Análisis de vigas de concreto armado

82
Concreto Armado I Contenido: Tema 2: Miembros sometidos a flexión simple 2.1Comportamiento de secciones sometidas a flexión 2.2 Resistencia de las secciones sometidas a flexión 2.3 Diseño de secciones por teoría de rotura 2.4 Cálculo de deflexiones. Prof. Ing. José Grimán Morales 1

Transcript of Análisis de vigas de concreto armado

Page 1: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 1

Concreto Armado I• Contenido:• Tema 2: Miembros sometidos a flexión

simple • 2.1Comportamiento de secciones

sometidas a flexión • 2.2 Resistencia de las secciones sometidas

a flexión• 2.3 Diseño de secciones por teoría de

rotura• 2.4 Cálculo de deflexiones.

Page 2: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 2

2.1Comportamiento de secciones sometidas a flexión • Los principales aspectos de interés práctico en

el comportamiento de una estructura son:• (1) la resistencia de la estructura, es decir, la

magnitud de las cargas con una distribución dada que causarán la falla de la estructura y

• (2) las deformaciones traducidas en deflexiones y agrietamientos que van a presentarse en la estructura cuando esté cargada bajo condiciones de servicio.

Page 3: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 3

2.1Comportamiento de secciones sometidas a flexión • La mecánica del concreto reforzado se basa en

las siguientes premisas fundamentales:• 1. Las fuerzas internas, tales como momentos

flectores, fuerzas de corte y esfuerzos normales y cortantes en una sección cualquiera de un elemento, están en equilibrio con los efectos de las cargas externas en esta sección.

• 2. La deformación unitaria en una barra de refuerzo embebida (a tensión o a compresión) es la misma que la del concreto circundante. Es decir, se supone que existe una adherencia perfecta en la interfase entre el concreto y el acero de manera que no ocurre deslizamiento entre los dos materiales.

Page 4: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 4

2.1Comportamiento de secciones sometidas a flexión • 3. Las secciones transversales planas antes de la

aplicación de la carga siguen siendo planas para el elemento cargado.

• 4. Debido a que la resistencia a la tensión del concreto es pequeña, el concreto en aquella parte del elemento sometido a tensión estará usualmente fisurado; las fisuras obligan a que el concreto fisurado sea incapaz de resistir esfuerzos de tensión. De acuerdo con esto, se supone en general que el concreto no es capaz de resistir ningún esfuerzo de tensión.

• 5. La teoría se basa en las relaciones esfuerzo-deformación reales y en las propiedades de resistencia de los dos materiales constituyentes o en alguna simplificación razonable relacionada.

Page 5: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 5

2.1Comportamiento de secciones sometidas a flexión

• En la figura 2.1 se presenta un ejemplo sencillo de una viga de concreto reforzado y se indica la nomenclatura usual para las dimensiones de la sección transversal.

• Cuando la carga en dicha viga se incrementa de modo gradual desde cero hasta la magnitud que producirá su falla, claramente pueden distinguirse diferentes estados en su comportamiento.

Page 6: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 6Figura 2.1. (Tomada de Nilson, Arthur H.)

Page 7: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 7

2.1Comportamiento de secciones sometidas a flexión

• Para cargas bajas, mientras que el máximo esfuerzo de tensión en el concreto sea menor que el módulo de rotura, todo el concreto resulta efectivo para resistir los esfuerzos de compresión a un lado y de tensión al otro lado del eje neutro.

• Además, el refuerzo, que se deforma la misma cantidad que el concreto adyacente, también está sometido a esfuerzos de tensión. En esta etapa, todos los esfuerzos en el concreto son de pequeña magnitud y proporcionales a las deformaciones.

Page 8: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 8

2.1Comportamiento de secciones sometidas a flexión

• Cuando la carga se aumenta un poco más, pronto se alcanza la resistencia a la tensión del concreto y en esta etapa se desarrollan las grietas de tensión. Éstas se propagan con rapidez hacia arriba y muy cerca del nivel del plano neutro, que a su vez se desplaza hacia arriba con agrietamiento progresivo.

• La forma general y la distribución de estas grietas de tensión aparecen en la figura 2.2.

Page 9: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 9

Figura 2.2. (Tomada de Nilson, Arthur H.)

Page 10: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 10

2.1Comportamiento de secciones sometidas a flexión

• Para cargas moderadas, si el esfuerzo en el concreto no excede aproximadamente (f’c/2), los esfuerzos y las deformaciones unitarias continúan siendo proporcionales. La distribución de deformaciones unitarias y esfuerzos en la sección fisurada o cerca de ella es, en consecuencia, la que aparece en la figura 3.2e (Ver figura 2.2).

Page 11: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 11

2.1Comportamiento de secciones sometidas a flexión

• Cuando la carga se incrementa aún más, el esfuerzo y las deformaciones aumentan en forma correspondiente y desaparece la proporcionalidad. La relación no lineal entre esfuerzos y deformaciones unitarias que sigue es la determinada por la curva esfuerzo-deformación unitaria del concreto. La figura 3.2f (ver figura 2.2) señala la distribución de esfuerzos y deformaciones unitarias cerca de la carga última.

Page 12: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 12

Figura 2.2.(Repetida) (Tomada de Nilson, Arthur H.)

Page 13: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 13

2.1Comportamiento de secciones sometidas a flexión

• En algún momento se alcanza la capacidad de carga de la viga. La falla se puede presentar de dos maneras.

• Cuando se emplea una cantidad de refuerzo relativamente moderada, el acero alcanza su punto de fluencia con determinado valor para la carga. Para este esfuerzo, el acero de refuerzo fluye en forma súbita y se alarga de manera considerable, entonces las grietas de tensión en el concreto se ensanchan de manera visible y se propagan hacia arriba, presentándose simultáneamente una deflexión significativa de la viga. (Ver las figura 2.3 , 2.4a y 2.4b). (Vigas Subreforzadas)

Page 14: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 14

2.1Comportamiento de secciones sometidas a flexión • Cuando esto ocurre, las deformaciones unitarias

en la zona de compresión restante del concreto se incrementan hasta tal punto que sobreviene el aplastamiento del concreto, o sea una falla por compresión secundaria con una carga sólo ligeramente superior que la carga que causó la fluencia en el acero.

• En consecuencia, la realización efectiva del punto de fluencia en el acero determina la capacidad de carga de las vigas moderadamente reforzadas. Esta falla por fluencia es gradual y está precedida por signos visibles de peligro, como el ensanchamiento y alargamiento de las grietas y el aumento notorio en la deflexión.

Page 15: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 15

Figura 2.3. (Tomada de Alonso, José L.)

Page 16: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 16Figura 2.4a. (Tomada de Alonso, José L.)

Page 17: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 17Figura 2.4b. (Tomada de Alonso, José L.)

Page 18: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 18

2.1Comportamiento de secciones sometidas a flexión • De otra parte, si se emplean grandes

cantidades de refuerzo o cantidades normales de acero de muy alta resistencia, la resistencia a la compresión del concreto puede agotarse antes de que el acero comience a fluir. El concreto falla por aplastamiento cuando las deformaciones unitarias son tan grandes (0.003 a 0.004) que destruyen su integridad.

• La falla por compresión debida al aplastamiento del concreto es repentina, de naturaleza casi explosiva y ocurre sin ningún aviso. Por esta razón, es aconsejable calcular las dimensiones de las vigas de tal manera que, si se sobrecargan, la falla se inicie por fluencia del acero en vez del aplastamiento del concreto. (Ver las figuras 2.3 y 2.5). (Vigas Sobrereforzadas)

Page 19: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 19

Figura 2.3. (Repetida) (Tomada de Alonso, José L.)

Page 20: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 20Figura 2.5. (Tomada de Alonso, José L.)

Page 21: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 21

• NORMA 1753-2006. CAPÍTULO 10• FLEXIÓN Y CARGAS AXIALES

Page 22: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 22

• NORMA 1753-2006. CAPÍTULO 10• FLEXIÓN Y CARGAS AXIALES

Page 23: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 23

• NORMA 1753-2006. CAPÍTULO 10• FLEXIÓN Y CARGAS AXIALES

Page 24: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 24

• NORMA 1753-2006. CAPÍTULO 10• FLEXIÓN Y CARGAS AXIALES

Page 25: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 25

Page 26: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 26

Concreto Armado I• Contenido:• Tema 2: Miembros sometidos a flexión

simple • 2.1Comportamiento de secciones sometidas

a flexión • 2.2 Resistencia de las secciones sometidas a

flexión• 2.3 Diseño de secciones por teoría de rotura• 2.4 Cálculo de deflexiones • 2.5 Ductilidad de secciones a flexión

Page 27: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 27

2.2 Resistencia de las secciones sometidas a flexión• En la práctica estructural es de interés calcular

aquellos esfuerzos y deformaciones unitarias que ocurren en la estructura sometida a las cargas de servicio. Para las vigas de concreto reforzado esto puede hacerse mediante el método de la teoría elástica, el cual supone un comportamiento elástico en ambos materiales.

• De igual manera, es importante que el ingeniero estructural sea capaz de predecir con suficiente precisión la resistencia última de una estructura o de un elemento estructural. Hacer que esta resistencia sea mayor que la combinación mas desfavorable de solicitaciones mayoradas que pueda presentarse durante la vida útil de la estructura en una cantidad apropiada, garantiza un margen adecuado de seguridad.

Page 28: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 28

2.2 Resistencia de las secciones sometidas a flexión• Se han desarrollado métodos de análisis más

realistas para estimar la resistencia última basados en el comportamiento inelástico real (en vez de suponer el comportamiento elástico de los materiales) y en los resultados de una investigación experimental bastante amplia.

• Estos métodos basados en la teoría de rotura se utilizan actualmente, en forma casi exclusiva, en la práctica del diseño estructural.

Page 29: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 29

2.2 Resistencia de las secciones sometidas a flexión

• Con el objeto de desarrollar métodos sencillos de cálculo, los reglamentos de construcción recurren a hipótesis simplificadoras en las cuales se fija un valor de la deformación unitaria máxima útil del concreto, εcu y donde se definen diagramas idealizados de los esfuerzos de compresión, de tal manera que el área del diagrama de esfuerzos y la posición de la resultante de compresión sean semejantes a las que corresponderían a una distribución real.

Page 30: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 30

2.2 Resistencia de las secciones sometidas a flexión• HIPÓTESIS ACI • El Reglamento del Instituto Americano del

Concreto (ACI 318-02) utiliza las hipótesis simplificadoras que se resumen en la figura 2.7. En lugar de la distribución real de esfuerzos, se propone una distribución rectangular, con una profundidad igual a β1 veces la profundidad del eje neutro.

• Se acepta que el elemento alcanza su resistencia máxima a una deformación unitaria máxima útil del concreto en compresión igual a 0.003, con una distribución lineal de deformaciones unitarias.

Page 31: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 31

2.2 Resistencia de las secciones sometidas a flexión• El parámetro β1, se hace depender de la

resistencia nominal f’c de acuerdo con la ecuación mostrada en la figura 2.7. El valor de β1 , es constante e igual a 0.85 para f‘c menor o igual a 280 kgf/cm2.

• Esta variación tiene por objeto tomar en cuenta el cambio en la forma de la curva esfuerzo-deformación del concreto al incrementar su resistencia, ya que el área del rectángulo equivalente debe ser aproximadamente igual al área bajo la curva esfuerzo-deformación.

• La hipótesis del bloque equivalente de esfuerzos es aplicable a secciones de cualquier forma.

Page 32: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 32

Figura 2.7.(Tomado de González Cuevas y Robles Fernández)

Page 33: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 33

Figura 2.8.(Tomado de Perdomo y Yépez)

Page 34: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 34

Procedimiento de análisis o revisión de SSA

Se tiene como datos: b, h, rd, d = h – rd, As, f’c y fy. Se pide determinar la resistencia nominal Mn, la resistencia de diseño ·Mn y compararla 𝜙con el momento último Mu o resistencia requerida o solicitación por flexión mayorada.1. Se establece el valor de 𝛽1:

Page 35: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 35

Procedimiento de análisis o revisión de SSA

2. Se calcula la profundidad del bloque rectangular equivalente “a”.

Page 36: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 36

3. Se verifica si el acero de refuerzo longitudinal está en cedencia, es decir si fs = fy

Page 37: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 37

Procedimiento de análisis o revisión de SSA

Continuación paso 3

Se calcula la relación: Si a/d ≤ , el acero está cediendo, se continúa al paso 4, si esto no se cumple, se determina de nuevo la profundidad del bloque rectangular “a” considerando que el acero de refuerzo longitudinal no cede. Se presenta el procedimiento luego del paso 5 y se designan como pasos 4a y 5a y además se concluye que en este caso la sección está controlada por compresión.

Page 38: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 38

Procedimiento de análisis o revisión de SSA4. Se verifica si la sección está controlada por

tracción

Se calcula la relación: Se calcula la relación: Si ≤ , la sección estácontrolada por tracción entonces 𝜙=0,90. Se continúa al paso 5.Si no se cumple, se concluye que laSección es sección en transición.

Page 39: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 39

Procedimiento de análisis o revisión de SSA

5. Se determina la resistencia nominal a flexión Mn y la resistencia de diseño 𝟇·Mn . (Esto es cuando As cede)

Page 40: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 40

Procedimiento de análisis o revisión de SSAPaso 4a. Se calcula de nuevo “a” cuando el acero no cede.

Se escribe la ecuación: 𝜀s = , luego se escribe:

Page 41: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 41

Continuación del Paso 4a. acero no cede.

Se resuelve la ecuación de segundo grado para “a”, y luego se determina:

Page 42: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 42

Procedimiento de análisis o revisión de SSA5a. Se determina la resistencia nominal a flexión Mn y la resistencia de diseño 𝟇·Mn, para el caso en que As no cede.

Page 43: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 43

Continuación del paso 5 o el paso 5a: Se determina se determina la resistencia de diseño f·Mn . Para sección controlada por tracción f = 0,90. Para las otras condiciones 𝜙 se determina según la figura siguiente:

Page 44: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 44

Figura 2.10.(Tomado de Perdomo y Yépez)

Page 45: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 45

Page 46: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 46

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Se tiene como datos: b, h, rd , d = h - rd , d’, As, A’s, f’c y fy. Se pide determinar la resistencia nominal Mn, la resistencia de diseño 𝜙·Mn y compararla con el momento último Mu o resistencia requerida o solicitación por flexión mayorada.1. Se establece el valor de 𝛽1:

Page 47: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 47

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Caso 1: Se asume que tanto el acero a tracción como el acero de compresión fluyen (fs = f’s = fy)De la figura (f) viga 2: A’s·fy = As2·fy ⇒ As2 = A’sEntonces: De la figura (d) viga 1: Se calcula la profundidad “a”:Por equilibrio, en la figura (e): , se obtiene:

Se calcula la relación (d’/a)límite = Si , el acero a compresión cede.

Page 48: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 48

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Se calcula la relación Si , el acero a tracción está en cedenciaSi se cumple lo supuesto, que los aceros a tracción y compresión están en cedencia la solución continúa aquí en el caso 1.Si el acero a compresión no cede, o si el acero a tracción no cede, o si ninguno de los dos aceros cede, se debe continuar la solución en el caso 2.

Page 49: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 49

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Continuación del Caso 1: El acero de compresión y el acero a tracción ceden.De la figura (f) viga 2: Se calcula el momento de la viga 2:De la figura (d) viga 1: Se calcula el momento de la viga 1:

Resultando: El momento nominal total:

Page 50: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 50

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Excluyendo el área de concreto desplazada por A’sCaso 1: Se asume que el acero de compresión y el acero a tracción están en cedencia (fs = f’s = fy)Se considera : As2 = , en las ecuaciones anteriores donde aparezca A’s, se sustituye por el valor de As2.Entonces la profundidad del eje neutro resulta:

Se calcula la relación (d’/a)límite = Si , el acero a compresión cede.

Page 51: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 51

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Excluyendo el área de concreto desplazada por A’sSe calcula la relación Si , el acero a tracción está en cedenciaSi se cumple lo supuesto, que los aceros a tracción y compresión están en cedencia la solución continúa aquí en el caso 1.Si el acero a compresión no cede, o si el acero a tracción no cede, o si ninguno de los dos aceros cede, se debe continuar la solución en el caso 2.

El momento nominal total:

Page 52: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 52

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Caso 2: Se tiene que , entonces el acero a compresión no cede (f’s < fy) y/o si se tiene que , el acero a tracción no cede (fs < fy). La “a” calculada antes es incorrecta y hay que calcularla de nuevo.

Por triángulos semejantes en la figura (b) se obtiene fs y f’s:

Las fuerzas de la figura (c) tienen los valores siguientes:

Page 53: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 53

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Continuación del Caso 2: Por equilibrio en la figura (c):

Considerada en conjunto con las ecuaciones

Para cada problema numérico particular, se resuelve para “a”:El momento nominal se obtiene tomando momentos a Cc y a Cs con respecto a T.

Page 54: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 54

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Excluyendo el área de concreto desplazada por A’sPara el caso 2: Donde el acero de compresión no cede y el acero a tracción cede o no cede.Por equilibrio en la figura (c):

Considerada en conjunto con las ecuaciones

Para cada problema numérico particular, se resuelve para “a”:El momento nominal se obtiene tomando momentos a Cc y a Cs con respecto a T.

Page 55: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 55

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Para determinar la resistencia de diseño , hay que verificar si la sección está controlada por tracción, controlada por compresión o es una sección en transición.Si el acero a tracción no cede, la sección está controlada por compresión, entonces = 0,65 si el 𝜙refuerzo transversal es de estribos, 𝜙 = 0,70 si es de espiral.

Si el acero a tracción está en cedencia hay que chequear si la sección está controlada por tracción: Se determina la relación: Si , la sección está controlada por tracción y 𝜙 = 0,90

Page 56: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 56

REVISIÓN DE SECCIONES RECTANGULARES DOBLEMENTE ARMADAS

Si el acero a tracción está en cedencia pero , la sección está en transición, se determina 𝜙 según las ecuaciones dadas en la figura siguiente:

Page 57: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 57

• Determinar si la siguiente sección es subreforzada o sobrerreforzada. Calcular la resistencia a flexión de la sección. Determinar la deformación unitaria en el acero en el momento de alcanzar la resistencia.

Page 58: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 58

• Determinar si la siguiente sección es subreforzada o sobrerreforzada. Calcular la resistencia a flexión de la sección. Determinar la deformación unitaria en el acero en el momento de alcanzar la resistencia.

Page 59: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 59

Page 60: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 60

Page 61: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 61

Page 62: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 62

Page 63: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 63

Page 64: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 64

Concreto Armado I• Contenido:• Tema 2: Miembros sometidos a flexión

simple • 2.1Comportamiento de secciones

sometidas a flexión • 2.2 Resistencia de las secciones sometidas

a flexión• (Secciones Te)

Page 65: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 65

REVISIÓN DE SECCIONES Te

Las secciones T y L son vigas con un ala a compresión de ancho b que colabora con el nervio de la viga para resistir el momento flector en la sección:

Page 66: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 66

REVISIÓN DE SECCIONES TeEl ala en compresión puede ser una parte de una placa de espesor t, vaciada monolíticamente con la viga o bien un ensanchamiento superior del nervio para formar una viga T o L aislada. Para el caso en que el ala en compresión forme parte de una placa de entrepiso, el ancho efectivo del ala debe cumplir los siguientes requisitos:a) En las vigas T, el ancho efectivo b del ala no

será mayor a:

Page 67: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 67

REVISIÓN DE SECCIONES Te

b) En las vigas L, con el ala a un lado de la sección, el ancho de colaboración debe cumplir:

c) En viga T aisladas, las alas otorgan un área adicional de compresión, en este caso se exige:

Page 68: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 68

REVISIÓN DE SECCIONES TeEn las vigas T o L se pueden presentar dos casos, en relación a la posición que ocupa el eje neutro:I. El eje neutro corta la placa de concreto o se

halla en la interfaz entre el ala y el nervio: c t

II. El eje neutro corta el ancho del nervio de la viga en el ancho bw : c > t

El caso I) es similar al de una viga rectangular de ancho b, donde se desprecia la parte agrietada del viga ubicada bajo el eje neutro, por lo que la viga se analiza como rectangular.El caso II) es el de una viga T o L donde el ala está totalmente comprimida y además está comprimida una parte del nervio.

Page 69: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 69

Figura 2.13.(Tomado de Perdomo y Yépez)

Page 70: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 70

Figura 2.14.(Tomado de Perdomo y Yépez)

Page 71: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 71

Figura 2.15.(Tomado de Perdomo y Yépez)

Page 72: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 72Figura 2.16.(Tomado de González Cuevas y Robles Fernández)

Page 73: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 73

Figura 2.17.(Tomado de González Cuevas y Robles Fernández)

Page 74: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 74

Figura 2.18.(Tomado de González Cuevas y Robles Fernández)

Page 75: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 75

Figura 2.19.(Tomado de González Cuevas y Robles Fernández)

Page 76: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 76

Figura 2.20.(Tomado de González Cuevas y Robles Fernández)

Page 77: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 77

• DETERMINACIÓN DE LA RELACIÓN BALANCEADA PARA SECCIONES TE SIMPLEMENTE ARMADAS

Figura 2.25.(Tomado de González Cuevas y Robles Fernández)

Page 78: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 78Figura 2.25.(Adaptado de González Cuevas y Robles Fernández)

Page 79: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 79Figura 2.26.(Adaptado de González Cuevas y Robles Fernández)

Page 80: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 80

Page 81: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 81

Page 82: Análisis de vigas de concreto armado

Prof. Ing. José Grimán Morales 82