AnalisisEstructural (1)

35
ANALISIS ESTRUCTURAL ANALISIS ESTRUCTURAL ESTÁTICA ESTÁTICA La estática como parte de la mecánica estudia los La estática como parte de la mecánica estudia los cuerpos en equilibrio dinámico bajo la condición de cuerpos en equilibrio dinámico bajo la condición de velocidad cero. velocidad cero. Plantea dos principios básicos, el de Plantea dos principios básicos, el de transmisibilidad y el de superposición causas y transmisibilidad y el de superposición causas y efectos, bajo sistemas cerrados desde el punto de efectos, bajo sistemas cerrados desde el punto de vista de la termodinámica. vista de la termodinámica. El principio de transmisibilidad afirma que una El principio de transmisibilidad afirma que una fuerza conserva su magnitud dirección y sentido, a fuerza conserva su magnitud dirección y sentido, a menos que otro sistema de fuerzas lo modifique. En menos que otro sistema de fuerzas lo modifique. En forma práctica, la carga actúa donde está aplicada. forma práctica, la carga actúa donde está aplicada. El principio de superposición causas y efectos El principio de superposición causas y efectos permite separar los efectos de un sistema de permite separar los efectos de un sistema de acciones y posteriormente sumarlos por separados acciones y posteriormente sumarlos por separados para conocer el resultado final. Este principio para conocer el resultado final. Este principio

Transcript of AnalisisEstructural (1)

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

ESTÁTICAESTÁTICA

La estática como parte de la mecánica estudia los cuerpos La estática como parte de la mecánica estudia los cuerpos en equilibrio dinámico bajo la condición de velocidad cero.en equilibrio dinámico bajo la condición de velocidad cero.

Plantea dos principios básicos, el de transmisibilidad y el de Plantea dos principios básicos, el de transmisibilidad y el de superposición causas y efectos, bajo sistemas cerrados superposición causas y efectos, bajo sistemas cerrados desde el punto de vista de la termodinámica.desde el punto de vista de la termodinámica.

El principio de transmisibilidad afirma que una fuerza El principio de transmisibilidad afirma que una fuerza conserva su magnitud dirección y sentido, a menos que otro conserva su magnitud dirección y sentido, a menos que otro sistema de fuerzas lo modifique. En forma práctica, la carga sistema de fuerzas lo modifique. En forma práctica, la carga actúa donde está aplicada.actúa donde está aplicada.

El principio de superposición causas y efectos permite El principio de superposición causas y efectos permite separar los efectos de un sistema de acciones y separar los efectos de un sistema de acciones y posteriormente sumarlos por separados para conocer el posteriormente sumarlos por separados para conocer el resultado final. Este principio permite sencillez en el resultado final. Este principio permite sencillez en el análisis de cualquier estructura.análisis de cualquier estructura.

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

ESTÁTICAESTÁTICA

Se requieren pocos conceptos para el manejo de la estáticas Se requieren pocos conceptos para el manejo de la estáticas los cuales se mencionan en seguida:los cuales se mencionan en seguida:

Elementos mecánicos. Nombre que reciben las acciones Elementos mecánicos. Nombre que reciben las acciones internas y externas de una estructura. En la naturaleza se internas y externas de una estructura. En la naturaleza se conocen 6 elementos mecánicos independientes. Fx, Fy, Fz, conocen 6 elementos mecánicos independientes. Fx, Fy, Fz, Mx, My, Mz.Mx, My, Mz.

Compatibilidad. Es la congruencia en la respuesta de la Compatibilidad. Es la congruencia en la respuesta de la estructura y sus apoyos cuando se le somete a un sistema de estructura y sus apoyos cuando se le somete a un sistema de acciones; bajo condiciones de equilibrio dinámico, la acciones; bajo condiciones de equilibrio dinámico, la estructura tiene una sola respuesta para cada sistema de estructura tiene una sola respuesta para cada sistema de acciones.acciones.

Equilibrio estático. Se presenta solo si Equilibrio estático. Se presenta solo si ∑Fx = ∑Fy = ∑Fz = ∑Fx = ∑Fy = ∑Fz = ∑Mx = ∑My = =∑Mz = 0, para un espacio tridimensional.∑Mx = ∑My = =∑Mz = 0, para un espacio tridimensional.

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

ESTÁTICAESTÁTICA

En el plano se presenta solo si En el plano se presenta solo si ∑Fx = ∑Fy = ∑Mx =0 ∑Fx = ∑Fy = ∑Mx =0 ∑My =0.∑My =0.

Las expresiones de equilibrio estático también son conocidas Las expresiones de equilibrio estático también son conocidas como ecuaciones de la estática y permiten conocer en una como ecuaciones de la estática y permiten conocer en una gran cantidad de casos si el sistema estructural es inestable, gran cantidad de casos si el sistema estructural es inestable, isostático o hiperestático; para el primer caso (inestable) isostático o hiperestático; para el primer caso (inestable) existirán mas ecuaciones que variables independientes existirán mas ecuaciones que variables independientes (reacciones), en el segundo caso (isostático), el número de (reacciones), en el segundo caso (isostático), el número de ecuaciones es igual que el número de variables ecuaciones es igual que el número de variables independientes y en el tercer caso (hiperestático), habrá mas independientes y en el tercer caso (hiperestático), habrá mas reacciones o variables independientes que ecuaciones de la reacciones o variables independientes que ecuaciones de la estática.estática.

Es bueno aclarar que los subíndices x, y, z, corresponden a la Es bueno aclarar que los subíndices x, y, z, corresponden a la dirección de los ejes globales que generalmente se orientan dirección de los ejes globales que generalmente se orientan en coincidencia con los ejes de la estructura.en coincidencia con los ejes de la estructura.

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

VIGASVIGAS

A partir de las expresiones de equilibrio se resuelve una viga A partir de las expresiones de equilibrio se resuelve una viga isostática en seguida.isostática en seguida.

Determine las reacciones de la viga mostrada: Determine las reacciones de la viga mostrada: 2.5 T/m2.5 T/m

+ ∑Fy = 0 = RAY + RBY – (2.5*5*1/2) = 0 + ∑Fy = 0 = RAY + RBY – (2.5*5*1/2) = 0

RAY = 6.25 – RByRAY = 6.25 – RBy

∑∑MA = 10RBY – (5*2.5*1/2*11/3) = 0MA = 10RBY – (5*2.5*1/2*11/3) = 0

10RBY = 22.9166610RBY = 22.91666

RBY = 2.2916RBY = 2.2916 Kg. Kg.RAY = 6.25 – 2.2916 = 3.95833 Kg. RAY = 6.25 – 2.2916 = 3.95833 Kg.

3 5

AB

2

c ed

+

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

VIGASVIGAS

Para diseñar la viga es necesario obtener los diagramas de Para diseñar la viga es necesario obtener los diagramas de cortante y de momento flector. Estos se obtiene a cortante y de momento flector. Estos se obtiene a continuación:continuación:

Para el intervalo Para el intervalo 0 ≤ x ≤ 30 ≤ x ≤ 3, haciendo un corte en el punto c:, haciendo un corte en el punto c:

+ ∑Fy = 0 = 2.2917 – V1(X) + ∑Fy = 0 = 2.2917 – V1(X)

V1(X) = 2.2917V1(X) = 2.2917

∑ ∑Mc =2.2917X – M1(x) Mc =2.2917X – M1(x)

M1(x) = 2.2917x M1(x) = 2.2917x

c

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

VIGASVIGAS

Para el intervalo Para el intervalo 3 ≤ x ≤ 83 ≤ x ≤ 8 , haciendo un corte en el punto d:, haciendo un corte en el punto d:

+ ∑Fy = 0 = 2.2917 – (0.5(x-3)2)/2 – + ∑Fy = 0 = 2.2917 – (0.5(x-3)2)/2 – V2(x) V2(x)

V2(X) = 2.2917 – V2(X) = 2.2917 – 0.25(x-3)20.25(x-3)2

∑ ∑Md =2.2917x – (0.5(x-3)2 )/2((x-Md =2.2917x – (0.5(x-3)2 )/2((x-3)/3) - M2(x)3)/3) - M2(x)

M2(x) = 2.2917x - M2(x) = 2.2917x - (0.5(x-3)3)/6 (0.5(x-3)3)/6

Para el intervalo Para el intervalo 8 ≤ x ≤ 108 ≤ x ≤ 10 , haciendo un , haciendo un corte en el punto e:corte en el punto e:

+ ∑Fy = 0 = 2.2917 – (5*2.5)/2 – V3(x) + ∑Fy = 0 = 2.2917 – (5*2.5)/2 – V3(x)

V3 (x) = -3.9583V3 (x) = -3.9583

∑ ∑Me =2.2917x – (5*2.5)/2*(x -19/3) – M3(x) Me =2.2917x – (5*2.5)/2*(x -19/3) – M3(x)

M3 (x) = 39.583 – 3.9584xM3 (x) = 39.583 – 3.9584x

d

X - 3

2.5-5 = y*(x-3)y = (2.5(x-3))/5

y = 0.5(x-3)

5 x - 3

2.5 y +

+

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

VIGASVIGAS

DIAGRAMA DE LA FUNCIÓN DE CORTANTE

2.2

91

7

2.2

91

7

2.2

91

7

2.0

41

7

1.2

91

7

0.0

41

7 -1.7

08

3

-3.9

58

3

-3.9

58

3

-3.9

58

3-5

-4

-3

-2

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10

DIAGRAMA DE MOMENTO FLEXIONANTE

0

2.2

91

7

4.5

83

4

6.8

75

1

9.0

83

46

7

10

.79

18

3

11

.50

02

10

.70

85

7

7.9

16

93

3 3.9

57

73 -0

.00

06

7-2

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

ARMADURASARMADURAS

Se pueden analizar armaduras isostáticas para una infinidad Se pueden analizar armaduras isostáticas para una infinidad de usos; para ello se debe verificar si son aplicables los de usos; para ello se debe verificar si son aplicables los conceptos ya mencionados.conceptos ya mencionados.

Requisitos:Requisitos:1.-Ser estable externa e internamente.1.-Ser estable externa e internamente.

-Estable internamente. La geometría no se altera.-Estable internamente. La geometría no se altera. -Estable externamente. No se mueve en su conjunto.-Estable externamente. No se mueve en su conjunto. 2.- Que sea isostática: ( que se resuelva con las ecuaciones de 2.- Que sea isostática: ( que se resuelva con las ecuaciones de

la estática), si la armadura es isostática externamente, en la estática), si la armadura es isostática externamente, en la mayoría de los casos será isostática si se cumple lo la mayoría de los casos será isostática si se cumple lo siguiente:siguiente:

6 Nodos. 6 Nodos. 9 Barras 9 Barras

2N – 3 = 9 2N – 3 = 9

7 Nodos7 Nodos 11 Barras11 Barras 2N – 3 = 112N – 3 = 11

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

ARMADURASARMADURAS

22(Número de Nodos) – (Número de Nodos) – 33(Ecuaciones de la Estática) = (Ecuaciones de la Estática) = ## de Barras. de Barras.

4 Nodos4 Nodos

4 Barras4 Barras

2(4) – 3 = 5 no es Isostática.2(4) – 3 = 5 no es Isostática.

En resumen:En resumen:

Si 2N – 3 = # de Barras (ISOSTÁTICA)Si 2N – 3 = # de Barras (ISOSTÁTICA)

Si 2N – 3 < # de Barras (HIPERESTÁTICA)Si 2N – 3 < # de Barras (HIPERESTÁTICA)

Si 2N – 3 > # de Barras ( INESTABLE)Si 2N – 3 > # de Barras ( INESTABLE)

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

ARMADURASARMADURASSe conocen algunos métodos para resolver armaduras isostáticas, Se conocen algunos métodos para resolver armaduras isostáticas,

entre ellos se encuentran, el método de nodos, el método de entre ellos se encuentran, el método de nodos, el método de secciones y el método matricial. A continuación se presentan 3 secciones y el método matricial. A continuación se presentan 3 ejemplos, uno para cada método, respectivamente.ejemplos, uno para cada método, respectivamente.

MÉTODO DE LOS NODOS.MÉTODO DE LOS NODOS.

2n – 3 = # Barras2n – 3 = # Barras

2(8) – 3 = 13 por lo2(8) – 3 = 13 por loque es isobática.que es isobática.

Determinar el Determinar el equilibrio externo.equilibrio externo.

∑ ∑ Fx = 0 Fx = 0 RBX = 0 RBX = 0

∑ ∑ Fy = 0 = RBY + Fy = 0 = RBY + RCY – 130000 RCY – 130000

RBY = RBY = 130000 – RCY130000 – RCY

∑ ∑MB = 6(80000) MB = 6(80000) +6RCY – 12(50000) +6RCY – 12(50000)

RCY = (12(50000) RCY = (12(50000) – 6(80000))/6– 6(80000))/6

RCY = 100000 – RCY = 100000 –

80000 = 2000080000 = 20000 RBY = 130000 – RBY = 130000 –

20000 = 11000020000 = 110000

50000 kg

80000 kg

A

HG

FED

CB

3 3 3 3 3 3

ANALISIS ESTRUCTURALANALISIS ESTRUCTURALConvención de SignosConvención de Signos

DETERMINACIÓN DE LAS FUERZAS EN LAS BARRAS.DETERMINACIÓN DE LAS FUERZAS EN LAS BARRAS.

∑∑Fx = 0 = -FAB + FAD cosθ = 0 Fx = 0 = -FAB + FAD cosθ = 0 Nodo A Nodo A - FAB + (3/5) FAD = 0 (1)- FAB + (3/5) FAD = 0 (1) Sen Sen θθ = 4/5 = 4/5 Cos Cos θθ = 3/5 = 3/5 ∑ ∑Fy = 0= -80000 + 4/5FAD = 0 (2)Fy = 0= -80000 + 4/5FAD = 0 (2)

FAB = 3/5(100000) = 60000 Kg.FAB = 3/5(100000) = 60000 Kg.FAD = 5/4(80000) = 100 000 Kg.FAD = 5/4(80000) = 100 000 Kg.

Barra

Nodo

Nodo

COMPRESIÓN

Nodo

Nodo

BarraTENSIÓN

A B

FAD

FAB

D

80000

C

T

=-1 0

04/5

3/5 FAB

80000FAD

FAB FAB

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Nodo DNodo D

Nodo BNodo B

∑∑Fx = 0 = 60000 + FBC + 100000(3/5) – 37500(3/5)Fx = 0 = 60000 + FBC + 100000(3/5) – 37500(3/5)

FBC = -97500FBC = -97500

FBC = 97500FBC = 97500

Fy = 110000 – 100000(4/5) + (4/5)FBE = 0 Fy = 110000 – 100000(4/5) + (4/5)FBE = 0

FBE = -37500FBE = -37500

FBE = 37500FBE = 37500

A

E

B

D

100000

∑Fx = 0 = FDE - FBD (3/5) – 100000(3/5) Fy = 4/5FBD – 100000(4/5) = 0

FBD = 100000 Kg.

FDE = 120000 Kg.

E

110000

100000

60000

B

C

D

A

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Nodo CNodo C

∑∑Fx = 0 = 97500 + (3/5) FCE - (3/5) FCF Fx = 0 = 97500 + (3/5) FCE - (3/5) FCF

∑ ∑Fy = 0 = 20000 – (4/5) FCE - (4/5)FCF Fy = 0 = 20000 – (4/5) FCE - (4/5)FCF

3FCE – 3 FCF = -4875003FCE – 3 FCF = -487500

-4FCE – 4FCF = -100000-4FCE – 4FCF = -100000

12FCE – 12 FCF = -195000012FCE – 12 FCF = -1950000

-12FCE – 12 FCF = -300000 -12FCE – 12 FCF = -300000

-24 FCF = -2250000-24 FCF = -2250000

FCF = 93750FCF = 93750

3 FCE – 281250 = -4875003 FCE – 281250 = -487500

3 FCE = -2062503 FCE = -206250

FCE = -68750FCE = -68750

F

20000

97500

C

E

B

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Nodo ENodo E

∑ ∑Fy = 0 = 37500(4/5) – 68750(4/5) +(4/5)FEG Fy = 0 = 37500(4/5) – 68750(4/5) +(4/5)FEG

FEG = 31250FEG = 31250

∑∑Fx = 0 = -120000 +31250(3/5)+37500(3/5) + 68750(3/5) + FEFFx = 0 = -120000 +31250(3/5)+37500(3/5) + 68750(3/5) + FEF

FEF = 37500FEF = 37500D

E

B C

F

G

120000

37500 68750

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Nodo FNodo F

∑ ∑Fx = 0 = -37500 +93750(3/5)+ (3/5)FFG – (3/5)FFH Fx = 0 = -37500 +93750(3/5)+ (3/5)FFG – (3/5)FFH

(3/5)FFG - (3/5)FFH = -18750(3/5)FFG - (3/5)FFH = -18750

∑ ∑Fy = 0 = 93750(4/5) – (4/5)FFG - (4/5)FFHFy = 0 = 93750(4/5) – (4/5)FFG - (4/5)FFH

-(4/5)FFG - (4/5)FFH = -75000-(4/5)FFG - (4/5)FFH = -75000

3FFG - 3FFH = -187503FFG - 3FFH = -18750

-4FFG - 4FFH = -75000 -4FFG - 4FFH = -75000

12FFG - 12FFH = -9375012FFG - 12FFH = -93750

-12FFG - 12FFH = 375000-12FFG - 12FFH = 375000

12FFG – 12 FFH = -37500012FFG – 12 FFH = -375000

-12FFG – 12 FFH = -1125000 -12FFG – 12 FFH = -1125000

-24FFH = -1500000-24FFH = -1500000

FFH = 62500FFH = 62500

FGH = 31250FGH = 31250

37500

93750

F

G

H

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Nodo HNodo H

∑∑Fx = 0 = 62500(3/5) – 37500Fx = 0 = 62500(3/5) – 37500

∑ ∑ Fy = 0 = 62500(4/5) - 50000Fy = 0 = 62500(4/5) - 50000 50000

37500

62500

H

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Nodo GNodo G

∑ ∑Fx = 0 = 37500 - 2(31250)(3/5) Fx = 0 = 37500 - 2(31250)(3/5)

∑ ∑ Fy = 0 = 31250*(4/5)-31250*(4/5)Fy = 0 = 31250*(4/5)-31250*(4/5)

G

37500

31250 31250

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

El método de secciones permite resolver parcialmente la armadura, bastará El método de secciones permite resolver parcialmente la armadura, bastará realizar un corte y plantear las ecuaciones de equilibrio estático.realizar un corte y plantear las ecuaciones de equilibrio estático.

PRINCIPIOS BÁSICOS DE ESTRUCTURASPRINCIPIOS BÁSICOS DE ESTRUCTURAS

EJEMPLO: Determine la fuerza en la barra AB.EJEMPLO: Determine la fuerza en la barra AB.

++ ΣFx = -Fad (3/5) + Fab = 0 ΣFx = -Fad (3/5) + Fab = 0

Fab = 3/5 FadFab = 3/5 Fad

+ + ΣΣFy = 5000 – 4/5 Fad = 0Fy = 5000 – 4/5 Fad = 0

4/5 Fad = 50004/5 Fad = 5000

Fad = 6250 Fad = 6250 Fab = 3750 Fab = 3750

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Método matricial para armaduras se resume en el siguiente diagrama:Método matricial para armaduras se resume en el siguiente diagrama:

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Ejemplo del método matricial para armaduras. Determine las reacciones y Ejemplo del método matricial para armaduras. Determine las reacciones y las fuerzas en todas las barras de la siguiente armadura.las fuerzas en todas las barras de la siguiente armadura.

NODO ANODO A

(+) Σ Fx = - Rax + Fab – Fad (3/5) = 0 (+) Σ Fx = - Rax + Fab – Fad (3/5) = 0 (1)(1)

(+) Σ Fy = Ray + Fad(4/5) = 0 (+) Σ Fy = Ray + Fad(4/5) = 0 (2)(2)

NODO BNODO B

(+) Σ Fx = Fbc + Fbe(3/5) + Fbd(3/5) – Fab = 0 (+) Σ Fx = Fbc + Fbe(3/5) + Fbd(3/5) – Fab = 0 (3)(3)

(+) Σ Fy = Fbe(4/5) – Fbd(4/5) = 0 (+) Σ Fy = Fbe(4/5) – Fbd(4/5) = 0 (4)(4)

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Ejemplo del método matricial para armaduras. Determine las reacciones y Ejemplo del método matricial para armaduras. Determine las reacciones y las fuerzas en todas las barras de la siguiente armadura.las fuerzas en todas las barras de la siguiente armadura.

NODO CNODO C

(+) Σ Fx = -Fbc + Fce(3/5) = 0 (+) Σ Fx = -Fbc + Fce(3/5) = 0 (5)(5)

(+) Σ Fy = Rcy – Fce(4/5) = 0 (+) Σ Fy = Rcy – Fce(4/5) = 0 (6)(6)

NODO DNODO D

(+) Σ Fx = 10000 – Fde + Fad(3/5) – Fbd(3/5) = 0 (+) Σ Fx = 10000 – Fde + Fad(3/5) – Fbd(3/5) = 0 (7)(7)

(+) Σ Fy = Fad(4/5) + Fbd(4/5) – 15000 = 0 (+) Σ Fy = Fad(4/5) + Fbd(4/5) – 15000 = 0 (8)(8)

NODO ENODO E

(+) Σ Fx = Fde – Fbe(3/5) – Fce(3/5) = 0 (+) Σ Fx = Fde – Fbe(3/5) – Fce(3/5) = 0 (9)(9)

(+) Σ Fy = -1000 –Fbe(4/5) + Fce(4/5) = 0 (+) Σ Fy = -1000 –Fbe(4/5) + Fce(4/5) = 0 (10)(10)

ANALISIS ESTRUCTURALANALISIS ESTRUCTURALLo que resta es formar la matriz y resolver el sistema:Lo que resta es formar la matriz y resolver el sistema:

Fab = 16125

Fad = 10208.33

Fbc = 5875

Fbd = 8541.6

Fbe = 8541.6

Fce = 9741.6

Fde = 11000

Rax = 10000

Ray = 8166.66

Rcy = 7833.3

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

MARCOS ISOSTÁTICOSMARCOS ISOSTÁTICOS::

DCB ,, DCB ,, DCB ,,

GRADO DE LIBERTADDCB ,,

RESTRICCIONESRax, Ray, Ma, Rdx, Rdy

ECUACIONES DE LA ESTÁTICAΣFx = ΣFy= ΣMD = 0

ECUACIONES ADICIONALESΣMB = ΣMD = 0

ECUACIONES = # RESTRICCIONES ES ISOSTATICA

PRINCIPIOS BÁSICOS DE ESTRUCTURASPRINCIPIOS BÁSICOS DE ESTRUCTURASMARCOS ISÓSTÁTICOSMARCOS ISÓSTÁTICOS

ELEMENTOS MECÁNICOS

M = MOMENTO FLECTOR V = FUERZA CORTANTE

N = FUERZA NORMAL

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

MARCOS ISOSTÁTICOSMARCOS ISOSTÁTICOS

EQUILIBRIO EQUILIBRIO EXTERNO:EXTERNO:

+ + Σ Σ Fx = Rgx – Rix = 0 Fx = Rgx – Rix = 0

+ Σ Fy = Rgy + Riy + Σ Fy = Rgy + Riy – 12 = 0– 12 = 0

ΣΣ Mg = 7Riy – 12(1.5) Mg = 7Riy – 12(1.5) = 0= 0

ECUACIÓN ECUACIÓN ADICIONALADICIONAL

Σ Mh = -Rgy(3) + Σ Mh = -Rgy(3) + Fgx(4) + 12(1.5) = 0Fgx(4) + 12(1.5) = 0

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

MARCOS ISOSTÁTICOSMARCOS ISOSTÁTICOS

REACCIONESREACCIONES

Conocidas las reacciones se pueden obtener los diagramas de Conocidas las reacciones se pueden obtener los diagramas de fuerza normal, fuerza cortante y momento flector. Para la fuerza fuerza normal, fuerza cortante y momento flector. Para la fuerza normal se necesita obtener la carga axial en la barra que es normal se necesita obtener la carga axial en la barra que es paralela al eje de la barra, para la fuerza cortante bastará obtener paralela al eje de la barra, para la fuerza cortante bastará obtener la fuerza perpendicular al eje. Ya que las reacciones se obtienen en la fuerza perpendicular al eje. Ya que las reacciones se obtienen en coordenadas que pueden o no coincidir con los ejes de la barra, se coordenadas que pueden o no coincidir con los ejes de la barra, se requiere obtener las componentes de dichas acciones conforme a requiere obtener las componentes de dichas acciones conforme a la orientación de la barra; se sugiere el uso de las siguientes la orientación de la barra; se sugiere el uso de las siguientes matrices de rotación. matrices de rotación.

Rgx = 2.57

Rgy = 9.42

Rix = 2.57

Riy = 2.57

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

MARCOS ISOSTÁTICOSMARCOS ISOSTÁTICOS

..

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

MARCOS ISOSTÁTICOSMARCOS ISOSTÁTICOS::

Siguiendo con el ejemplo:Siguiendo con el ejemplo:

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

MARCOS ISOSTÁTICOSMARCOS ISOSTÁTICOS

ELEMENTOS MECÁNICOS EN LA BARRA. PARA FORMULAR LAS ELEMENTOS MECÁNICOS EN LA BARRA. PARA FORMULAR LAS ECUACIONES DE FUERZA NORMAL, FUERZA CORTANTE Y MOMENTO ECUACIONES DE FUERZA NORMAL, FUERZA CORTANTE Y MOMENTO FLEXIONANTE.FLEXIONANTE.

FUNCION DE FUNCION DE FUERZA NORMALFUERZA NORMAL

N(X) = -1.92 x + N(X) = -1.92 x + 9.07 9.07

FUNCION DE FUNCION DE FUERZA CORTANTEFUERZA CORTANTE

V(X) = -1.44 x + 3.59V(X) = -1.44 x + 3.59

FUNCION DE MOMENTO FUNCION DE MOMENTO FLEXIONANTEFLEXIONANTE

M(X) = 3.596 x – M(X) = 3.596 x – (1.44/2) x2 (1.44/2) x2

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

MARCOS ISOSTÁTICOSMARCOS ISOSTÁTICOS

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

MARCOS ISOSTÁTICOSMARCOS ISOSTÁTICOS

PARA LA SIGUIENTE BARRA:PARA LA SIGUIENTE BARRA:

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

ESTRUCTURAS HIPERESTÁTICASESTRUCTURAS HIPERESTÁTICAS

Por ahora se han planteado soluciones a problemas isostáticos, sin Por ahora se han planteado soluciones a problemas isostáticos, sin embargo existen en la práctica una gran cantidad de estructuras embargo existen en la práctica una gran cantidad de estructuras hiperestáticas que para obtener sus elementos mecánicos se deben hiperestáticas que para obtener sus elementos mecánicos se deben seguir otros caminos, una vez obtenidos, el procedimiento para seguir otros caminos, una vez obtenidos, el procedimiento para obtener los diagramas de fuerza normal, fuerzas cortantes, obtener los diagramas de fuerza normal, fuerzas cortantes, momentos flexionantes y momento torzor es el mismo que se momentos flexionantes y momento torzor es el mismo que se presentó anteriormente.presentó anteriormente.

Se conocen 2 métodos par resolver estructuras hiperestáticas, que Se conocen 2 métodos par resolver estructuras hiperestáticas, que se basan en métodos energéticos, uno se conoce como método de se basan en métodos energéticos, uno se conoce como método de rigideces o de las fuerzas y el otro como método de flexibilidades o rigideces o de las fuerzas y el otro como método de flexibilidades o de los desplazamientos.de los desplazamientos.

El método de rigideces consiste en plantear un número suficiente El método de rigideces consiste en plantear un número suficiente de ecuaciones de compatibilidad equivalente al número de grados de ecuaciones de compatibilidad equivalente al número de grados de libertad de la estructura, mediante las suma de las de libertad de la estructura, mediante las suma de las contribuciones a la rigidez de cada junta de las barras contribuciones a la rigidez de cada junta de las barras concurrentes.concurrentes.

Por rigidez se entiende, la fuerza necesaria para desplazar una Por rigidez se entiende, la fuerza necesaria para desplazar una unidad el grado de libertad correspondiente.unidad el grado de libertad correspondiente.

TT FK TT FK

ANALISIS ESTRUCTURALANALISIS ESTRUCTURALLa expresión de compatibilidad de la estructura se presenta en La expresión de compatibilidad de la estructura se presenta en

seguida: seguida:

Donde es la matriz de rigidez de la estructura, es el Donde es la matriz de rigidez de la estructura, es el vector desplazamientosvector desplazamientos correspondiente al vector dependiente y es el vector fuerzas o correspondiente al vector dependiente y es el vector fuerzas o vector independiente.vector independiente.

La solución de la expresión anterior permite conocer los La solución de la expresión anterior permite conocer los desplazamientos totales en los nodos; para determinar los efectos desplazamientos totales en los nodos; para determinar los efectos en cada barra concurrente al nudo, será suficiente realizar el en cada barra concurrente al nudo, será suficiente realizar el producto del desplazamiento del nudo por la rigidez de la barra producto del desplazamiento del nudo por la rigidez de la barra correspondiente. Si se desean obtener los elementos mecánicos, a correspondiente. Si se desean obtener los elementos mecánicos, a los efectos del desplazamiento se le deberán sumar los efectos los efectos del desplazamiento se le deberán sumar los efectos cruzados y las fuerzas de fijación correspondiente.cruzados y las fuerzas de fijación correspondiente.

El método de flexibilidades, busca la solución de la estructura El método de flexibilidades, busca la solución de la estructura resolviendo la frontera, es decir, se obtienen las reacciones. A resolviendo la frontera, es decir, se obtienen las reacciones. A diferencia del método de rigideces, el de flexibilidades plantea un diferencia del método de rigideces, el de flexibilidades plantea un número de ecuaciones igual al número de restricciones de la número de ecuaciones igual al número de restricciones de la estructura y se resume en la siguiente expresión:estructura y se resume en la siguiente expresión:

TT FK TT FK

TT FK

K F

TTFf

ANALISIS ESTRUCTURALANALISIS ESTRUCTURAL

Donde es la matriz de flexibilidad de la estructura, es el Donde es la matriz de flexibilidad de la estructura, es el vector desplazamientosvector desplazamientos correspondiente al vector independiente y es el vector fuerzas correspondiente al vector independiente y es el vector fuerzas o vector dependiente.o vector dependiente.

La solución del sistema da como resultado el valor de las La solución del sistema da como resultado el valor de las reacciones.reacciones.

Existe una relación inversa entre la matriz de rigidez y la matriz Existe una relación inversa entre la matriz de rigidez y la matriz de flexibilidad solo si las coordenadas coinciden, el caso específica de flexibilidad solo si las coordenadas coinciden, el caso específica se da en un elemento barra sin modificar su lugar espacial.se da en un elemento barra sin modificar su lugar espacial.

Para otro tipo de estructuras diferentes a los esqueletos altamente Para otro tipo de estructuras diferentes a los esqueletos altamente hiperestáticas, su solución se realiza mediante métodos numéricos, hiperestáticas, su solución se realiza mediante métodos numéricos, pues el planteamiento de las ecuaciones de compatibilidad queda pues el planteamiento de las ecuaciones de compatibilidad queda en medios continuos y por lo regular se deben resolver ecuaciones en medios continuos y por lo regular se deben resolver ecuaciones diferenciales. En estos casos son recomendables los métodos de diferenciales. En estos casos son recomendables los métodos de diferencias finitas, elementos finito, elementos fronteras, etc.diferencias finitas, elementos finito, elementos fronteras, etc.

TT FK TT FK

F

f