materia orgánica en Kg-ha se ha calculado considerando la densidad que arroja la clase

textural de cada suelo. 

Fósforo Disponible: Teniendo en cuenta la tabla insertada al inicio de este ítem, los niveles

promedios por localidad van desde bajos a altos, predominado los valores altos en la mayoría

de localidades. La cantidad de P2O5 en Kg-ha se ha calculado considerando la densidad que

arroja cada clase textural encontrada.

Potasio Disponible: Como en el caso anterior, usando la tabla al inicio del ítem, los niveles son

bajos en todas las parcelas evaluadas. La cantidad de K 2O en Kg-ha se ha calculadoconsiderando la densidad que arroja cada clase textural encontrada.

Capacidad de Intercambio Catiónico (CIC): Se interpreta como el potencial de retención de

nutrientes que puede tener un suelo agrícola. Es un reflejo de la clase textural (contenido de

arcillas) y del contenido de materia orgánica del suelo (coloides orgánicos). En su mayoría son

de baja CIC (menor de 10 meq/100 gr de suelo).

Incorporación de Dolomita:  De las 21 parcelas evaluadas solo 09 requieren incorporar

dolomita para reducir el nivel de saturación de aluminio a menos del 40%, que apenas

representa el 43% del total de parcelas evaluadas.

15

Page 17: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 17/35

VII. ANEXOS

1.  Principios a Tener en Cuenta para la Interpretación de los Análisis de Suelos

2.  Resumen de los Análisis Físicos Químicos de Suelos de las parcelas evaluadas.

3.  Fotos del trabajo en Laboratorio.

4.  Resultados individuales de los Análisis Físicos Químicos de los Suelos, con su respectivo Plan

de Fertilización Anual.

16

Page 18: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 18/35

ANEXO 1: PRINCIPIOS A TENER EN CUENTA PARA LA INTERPRETACION DE LOS

ANÁLISIS DE SUELOS

Los resultados del análisis de suelo son una referencia puntual sobre las condiciones físico

químicas de una muestra en un espacio determinado, por lo general se espera encontrarsoluciones inmediatas mediante fórmulas de fertilización o abonamiento, sin embargo es

importarte considerar otros factores para una correcta recomendación, por lo cual hay que tener

en consideración algunos aspectos previos.

-  Condiciones climáticas de la región

-  Muestreo de suelos bien realizado (20 a 30 sub muestras por ha.)

-  Que cultivos se manejaron antes

-  Se aplicó o no fertilizantes anteriormente

-  Edad del cultivo (en crecimiento, en producción)

-  Tipo de cultivo (campaña, transitorio, permanente)

-  Nivel de manejo (mínimo, intermedio, intensivo)

-  Hasta qué punto arriesgamos la utilidad del agricultor

-  Momento de aplicación

-  Frecuencia de aplicación (fraccionamiento)

-  Adaptación del cultivo a la condición de! suelo

INTERPRETACIÓN DE LOS ANÁLISIS

La determinación del nivel de fertilidad en que se encuentra un suelo determinado es muy simple,

existen tablas o valores que nos indican el contenido de cada elemento en tenores bajo, medio oalto; basados en estos parámetros podemos tener una idea de la disponibilidad de cada elemento

y calcular la dosis que requiere para satisfacer una necesidad determinada

CÁLCULOS DE FERTILIZACIÓN PARA EL CULTIVO DE CACAO (Ejemplo).

Los nutrientes suministrados por el suelo se encuentran en éste en cantidades variables,

particularmente en los suelos del trópico estos no son suficientes para la adecuada nutrición de

las plantas y por eso hay necesidad de realizar enmiendas de tipo orgánico o químico para

mejorar la producción y productividad.

Por ejemplo, el cultivo de café manejado sin sombra y en condiciones de clima y suelo adecuadas,

brinda altos rendimientos, pero exige también el fiel cumplimiento de un programa de

fertilización y la ejecución oportuna de prácticas culturales, preventivas y control de erosión.

Mientras que el mismo cultivo bajo sombra requiere menor fertilización, pues los árboles de

leguminosa que le dan sombra aportan a la nutrición mineral del cultivo, así como la menor

incidencia solar reduce el grado de fotosíntesis y por lo tanto menor exigencia en nutrientes.

Es decir, la aplicación de fertilizantes no resuelve otros problemas derivados de inadecuadas

condiciones físicas del suelo, del clima o del mal manejo de un cultivo de cacao o de café.

17

Page 19: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 19/35

Antes de realizar el cálculo de la cantidad de fertilizante a utilizar debemos analizar o tener una

idea de la cantidad de nutrientes (Kg/ha.) que extrae el cultivo y de la disponibilidad de nutrientes

en el suelo, la cantidad extraída difiere para cada cultivo y está en función al rendimiento, el

cacao es un cultivo que responde rápidamente al estímulos de los fertilizantes.

Una cosecha promedio de 1 TM de granos de cacao beneficiado/ha., extrae del suelo las

siguientes cantidades de nutrientes: 

ElementoCantidad (Kg / ha.)extraída por 1 TM 

Nitrógeno 30.00 N

Fósforo 18.32 P2O5 

Potasio 48.20 K2O

Calcio 18.20 CaO

Magnesio 16.67 MgO

Azufre 0.031 SO4 

Boro 0.056 B2O5 FUENTE: INPOFOS (USA, 2002), Nutrición y Fertilización del Cacao 

Otro aspecto a tener en cuenta antes de realizar la formulación son los valores de coeficiente de

disponibilidad  (C.D.) y coeficiente aparente de uso  (C.A.U.) para cada elemento estudiado, tal

como se muestran a continuación:

ElementoCoeficiente de

Disponibilidad (%)

Coeficiente Aparente

de Uso (%)

Nitrógeno 30 - 40 70

Fósforo 10 - 40 25

Potasio 40 70 - 80

DETERMINACIÓN DE LA DOSIS DE FERTILIZACIÓN

En un análisis de suelo se tiene los siguientes resultados:

MuestraC.E.

Análisis FísicoClase

TexturalDa

pHM.O. P K

Cationes Cambiables

Ao Ar Li CIC Ca Mg Na K Al+HdS/m  % % % gr/cm3  % ppm ppm meq. / 100 gr suelo

A 0.115 60.08 15.88 24.04Franco

Arenoso1.48 4.4 2.137 5.40 50.83 10.20 1.24 0.82 0.11 0.13 7.90

I. ELEMENTOS DISPONIBLES

1.1 CÁLCULOS PARA EL NITRÓGENO (%N)

En el análisis anterior se tiene un contenido de Materia Orgánica equivalente a 2.137%

A) % N = %M.O. x 0.05 => %N = 2.137 x 0.05

% N = 0.107 %

El factor 0.05 es la fracción de la materia orgánica constituida por N. Por definición, de 100

partes de materia orgánica en el suelo, 20 corresponden al N total (igual al 5.0%).

Ntotal  = % N x WCA x Coeficiente de Mineralización

Pero: WCA  = Peso de la capa arable de suelo (20 cm espesor)

WCA  = 2,000,000 x Da 

Coef. Min. = 3.0%

18

Page 20: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 20/35

El nitrógeno del suelo tiene dos componentes, N orgánico y N inorgánico. Los micro organismos del

suelo hacen la conversión de la forma orgánica a inorgánica, que es la forma absorbida por las

plantas. Se estima que entre 1.5% y 3% del N total del suelo corresponde a N inorgánico o N

asimilable; usualmente se trabaja con 1.5% ó (0.015) en zonas con baja actividad microbial y

3% (0.03) en zonas con alta actividad microbial como el trópico.

Ntotal = (0.107 /100) x (2,000,000 x 1.48) x (3.0/100)

Ntotal = 94.88 Kg/ha

B) Utilizando un Coeficiente de Disponibilidad (CD) de 35%, se obtiene:

Ndisp = 94.88 x 35 / 100 = 33.21 Kg/ha

C) Utilizando el Coeficiente Aparente de Uso (CAU) de 70%, se obtiene:

Nasim = 33.21 x 70 / 100 = 23.25 Kg/ha

Es decir este suelo tiene un contenido actual de 23.25 Kg de Nitrógeno por ha.

D) Por lo tanto, la cantidad de Nitrógeno necesario para volver a producir 1 TM de grano

de cacao por ha. será:

N deficiencia   = N extraído por la cosecha  – N asimilable en el suelo  

N deficiencia   = 30 – 23.25 = 6.75 Kg/ha

E) Calculando la cantidad de Guano de Islas (13% de N) a utilizar, esta será igual a:

G de I (Kg/ha) = N def  x (100 / CAU) x (100 / %N en el Guano de Islas)

G de I (Kg/ha) = 6.75 x (100 / 70) x (100 / 12)

===> G de I = 74.22 Kg/ha aproximadamente 100.00 Kg de Guano de islas/ha

1.2 CÁLCULOS PARA EL FÓSFORO (P2O5)

En el resultado del análisis anterior se tiene un contenido de Fósforo disponible equivalente

a 5.40 ppm de P, cantidad que hay que transformar a Kg/ha:

A) Entonces 1 x 106 Kg suelo ------------ 5.40 Kg de P

(2 x 106 X Da) Kg ------------ X

X = 2 x Da x 5.40 = 2 x 1.48 x 5.40

X = 15.98 Kg de P por ha

B) Para convertir de Kg/ha de P (fósforo) a Kg/ha de P2O5 (fosfórico) se multiplica por el

factor 2.290

X = 15.98 x 2.290

X = 36.60 Kg/ha de P2O5 

C) Aplicando el Coeficiente de Disponibilidad de 25% se tiene.

P2O5 dispon.  = 36.60 x 25 / 100 = 9.15 Kg/ha

D) Si aplicamos un Coeficiente Aparente de Uso (CAU) de 25%, se obtiene.

P2O5 asim. = 9.15 x 25 / 100 = 2.29 Kg/haEs decir este suelo tiene un contenido actual de 2.29 Kg de Fosfórico por Ha.

19

Page 21: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 21/35

E) Por lo tanto, la cantidad de Fosfórico necesario para volver a producir 1 TM de grano

de cacao por Ha será:

P2O5 defic.  = P2O5 extraído  - P2O5 asirn. 

P2O5 defic.  = 18.32 - 2.29 = 16.03 Kg/ha.

F) Calculando la cantidad de Roca Fosfórica a utilizar (20% de P2O5), esta será igual a:

RF (Kg/ha) = P2O5 defic. x (100 / CAU) x (100 / % P2O5 en la roca fosfórica)

RF (Kg/ha) = 16.03 x (100 / 25) x (100 / 20)

===> RF = 320.60 Kg/ha aproximadamente 350.00 Kg de Roca Fosfórica/haEl Guano de Islas aporta 11% de K 2O (11 Kg aportado por 100 Kg de guano de islas),

la cantidad de roca fosfórica se reduce a 309.60 Kg, es decir 300 Kg  de Guano de

Islas.

1.3. CÁLCULOS PARA EL POTASIO (K2O) 

En el resultado de análisis anterior se tiene un contenido de Potasio disponible equivalente

a 50.83 ppm de K, cantidad que hay que transformar a Kg/ha:

A) Entonces 1 x 106 Kg suelo ------------ 50.83 Kg de K

(2 x 106 X Da ) Kg. ------------ X

X = 2 x Da x 50.83 = 2 x 1.48 x 50.83

X = 150.46 Kg de K

B) Para convertir Kg/ha de K (potasio) a Kg/ha de K2O (potasa) se multiplica por el factor

1.205

X = 150.46 x 1.205X = 181.30 Kg/ha de K2O

C) Aplicando el coeficiente de disponibilidad 40%, se tiene la cantidad de K2O disponible

K2O dispon. = 181.30 x (40/100)

K2O dispon. = 72.52 Kg/ha

D) Para determinar la cantidad de K2O asimilable, se multiplica por el CoeficienteAparente de Uso (CAU) de 75%, obteniendo:K2O asim.  = 72.52 x (75 / 100) = 54.39 Kg/ha

Es decir este suelo tiene un contenido actual de 54.39 Kg de Potasa por Ha.

E) Por lo tanto, la cantidad de potasa necesaria para volver a producir 1 TM de grano decacao por Ha será:K2O defic.  = K2O extraído - K2O asirn. 

K2O defic.  = 48.20 - 54.39 = - 6.19 Kg/ha

F) Calculando la cantidad de Sulfato de Potasio (50% de K2O), convirtiendo en positivo

el valor determinado, esta será igual a:

SP (Kg/ha) = K2O defic. x (100 / CAU) x (100 / % K2O en el Sulfato de Potasio)

SP (Kg/ha) = 6.19 x (100 / 75) x (100 / 50)

===> SP = 16.51 Kg/ha aproximadamente 20.00 Kg de Sulfato de Potasio/haEl Guano de Islas aporta 2.5% de K2O (2.5 Kg aportado por 100 Kg), la cantidad de

20

Page 22: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 22/35

sulfato de potasio se reduce a 14.01 Kg, es decir 15 Kg de Sulfato de Potasio.

II. CATIONES INTERCAMBIABLES.

2.1  Calculo del % de Saturación de bases y % de acidez cambiable

Fórmulas:

% Bases Cambiables (BC) = (Ca++ + Mg++ + K+ + Na+) 

X 100CIC

% Acidez Cambiable (AC) = (Al+++ + H+) 

X 100CIC

Pero: % BC + % AC =100%

P eq - gr  = Peso Molecular 

Valencia

2.2 Del análisis de suelo anterior, se tiene los siguientes resultados:

MuestraCationes Cambiables

CIC Ca++

  Mg++

  Na+  K

+  Al

+++ + H

meq / 100 gr suelo

A 10.20 1.24 0.82 0.11 0.13 7.90

A) Calculo del % de Saturación de bases:

% Bases Cambiables =(1.24 + 0.82 + 0.11 + 0.13)

X 10010.20

% Bases Cambiables = 22.55 %

B) Calculo del % de acidez intercambiable

% Acidez Cambiable =7.90

X 10010.20

% Acidez Cambiable = 77.45 %

2.3. CALCULO DE LA CANTIDAD CAMBIABLE DE CADA ELEMENTO EN EL SUELO.

2.3.1. CALCIO (Ca++

)

A) P eq - gr  Ca = ( PM / Val ) = (40 / 2) = 20

=> 1 meq de Ca = 20 mg

B) Entonces: 1.00 meq Ca ------------ 20 mg Ca1.24 meq Ca ------------ X

X =1.24 meq Ca x 20 mg Ca

= 24.80 mg Ca / 100 gr suelo1.00 meq Ca

21

Page 23: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 23/35

C) Pero: 24.80 mg Ca ------------- 100 gr suelo=> 248.00 mg Ca ------------- 1,000 gr suelo = 1 Kg suelo

D) Si 248.00 mg Ca -------------- 1 Kg. suelo

Y -------------- (2 x 106 x Da )

Y =(2 x 106 x 1.48) x 248

= 734.08 x 106 mg Ca1

E) => Y = 734.08 Kg. de Calcio

2.3.2. MAGNESIO (Mg++)

A) P eq - gr  Mg = ( PM / Val ) = (24.32 / 2) = 12.16

=> 1 meq de Mg = 12.16 mg

B) Entonces 1.00 meq Mg ------------ 12.16 mg. Mg

0.82 meq Mg ------------ X

X =0.82 meq Mg x 12.16 mg Mg

= 9.971 mg Mg / 100 gr suelo1.00 meq Mg

C) Pero 9.97 mg Mg ------------- 100 gr suelo

=> 99.71 mg Mg ------------- 1000 gr suelo = 1 Kg suelo

D) Si 99.71 mg Mg -------------- 1 Kg suelo

Y -------------- (2 x 106

 X Da)

Y =(2 x 106 x 1.48) x 99.71

= 295.14 x 106 mg Mg1

E) => Y = 295.14 Kg. de Magnesio

2.3.3. POTASIO (K+)

A) P eq - gr  K = ( PM / Val ) = (39.10 / 1) = 39.10

=> 1 meq de K = 39.10 mg

B) Entonces: 1.00 meq K ------------ 39.10 mg K

0.13 meq K ------------ X

X =0.13 meq K x 39.10 mg K

= 5.083 mg K / 100 gr suelo1.00 meq K

C) Pero: 5.08 mg K ------------- 100 gr suelo

=> 50.83 mg K ------------- 1000 gr suelo = 1 Kg suelo

D) Si 50.83 mg K -------------- 1 Kg. suelo

22

Page 24: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 24/35

  Y -------------- (2 x 106 x Da )

Y =(2 x 106 x 1.48) x 50.83

= 150.46 x 106 mg K1

E) => Y = 150.46 Kg. de Potasio

Ejemplo de Encalado:

El encalado es necesario realizarlo principalmente cuando el pH es menor de 5.5 y el % de Acidez

Cambiable (Al+++ + H+) o el % de Saturación de Aluminio (Al+++), es mayor del 60%. Y se realiza con

miras a reducir este valor a menos del 40%.

De los cálculos anteriores se obtuvo:

% BC = 22.55

% AC = 77.45

AC (Al + H ) = 7.90 meq / 100 gr suelo

CIC = 10.20 meq / 1 00 gr suelo

¿Calcular la cantidad de piedra caliza necesario para bajar el % AC hasta un nivel tolerable para el

cultivo de café (40%), suponiendo que la piedra caliza tiene una concentración de 70% de CaCO 3?

A) Si 10.20 meq/100 gr ------------- 100 %

X ------------- 40 %

X = 4.08 meq/ 100 gr suelo

B) Por lo tanto, la cantidad de acidez cambiable a corregir será

AC correg  = 7.90 – 4.08 = 3.82 meq/100 gr suelo.

C) Entonces, para bajar la acidez en la proporción de 3.82 meq/100 gr. de suelo se necesita

3.82 meq CaCO3 / 100 gr de suelo (Proporción 1:1)

P  eq - gr  CaCO3 = (PM / Valencia) = 100/2

P  eq - gr  CaCO3 = 50

=> 1.00 rneq CaCO3  ----------- 50 mg CaCO3 3.82 meq CaCO3  ----------- X

X = 191.00 mg CaCO3 

D) Si 191.00 mg CaCO3  ----------- 100 gr suelo

=> 1,910 mg CaCO3  ----------- 1000 gr suelo = 1 Kg

Y ----------- 2 x 106 X 1.48

Y =(2 x 106 x 1.48) x 1910

= 5,653.60 x 106 mg CaCO3 

1

23

Page 25: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 25/35

Y = 5,653.60 Kg de CaCO 3 

E) SI queremos aplicar piedra caliza con una concentración de 70% de CaCO3, se necesitaría:

Piedra Caliza = 5,653.60 x 100 / 70

Piedra Caliza = 8,077 Kg/ha.

RELACIÓN DEL TIPO DE ARCILLA Y LA CIC

ComponenteCIC

(meq/100 gr suelo)

Caolinita (1:1) 3 – 15

Haloysita (1:1) 5 – 10

Montmorrillonita (2:1) 80 – 120

Vermiculita (2:1) 100 – 150

Ilita (2:1) 10 – 40Clorita (2:1) 10 – 40

Alófano 60 – 70

Coloide Orgánico Húmico 200 – 400

RELACIÓN DE LA TEXTURA Y LA CIC 

TexturaCIC

(meq/100 gr suelo)

Arenoso 1 – 5

Franco, Arena fina 5 – 10Franco, Franco limoso 5 – 15

Franco – Arcilla 15 – 30

Arcilla > 30

La Capacidad de Intercambio Catiónico (CIC) está en función al tipo de arcilla, la cantidad de

arcillas y los coloides húmicos que lo conforman.

24

Page 26: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 26/35

REFERENCIAS SOBRE EL CONTENIDO DE NUTRIENTES DE ALGUNAS ENMIENDAS

1. Composición química de la roca fosfórica 

•  P2O5  31.80% •  MgO 0.60%

•  CaO 46.90% •  K2O 0.17%

•  SO2  4.38% •  Al2O3  0.92%

•  SiO2  3.90% •  Fe2O3  0.50%

•  F 3.00% •  Cl 0.04%

•  NaO2  2.17% •  TiO2  0.06%

•  CO2  4.80% •  Mat. Org. 3.20%

2. Composición química de la dolomita 

•  CaO 30.0% •  MgO 20.0%

3. Composición química promedio de algunos Abonos Orgánicos. 

ElementoGuano delas Islas1 

Estiércol deVacuno2 

Gallinaza de Avespara carne3 

•  Nitrógeno 12.0% 1.5% 1.5%

•  Fósforo 8.0% 1.5% 1.6%

•  Potasio 1 - 2% 1.0% 0.9%

•  Oxido de Ca 8.0% 3.1%

•  Oxido de Mg 0.5% 0.8%

•  Azufre 1.6% -

•  Cloro 1.5% -

•  Sodio 0.8% -

•  Oligoelementos - 112.5 ppm

NIVELES DE INTERPRETACIÓN PARA ANÁLISIS DE SUELOS Y FOLIAR EN EL CULTIVO DE CAFÉ

Niveles de Nutrientes sugeridos para interpretar los Análisis de Suelos

ElementoNivel

Bajo Medio Alto

Materia Orgánica (%) < 2.0 2.0 – 4.0 > 4.0

Nitrógeno (%) < 0.1 0.1 – 0.2 > 0.2

Fósforo (ppp de P) < 6.0 6.0 – 14.0 > 14.0

Potasio (Kg de K2O / Ha) < 300 300 – 600 > 600Calcio (meq / 100 gr) < 1.6 1.6 – 4.2 > 4.2

Potasio (meq / 100 gr) < 0.29 0.29 – 0.41 > 0.41

Magnesio (meq / 100 gr) < 0.50 0.50 – 1.40 > 1.40

CIC (meq / 100 gr) 4 8 – 12 > 12 – 20

FUENTE: CENICAFE, Interpretación de Análisis de Suelos para Café

1  MINAG, 2010 (Perú)

2  M. Almansa, et al (2005): Velocidad de mineralización del estiércol vacuno según su estabilidad. Escola Superiord’Agricultura, Barcelona (España, 2008).

3  UNA LM, 2010 (Perú)

25

Page 27: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 27/35

ANEXO 2: RESUMEN DE LOS ANÁLISIS FÍSICOS QUÍMICOS DE SUELOS DE LAS PARCELAS EVALUADAS

NOMBRE : Desarrollo Alternativo en Satipo PROFUNDIDAD : 0 - 30 cm.

PROCEDENCIA : Satipo, Junín (varias localidades) FECHA DE REPORTE :FECHA DE INGRESO : 15-ago-14 CULTIVO : Cultivos diversos

1  ATENCION :

C.E.

 Are na Arci lla Limo N P K Ca++ Mg++ Na+ K+  Al+++ Saturaciónde Al

% % % 1 : 1 % % % ppm ppm %

1 ASC14 - 470 La Paz - Satipo, Satipo José Enrique Arce Perea 29.18 44.12 26.70 Arcil loso 1.27 5.2 0.404 - 1.003 0.050 24.8 97.80 8.45 2.40 1.60 0.10 0.25 4.10 48.5%

2 ASC14 - 471 CC.NN. Chavini - Pangoa Víctor López Quintimari 39.26 42.00 18.74 Arcil loso 1.30 5.2 0.403 - 1.349 0.067 20.2 78.20 5.71 2.50 0.30 0.11 0.20 2.60 45.5%

3 ASC14 - 472 CC.NN. Chavini - Pangoa Carindo Robin Alcorta Ñaco 56.52 19.92 23.56 Franco Arenoso 1.44 6.3 0.346 - 0.900 0.045 9.5 125.10 7.03 4.80 1.60 0.11 0.32 0.20 2.8%

4 ASC14 - 473 CC.NN. Chavi ni - Pangoa Leoni das Mall ma Roberto 46.60 32.00 21.40Franco Arcillo

Arenoso1.35 5.1 0.881 - 0.967 0.048 61.3 121.20 7.98 3.60 0.48 0.09 0.31 3.50 43.9%

5 ASC14 - 474 CC.NN. Chavini - Pangoa Percy Valderrama Cristobal 34.56 43.92 21.52 Arcil loso 1.28 5.3 0.500 - 0.830 0.042 50.3 144.70 7.07 2.80 1.20 0.10 0.37 2.60 36.8%

6 ASC14 - 475 CC.NN. Chavini - Pangoa Institución Educativa 31968 40.48 31.16 28.36 Franco Arcilloso 1.34 5.3 0.271 - 0.830 0.042 24.9 86.02 8.83 2.40 1.60 0.11 0.22 4.50 51.0%

7 ASC14 - 476 C. P. Sanibeni - Satipo Aurelio Sánchez Casancho 34.44 45.20 20.36 Arcil loso 1.28 4.7 0.899 - 0.934 0.047 31.0 82.11 19.71 10.40 1.38 0.12 0.21 7.60 38.6%

8 ASC14 - 477 C. P. Sanibeni - Satipo Juan Ignacio Villalva Huari 38.40 37.20 24.40 Franco Arcilloso 1.31 4.7 0.696 - 0.830 0.042 50.7 54.74 7.23 2.40 0.38 0.11 0.14 4.20 58.1%

9 ASC14 - 478 C. P. Sanibeni - Satipo Nestor Ccorpa Huaman 32.44 43.24 24.32 Arcil loso 1.28 4.8 0.543 - 1.799 0.090 62.8 54.74 24.41 10.80 2.77 0.14 0.20 10.50 43.0%

10 ASC14 - 479 C. P. Sanibeni - Satipo Noé Ccorpa Huaman 40.40 41.20 18.40 Arcil loso 1.30 5.1 1.119 - 2.214 0.111 67.9 285.40 12.95 2.80 2.40 0.12 0.73 6.90 53.3%

METODOLOGIA EMPLEADA EN LOS ANALISIS:

Textura : Hidrómetro de Bouyoucos Materia Orgánica : Walkley y Black Sodio y Potasio : Fotometría de Llama

pH : Potenciómetro en suspensión suelo: agua Nitrógeno : Micro Kjeldahl Calcio y Magnesio : Versenato E.D.T.A

Conductividad Eléctrica : Extracto acuoso en la relación suelo: agua 1:1 Fósforo : Olsen Modificado Aluminio cambiable : Yuan, extracción con KCl 1N

Carbonatos : Gasovolumétrico con calcímetro de Bernard Capacidad de Intercambio Catiónico : Suma de Bases cambiables Acidez Activa : Yuan, extracción con KCl 1N

C.I.P. Nº 32743 Laboratorista de Suelos

   d   S   /  m

VºBº Ing. Car los Egoávil De la Cruz Tco. Gleoder Ruíz Flores

LABORATORIO DE ANÁLISIS DE SUELOS - ESTACIÓN EXPERIMENTAL DE NUEVA CAJAMARCACarretera Presidente Fernándo Belaunde Terry Km 448 - Distrito de Nueva Cajamarca

Provincia de Rioja, San Martín. Teléfono 556443

RESULTADO DE ANALISIS DE SUELO - CARACTERIZACION

26-ago-14

Nro

CLAVE

LABORA_

TORIO

CL AVE CA MPO PROCEDENCIA y /o A GRICUL TOR

 Análi sis Físico A n á l i s i s Q u í m i c oTextura

Clase Textural

   D  e  n  s   i   d  a   d

   A  p  a  r  e  n   t  e

pH   C  a  r   b  o

  n  a   t  o  s

M.O.Elementos Disponibles

CICElementos Cambiables

meq / 100 gr de suelo

PROYECTO ESPECIAL ALTO MAYODirección de Desarrollo Agropecuario

26

Page 28: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 28/35

 

NOMBRE : Desarrollo Alternativo en Satipo PROFUNDIDAD : 0 - 30 cm.

PROCEDENCIA : Satipo, Junín (varias localidades) FECHA DE REPORTE :FECHA DE INGRESO : 15-ago-14 CULTIVO : Cultivos diversos

2  ATENCION :

C.E.

 Are na Arci lla Limo N P K Ca++ Mg++ Na+ K+  Al+++ Saturaciónde Al

% % % 1 : 1 % % % ppm ppm %

11 ASC14 - 480 C. P. Sanibeni - Satipo Lucas Llacsa Espinoza 33.92 27.12 38.96 Franco Arcilloso 1.35 4.8 0.849 - 1.246 0.062 52.0 66.47 7.67 2.40 0.32 0.18 0.17 4.60 60.0%

12 ASC14 - 481 CC. NN. Anapate - Rio Tambo Máximo Antunez Chacon 69.84 15.16 15.00 Franco Arenoso 1.51 6.3 0.208 - 0.761 0.038 10.1 62.56 7.72 6.00 0.80 0.16 0.16 0.60 7.8%

13 ASC14 - 482 CC. NN. Anapate - Rio Tambo César Augusto Camacho Santos 47.80 21.16 31.04 Franco 1.41 6.1 0.647 - 0.967 0.048 25.8 101.70 9.67 7.20 1.60 0.11 0.26 0.50 5.2%

14 ASC14 - 483 CC. NN. Anapate - Rio Tambo Luís Antonio Camacho Antunez 47.76 23.08 29.16 Franco 1.40 6.3 0.510 - 0.900 0.045 16.2 109.50 8.31 6.40 1.20 0.13 0.28 0.30 3.6%

15 ASC14 - 484 CC. NN. Anapate - Rio Tambo Roy Poyentima Ríos 51.88 11.08 37.04 Franco Arenoso 1.52 6.2 0.390 - 0.727 0.036 27.0 101.70 8.38 6.40 0.80 0.12 0.26 0.80 9.5%

16 ASC14 - 485 CC. NN. Anapate - Ri o Tambo Modesto Chumpate Mahuanca 73.60 13.08 13.32 Franco Arenoso 1.53 6.5 0.714 - 0.554 0.028 16.3 113.40 12.60 8.00 1.20 0.11 0.29 3.00 23.8%

17 ASC14 - 486 CC.NN. Camajeni - Ria Tambo José Sánchez López 57.60 15.04 27.36 Franco Arenoso 1.48 5.9 0.353 - 0.623 0.031 3.5 70.38 4.61 2.80 0.80 0.13 0.18 0.70 15.2%

18 ASC14 - 487 CC.NN. Camaj eni - Ri o Tambo Leona rdo Santos Armas 47.52 33.12 19.36Franco Arcillo

Arenoso1.35 6.8 0.961 - 0.761 0.038 13.0 183.77 13.97 11.60 1.60 0.10 0.47 0.20 1.4%

19 ASC14 - 488 CC.NN. Camajeni - Ria Tambo Eduardo Martillo Shimati 65.56 15.04 19.40 Franco Arenoso 1.50 6.4 0.771 - 0.484 0.024 7.4 58.65 6.98 5.20 1.20 0.13 0.15 0.30 4.3%

20  ASC14 - 489 CC.NN. Camajeni - Rio Tambo Avelino Cárdenas Pérez 49.5 23.2 27.3Franco Arcillo

 Arenoso1.4 4.8 1.22 - 0.519 0.026 7.1 58.65 6.31 2.80 0.37 0.19 0.15 2.80 44.4%

21 ASC14 - 490 CC.NN. Camajeni - Rio Tambo Rufino Borquez Incaniteri 59.6 19.2 21.2 Franco Arenoso 1.45 6.4 1.05 - 0.796 0.040 10.4 78.20 8.33 6.80 0.90 0.13 0.20 0.30 3.6%

METODOLOGIA EMPLEADA EN LOS ANALISIS:

Textura : Hidrómetro de Bouyoucos Materia Orgánica : Walkley y Black Sodio y Potasio : Fotometría de Llama

pH : Potenciómetro en suspensión suelo: agua Nitrógeno : Micro Kjeldahl Calcio y Magnesio : Versenato E.D.T.A

Conductividad Eléctrica : Extracto acuoso en la relación suelo: agua 1:1 Fósforo : Olsen Modificado Aluminio cambiable : Yuan, extracción con KCl 1N

Carbonatos : Gasovolumétrico con calcímetro de Bernard Capacidad de Intercambio Catiónico : Suma de Bases cambiables Acidez Activa : Yuan, extracción con KCl 1N

C.I.P. Nº 32743 Laboratorista de Suelos

   d   S   /  m

VºBº Ing. Car los Egoávil De la Cruz Tco. Gleoder Ruíz Flores

pH   C  a  r

   b  o

  n  a   t

  o  s

M.O.

Elementos Disponibles

CIC

Elementos Cambiables

26-ago-14

Nro

CLAVE

LABORA_TORIO

CL AVE CA MPO PROCEDENCIA y /o A GRICUL TOR

 Análi sis Físico A n á l i s i s Q u í m i c oTextura

Clase Textural

   D  e  n  s   i   d

  a   d

   A  p  a  r  e  n

   t  e

meq / 100 gr de suelo

LABORATORIO DE ANÁLISIS DE SUELOS - ESTACIÓN EXPERIMENTAL DE NUEVA CAJAMARCACarretera Presidente Fernándo Belaunde Terry Km 448 - Distrito de Nueva Cajamarca

Provincia de Rioja, San Martín. Teléfono 556443

RESULTADO DE ANALISIS DE SUELO - CARACTERIZACION PROYECTO ESPECIAL ALTO MAYODirección de Desarrollo Agropecuario

27

Page 29: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 29/35

ANEXO 3: IMÁGENES DEL TRABAJO EN LABORATORIO

Fachada del Laboratorio de Suelos del Proyecto Especial Alto Mayo – Gobierno Regional de San Martín 

Secado natural de muestras para

molienda y tamizado.

28

Page 30: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 30/35

 Tamizado de muestras luego de la molienda manual.

Tierra Fresca Seca al Aire (TFSA) lista para ingresar a la marcha analítica de análisis físico químico.

29

Page 31: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 31/35

 Codificación y envasado de las muestras de suelos.

Almacenaje de las muestras de suelos (TFSA).

30

Page 32: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 32/35

 Pesaje de muestras para análisis de pH.

Agitación mecánica de muestras con agente extractor para determinación de Fósforo Disponible

31

Page 33: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 33/35

 Extracción de alícuota para determinación de Fósforo Disponible

Preparación de muestras para determinación de Materia Orgánica.

32

Page 34: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 34/35

 Licuadoras para agitación con agente dispersante.

Determinación de Textura por Bouyoucos

33

Page 35: Analisis de Suelos de Satipo

7/21/2019 Analisis de Suelos de Satipo

http://slidepdf.com/reader/full/analisis-de-suelos-de-satipo 35/35

ANEXO 4: RESULTADOS INDIVIDUALES DE LOS ANÁLISIS FÍSICOS

QUÍMICOS DE LOS SUELOS, CON SU RESPECTIVO PLAN DE

FERTILIZACIÓN ANUAL.