analisisfrecuencial1.pdf

10
1 Universidad Nacional de San Juan - Facultad de Ingeniería DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Carrera: Bioingeniería Área CONTROL Asignatura: CONTROL I PRÁCTICA DE GABINETE DE COMPUTACIÓN Nº 2 “ANÁLISIS FRECUENCIAL DE SISTEMAS LINEALES Y AUTÓNOMOS” Autores: Ing. Analía Pérez Bioing Elisa Perez

Transcript of analisisfrecuencial1.pdf

Page 1: analisisfrecuencial1.pdf

1

Universidad Nacional de San Juan - Facultad de Ingeniería DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA

Carrera: Bioingeniería Área CONTROL

Asignatura: CONTROL I

PRÁCTICA DE GABINETE DE COMPUTACIÓN Nº 2

“ANÁLISIS FRECUENCIAL DE SISTEMAS LINEALES Y AUTÓNOMOS”

Autores: Ing. Analía Pérez Bioing Elisa Perez

Page 2: analisisfrecuencial1.pdf

2

TRABAJO PRÁCTICO DE LABORATORIO Nº 2

ANÁLISIS FRECUENCIAL

OBJETIVOS DE LA PRÁCTICA:

El fin de esta práctica en el laboratorio de computación es que el alumno mediante la caja de

herramienta CSAD-MATLAB y MATLAB-SIMULINK, obtenga la respuesta frecuencial de un

sistema de control, lineal invariante en el tiempo, mediante coordenadas polares y rectangulares, para su

posterior comprensión y análisis.

Las competencias a desarrollar durante el desarrollo de la práctica son los siguientes:

- Simular y examinar la respuesta frecuencial de un Sistema típico de segundo orden en coordenadas

rectangulares, mediante las gráficas de módulo y fase de Bode para distintos valores del coeficiente de

amortiguamiento δ. Evaluar las especificaciones de la respuesta frecuencial de lazo cerrado BW, MR y wR. Relacionar las especificaciones medidas en la respuesta frecuencial del sistema lazo cerrado, con las

especificaciones en el dominio temporal del mismo sistema, ante una entrada escalón unitaria, para lo

cual paralelamente a la respuesta frecuencial, el alumno simulará la respuesta temporal ante un escalón

unitario.

- Comparar el comportamiento en el dominio frecuencial de un sistema de fase mínima y No mínima

mediante el diagrama de bode de módulo y fase. Relacionar la respuesta frecuencial de un sistema de

fase no mínima con el arranque vicioso de su respuesta temporal ante una entrada escalón. - Analizar el efecto de un cero agregado a Lazo cerrado ubicado a la derecha de los polos en el dominio

frecuencial y relacionarlo con los efectos causados en el dominio temporal.

- Analizar el efecto que ocasiona en la respuesta frecuencial de lazo cerrado, el aumento de la ganancia

de lazo abierto de un sistema. Relacionarlo con el efecto que produce en la respuesta temporal el

aumento de la ganancia de lazo abierto, para lo cual el alumno deberá también simular el sistema en el

dominio temporal.

- Simular y analizar la respuesta frecuencial de lazo cerrado de un Sistema típico de segundo en

coordenadas polares, para los distintos valores de δ. Calcular las especificaciones de lazo cerrado en del dominio frecuencial: Ancho de Banda, Máximo de Resonancia, frecuencia de resonancia y frecuencia

natural sin amortiguamiento, wn.

- Obtener y estudiar la respuesta frecuencial de lazo abierto de un Sistema típico de segundo en

coordenadas polares. Agregar integradores en el origen y polos finitos a la función de transferencia de

lazo abierto y comparar con la respuesta frecuencial del sistema original.

- Entender gráficamente los conceptos de Margen de Fase y Margen de Ganancia, interpretar los valores

obtenidos mediante simulación en el diagrama de Nyquist y diagrama de Bode, con el fin de determinar

la estabilidad relativa de un sistema de fase mínima.

Page 3: analisisfrecuencial1.pdf

3

Diagramas Rectangulares

1) Variación del Término Lineal

Dado el siguiente sistema típico de segundo orden, tipo uno, para wn=cte= 5 rad/seg, con sus respectivas Funciones de Transferencias de Lazo Cerrado y Lazo Abierto, se pide:

12)(

)(2

++

=

n

jj

K

sR

sC

ωω

δωω

( )

n

n

ssSE

SBALTF

δωω2)(

)(...

2

+==

25)(

25

)(

)(...

2 ++==

BjwjwjwR

jwCCLTF B= 0 ( δ = 0) ; B = 100 (δ >1)

)10(

25

)(

)(...

δ+==

ssSE

SBALTF B = 2 (δ = 0.2); B = 10 (δ = 1)

wn = 5 rad/seg

1.1- Simular el sistema y obtener su respuesta frecuencial en coordenadas rectangulares (diagrama de bode de amplitud o atenuación y diagrama de bode de fase) para los distintos valores del coeficiente del

término lineal B (B=0, B=2, B=100, B=10) y sus correspondiente valores del coeficiente de

amortiguamiento δ, mediante el comando BPLOT del Csad. Habilitar dos ventanas de graficación (!figure(2)) y obtener gráficos superpuestos con la opción HOLD de módulo por un lado, con la opción MAGNITUDE, y de fase por otro lado, con la opción PHASE para los distintos valores de δ. El comando BOTH permite obtener simultáneamente por separado el diagrama de amplitud y el diagrama de fase, pero no permite superponer las gráficas con el comando hold.

1.2- Calcular Ancho de Banda, Máximo de Resonancia y Frecuencia de Resonancia para cada función según

el valor del δ. En el comando BOTH del CSAD, se puede pedir el Máximo de Resonancia en db y el Ancho de Banda en Hz con el comando Attributes , pero no entrega el valor de la Frecuencia de Resonancia Para obtener el Máximo de Resonancia y la frecuencia de Resonancia juntas, pueden usarse las siguientes

alternativas:

a)- En Matlab: Recordar que el carácter ! permite retornar el control a matlab sin salirse del CSAD Antes de pasar a la nueva función, calcular desde Matlab el Mr y wr con el comando:

!!!![re,im,w] = nyquist(n,d); mag = sqrt ( re.^2 + im.^2); [Mr,i] = max(mag), Magdb=20*log10(Mr), wr=w(i), BW=5*sqrt((1-(2*(delta)^2))+sqrt(4*(delta)^4-(4*(delta)^2)+2)) b)- En Csad , habiendo colocado previamente la Función de Transferencia de Lazo Cerrado, con la función Interpolate (i), pidiendo magnitud (Mag) entrega los valores máximos y mínimos de amplitud, luego

entrando la máxima magnitud en db y haciendo enter, se realiza una interpolación y se obtiene el valor de

frecuencia Wr, para la cual ocurre el Mr.

Page 4: analisisfrecuencial1.pdf

4

c)-También en Csad, el comando View Data, entrega un cursor que haciendo clic en un punto de interés, entrega luego el valor de la frecuencia, amplitud y fase de 15 puntos ubicados cerca del punto señalado,

eligiendo la mayor amplitud, se tiene una idea del valor del Mr y de la Wr. 1.3- En el informe añadir las gráficas indicando a que valores de delta corresponde cada una, adjuntar

atributos del dominio frecuencial y conclusiones a cerca del diagrama real de módulo y fase de un factor

cuadrático para los distintos valores de delta y aclarar para que valores de delta se comete mayor error

con la aproximación asintótica tanto en módulo como en fase.

1.4- Para B= 2, (δ = 0.2) obtener la respuesta frecuencial de amplitud y dibujar el Ancho de Banda (AB) del sistema mediante los siguientes comandos

n = [ ]

d= [ ]

[mag,fase,w]=bode(n,d); % Se obtiene como argumento de salida los valores de los vectores de magnitud,

fase y frecuencia que adopta Matlab.

magdb=20*log10(mag); % Se convierten los valores del vector magnitud a Db.

figure(2)% Se pide otra ventana de graficación

semilogx(w,magdb) % Se grafica la magnitud en db vs la frecuencia.

Grid %Se coloca la grilla%

magdb3=magdb(1)-3 % Se Calcula el valor de magnitud en el cual la respuesta frecuencial de lazo cerrado

cae 3db por abajo del nivel que tenía a baja frecuencias. Magdb(1) es el valor de la primer componente del

vector magnitud a baja frecuencia.

hold on % Se congela la gráfica anterior para superponer la línea que baja 3db del valor de magnitud a baja

frecuencia.

plot(w,magdb3,'r*') % Se pide la graficación de una recta (y=3) que corta a la curva de magnitud en los -3db

por abajo del nivel de baja frecuencia%.

Verificar el valor del Ancho de Banda mediante el siguiente comando en Matlab:

delta =0.2

wn = 5

BW=wn*sqrt((1-(2*(delta)^2))+sqrt(4*(delta)^4-(4*(delta)^2)+2))

% 244)21( 242 +−+−= δδδnwBW

1.5- Para cada valor de δ obtener la respuesta frecuencial en módulo y fase, mediante el comando Both del Bplot. Pedir y guardar atributos frecuenciales. Luego para cada Función de Transferencia con el

comando !!!!Tftplot obtener la respuesta temporal con sus atributos sin salirse del comando Bplot . Al usar el comando BOTH, antes de llamar a la Tftplot, se entrega, ambas respuestas, frecuencial y temporal simultáneamente en gráficos separados. Analizar de esta forma las relaciones directas que existen para un sistema típico de segundo orden entre el dominio frecuencial y temporal ante una entrada escalón unitaria. 1.6- En el Informe, colocar todas las gráficas de respuesta frecuencial y temporal obtenidas para cada

valor de δ, indicando en cada una a que valor de δ corresponde, agregar los atributos correspondientes del dominio frecuencial (MR, wR, BW), y los atributos correspondientes del dominio temporal (MP, tp, tr, t establecimiento).

Page 5: analisisfrecuencial1.pdf

5

Adjuntar conclusiones a cerca de cómo se comportaría la respuesta temporal de un sistema (Mp, tr, wd,

etc.) ante una entrada escalón unitaria analizando la respuesta frecuencial mediante el diagrama de

atenuación de bode del mismo sistema. (Analizar Ancho de Banda, Máximo de resonancia)

¿A qué tipo de filtro corresponde el sistema? ¿Por qué?

2) Fase Mínima y No Mínima

Dadas las siguientes Funciones de Transferencia de Fase Mínima y no Mínima:

)100

51).(

50

11(

)10

11(

)(

)(.

SS

S

SR

SCTF

MínimaFase

++

+==

)100

51).(

50

11(

)10

11(

)(

)(.

SS

S

SR

SCTF

MínimanoFase

++

−==

2.1-Simular ambos sistemas en respuesta frecuencial mediante diagrama de Bode de módulo y de fase

por separado, utilizar el comando MAGNITUDE y PHASE. Con HOLD superponer la fase de ambos sistemas y comparar el aporte en fase de un sistema de Fase Mínima y de Fase no Mínima.

2.2.-Obtener la respuesta temporal del Sistema de Fase No Mínima, usando el mismo comando

!!!! TFTPLOT (n,d) que permite obtener la respuesta temporal sin salirse del comando BPLOT. Observar los resultados.

2.3.- En el informe, presentar las gráficas frecuenciales y temporales obtenidas, agregando conclusiones

respecto al comportamiento de un Sistema de Fase no Mínima en el dominio frecuencial tanto en

módulo, como en fase y al comportamiento en el dominio temporal.

3) Agregado de un cero a la FTLC

Dada la siguiente Función de Transferencia de Lazo Cerrado cuyo factor cuadrático )10S7S( 2 ++

tiene un δδδδ> 1, lo que implica que la respuesta de amplitud, no debería presentar un MR y la respuesta temporal tampoco presentaría un MP:

)10S7S).(10S(

100

)2S).(5S).(10S(

100C.L.T.F

2cerosin+++

=+++

=

3.1- Simular en respuesta en frecuencia el Sistema sin el cero y obtener la respuesta frecuencial

mediante el comando BPLOT, y MAGNITUDE, para obtener su respuesta en amplitud solamente. Utilizar el comando HOLD, para congelar la gráfica. Obtener especificaciones frecuenciales ( MR, wR, BW).

3.2- Agregar un cero dominante ubicado en S=-1. Simular su respuesta frecuencial y superponerla a la gráfica anterior.

)10S.7S).(10S(

)1S.(100C.L.T.F

2cerocon+++

+=

Page 6: analisisfrecuencial1.pdf

6

Obtener especificaciones frecuenciales (MR, wR, BW) con el comando ATRIBUTOS y comparar los resultados. Obtener conclusiones a cerca de los efectos que causa el cero en el BW y el MR de la curva de amplitud de la respuesta frecuencial.

3.3- Simular el sistema sin el cero y obtener su respuesta temporal mediante el comando TFTPLOT, obtener los atributos y congelar la gráfica con el comando HOLD. Luego introducir la nueva Función de Transferencia con el cero agregado. Extraer las especificaciones del dominio temporal( Mp, tp, tr) de

ambas funciones y evaluar los resultados. Obtener conclusiones a cerca de los efectos que causa el cero agregado en la respuesta temporal, comparando con la respuesta temporal sin el cero.

3.4- En el informe, incluir todas las gráficas especificando a que función pertenece cada una, las

especificaciones del dominio temporal y frecuencial pedidas. Incluir las conclusiones respecto al efecto

que causa el cero en el ancho de banda del sistema, en el Máximo de Resonancia y en la respuesta

temporal del sistema.

4)- Variación de la Ganancia de Lazo Abierto 4.1- Variar el valor de la ganancia K de Lazo Abierto de la F.T.L.A. dada en el punto 4, para δ=0.4 y wn=5 rad/seg. Adoptar KLA = 1, KLA = 10 y KLA = 20. Obtener y marcar en la gráfica el Ancho de Banda del sistema en cada caso.

En CSAD en el comando BPLOT, introducir la F.T.L.A con el valor correspondiente de KLA, con el comando Choose Data se puede cambiar la función y obtener la F.T.L.C. Para graficar el diagrama de amplitud, se debe pedir la F.T.L.C y pedir los atributos del sistema con Attributes. Con el comando New TF se introduce una nueva función de Lazo abierto para variar la ganancia y luego se vuelve a cambiar por la F.T.L.C para graficar. Superponer todas las gráficas. Analizar de esta forma que sucede con el Ancho de Banda del sistema de Lazo Cerrado cuando aumentamos la ganancia de lazo abierto del sistema.

4.2- Observar qué sucede con los diagramas de módulo, de fase, y el ancho de Banda obtenidos para los distintos valores de ganancia. Relacionar también que sucede con la respuesta temporal ante una entrada

escalón cuando aumentamos la ganancia de lazo abierto. Obtener conclusiones al respecto y volcarlas en el

informe. Colocar en las gráficas los valores de ganancia de lazo abierto correspondientes.

Diagramas Polares

5) Variación del Término lineal

Dado el siguiente sistema de control típico de segundo orden, lineal e invariante en el tiempo,

realimentado negativamente, simular el sistema y obtener se respuesta frecuencial en coordenadas

polares para los distintos valores de δ, mediante la variación del coeficiente del término lineal T2.

Page 7: analisisfrecuencial1.pdf

7

25)()(

24

)(

)(...

2 ++==

jwBjwjwR

jwCCLTF

5.1)- Mediante los siguientes conjuntos de comandos grabados en un archivo M-file ‘frecuencial’ se pide:

-Para wn=cte, simular el sistema dado y obtener su respuesta frecuencial en coordenadas polares,

variando el coeficiente del término lineal, según los siguientes valores:

T2=0.04(δ cercano a cero δ = 0.1) T2=2 (δ = 0.2) T2=10 (δ = 1) T2=100 (δ >1) Para poder analizar y comparar los resultados, obtener gráficas superpuestas.

polos=roots(d)

wn=sqrt(d(3))

disp('wn en rad/seg')

delta=d(2)/(2*wn)

figure(1)

[re,im,w] = nyquist(n,d); plot(re,im);

mag=sqrt(re.^2 + im.^2);

[Mr,i] = max(mag);

if delta==0,707

wr=0

Mr=Mr

else

if delta>0.707

wr='No Existe'

Mr='No Existe'

else

wr=wn*sqrt(1-2*(delta)^2),

disp('wr en rad/seg')

Mr=Mr

w2=w(i)

end

end

Magdb=20*log10(Mr)

disp('amplitud expresada en db')

BW=wn*sqrt((1-(2*(delta)^2))+sqrt(4*(delta)^4-(4*(delta)^2)+2))

disp('BW en rad/seg')

24 1

S 2 +B.S+1

R(t) = A.senw.t

C(t)

C(t) = B(W). Sen(w.t+Ø(w))-

Page 8: analisisfrecuencial1.pdf

8

Cargar desde Matlab el numerador y denominador correspondiente para cada F.T.L.C, y en cada caso,

ejecutar el archivo ´frecuencial`:

n = [ ] d = [ ] [re,im,w] = nyquist(n,d); plot(re,im), grid permite obtener el tramo I del diagrama polar de Nyquist,y guarda la parte real e imaginaria de la Función para cada valor de frecuencia.

mag = sqrt ( re.^2 + im.^2); Calcula el Módulo (mag) de la Función de Transferencia en el dominio frecuencial, según los valores de frecuencia, parte imaginaria y parte real entregados por el comando

nyquist como argumentos de salida [re,im,w] [Mr,i] = max(mag), Calcula el valor máximo del vector módulo (Mr), juntamente con un índice i, indice de la componente del vector magnitud para la cual se produce la frecuencia de resonancia.

wr = w(i) Entrega como argumento de salida la frecuencia de resonancia (wr) relacionada para el índice i.

Magdb=20*log10(Mr) Entrega el valor del vector magnitud en db. BW = wn*sqrt((1-(2*(delta)^2))+sqrt(4*(delta)^4-(4*(delta)^2)+2)) Calcula el BW del sistema según la fórmula 244)21( 242 +−+−= δδδ

nwBW

5.2- Verificar mediante CSAD, con la función INTERPOLATE dentro del comando PLRPLOT, que el punto en que el diagrama polar de la F.T.L.C corta al eje imaginario (fase –90º), corresponde al vector

obtenido para una frecuencia w=wn, igual a la frecuencia natural sin amortiguamiento wn. El mismo interpola los datos de la respuesta actual (parte real, parte imaginaria, y frecuencia) para encontrar

algunos puntos de interés específico. En este caso, para conocer la frecuencia del punto de la gráfica que

cruza al semieje imaginario negativo, se elige Real (r) y luego se ingresa el dato conocido, (parte real igual a cero), donde la fase es –90º ( Enter Real > 0). La frecuencia que da el programa para la parte real igual a cero, es justamente la frecuencia natural sin amortiguamiento wn.

5.3- En el informe, colocar las gráficas obtenidas en Matlab para cada valor del coeficiente lineal B, el coeficiente de amortiguamiento δδδδ, y el valor de wn. Agregar el Mr, wr y BW calculados en Matlab. Colocar conclusiones sobre la forma del diagrama en función del coeficiente de amortiguamiento del

sistema δ, y sobre los valores que toma el módulo y la fase para frecuencias w = 0, y w = ∞.

6) Agregado de un Polo en el Origen en la FTLA

Agregar a la Función de Transferencia de lazo abierto del sistema anterior un integrador puro. Simular la respuesta frecuencial del sistema de lazo abierto en coordenadas polares mediante el siguiente comando de Matlab:

[re,im,w] = nyquist(n,d); plot(re,im), grid o mediante el comando PLRLPLOT del CSAD

1

S

24

S 2 +2S+1

R(t) = A.senwt

-

c(t) = B(w).sen (wt+ φφφφ)

Page 9: analisisfrecuencial1.pdf

9

En el informe colocar la gráfica obtenida, especificar a qué función de lazo abierto corresponde y

obtener conclusiones acerca de cómo se modifica la gráfica cuando se agrega un polo en el origen a alta y bajas frecuencias. Colocar el valor del módulo y fase, para w = 0, y w = ∞∞∞∞ .

7) Agregado de un Polo Finito a Lazo Abierto

Agregar a la Función de Transferencia de Lazo abierto del sistema anterior, una constante de tiempo en el denominador, quedando el sistema de tercer orden con tres constantes de tiempo. Simular en matlab, en coordenadas polares la respuesta frecuencial del sistema de lazo abierto [re,im,w] = nyquist(n,d); plot(re,im), grid

1

S+1

24

S2+2S+1

R(t) = A.senwt

-

c(t) = B(w).sen (wt+φφφφ)

1.3.3

24...

23 +++=

SSSALTF

Nota: Para introducir el denominador puede usarse el comando pmake ([1 1],[1 2 1]) En el informe colocar la gráfica obtenida, especificar a qué función corresponde y obtener conclusiones

acerca de cómo se modifica la gráfica cuando se agrega una constante de tiempo a alta y bajas

frecuencias. Colocar el valor del módulo y fase, para w = 0, y w = ∞ .

Estabilidad Relativa 8) Análisis de Estabilidad Relativa 8.1- Dado el siguiente sistema de control lineal e invariante en el tiempo, se compararán las respuestas del sistema cuando varía KLA. El objetivo de este apartado es observar cómo este parámetro modifica la

estabilidad relativa de un sistema. Las funciones de transferencia de Lazo abierto y Lazo cerrado del

sistema son:

)50)(5)(1(

3500

2500255556

3500)()(

23 +++=

+++=

sssssssHsG

6000255556

350023 +++

=sss

FTLC

8.1.1- Introducir el numerador y denominador de la FTLA en el espacio de trabajo de Matlab, luego con la función margin(tf(n,d)), obtener el diagrama de bode de módulo y fase para este sistema.

8.1.2- En este apartado se introducirá el mismo sistema pero con un valor diferente de KLA. Las funciones de transferencia de lazo abierto y lazo cerrados son:

Page 10: analisisfrecuencial1.pdf

10

)50)(5)(1(

15000

2500255556

15000)()(

23 +++=

+++=

sssssssHsG

17500255556

1500023 +++

=sss

FTLC

Introducir el numerador y denominador de la FTLA. Llamar a la función figure, y luego a la función

margin(tf(n,d)), de esta manera se obtienen la gráfica polar de este sistema por separado.

8.1.3- Visualizar la respuesta obtenida de ambos sistemas en diagramas polares, utilizando el comando PLRPLOT de CSAD, se debe introducir la FTLA comparando ambos sistemas en este tipo de gráfico, la

respuesta de ambos sistemas deben ser visualizadas en una misma figura.

8.1.4- En el informe colocar las gráficas obtenidas del sistema, tanto en gráficas polares como en gráficas rectangulares. Resaltar los valores de MG y MF con las respectivas frecuencias, que entrega el comando

margin. Colocar conclusiones al respecto, teniendo en cuenta que al aumentar la ganancia de lazo

abierto, se produjo una disminución del MG.

8.2- Dado el siguiente sistema de control lineal e invariante en el tiempo, se desea comparar la respuesta de dos sistemas diferentes, para determinar cuál de los dos sistemas es más estable. Las Funciones de

transferencia de Lazo abierto y Lazo cerrado de ambos sistemas son:

506516

1151

23 +++=

sssFT LA

403811

482

23 +++=

sssFT LA

8.2.1- Introducir el numerador y denominador de la FTLA en el espacio de trabajo de Matlab, luego con la función margin(tf(n,d)), obtener el diagrama de bode de módulo y fase para ambos sistemas. Las gráficas

obtenerlas por separado.

8.2.2- Visualizar la respuesta obtenida de ambos sistemas en diagramas polares, utilizando el comando PLRPLOT de CSAD, se debe introducir la FTLA comparando ambos sistemas en este tipo de gráfico, la

respuesta de ambos sistemas deben ser visualizadas en una misma figura.

8.2.3- En el informe colocar las gráficas obtenidas de los sistemas, tanto en gráficas polares como en gráficas rectangulares. Resaltar los valores de MG y MF con las respectivas frecuencias, que entrega el

comando margin para cada sistema. Colocar conclusiones al respecto, teniendo en cuenta cuál de los

sistemas es más estable en relación a los valores de MG, MF y las gráficas obtenidas.