Anilina

4
Anilina La anilina, fenilamina o aminobenceno es un compuesto orgánico, líquido entre incoloro y ligeramente amarillo de olor característico. No se evapora fácilmente a temperatura ambiente. Wikipedia Fórmula: C6H5NH2 Densidad: 1,02 g/cm³ Punto de ebullición: 184,1 °C Masa molar: 93,13 g/mol Punto de fusión: -6,3 °C Soluble en: Agua Toxicidad La anilina puede ser tóxica si se ingiere, inhala o por contacto con la piel. La anilina daña a la hemoglobina, una proteína que transporta el oxígeno en la sangre. La hemoglobina dañada no puede transportar oxígeno. Esta condición se conoce como metahemoglobinemia y su gravedad depende de la cantidad de anilina a la que se expuso y de la duración de la exposición. La metahemoglobinemia, el síntoma más sobresaliente de intoxicación con anilina en seres humanos, produce cianosis (una coloración azul-púrpura de la piel) tras la exposición aguda a altos niveles de anilina. También pueden ocurrir mareos, dolores de cabeza, latido irregular del corazón, convulsiones, coma y la muerte. El contacto directo con la anilina también puede producir irritación de la piel y los ojos hinchados. La exposición prolongada a niveles de anilina más bajos puede causar síntomas similares a los observados en casos de exposición aguda a altos niveles. No hay datos fiables acerca de si la anilina afecta adversamente la reproducción en seres humanos. Los estudios en animales no han demostrado efectos adversos de la anilina sobre la reproducción.

description

Tareas

Transcript of Anilina

Page 1: Anilina

AnilinaLa anilina, fenilamina o aminobenceno es un compuesto orgánico, líquido entre incoloro y ligeramente amarillo de olor característico. No se evapora fácilmente a temperatura ambiente. Wikipedia

Fórmula: C6H5NH2Densidad: 1,02 g/cm³Punto de ebullición: 184,1 °CMasa molar: 93,13 g/molPunto de fusión: -6,3 °CSoluble en: Agua

Toxicidad

La anilina puede ser tóxica si se ingiere, inhala o por contacto con la piel. La anilina daña a la hemoglobina, una proteína que transporta el oxígeno en la sangre. La hemoglobina dañada no puede transportar oxígeno. Esta condición se conoce como metahemoglobinemia y su gravedad depende de la cantidad de anilina a la que se expuso y de la duración de la exposición. La metahemoglobinemia, el síntoma más sobresaliente de intoxicación con anilina en seres humanos, produce cianosis (una coloración azul-púrpura de la piel) tras la exposición aguda a altos niveles de anilina. También pueden ocurrir mareos, dolores de cabeza, latido irregular del corazón, convulsiones, coma y la muerte. El contacto directo con la anilina también puede producir irritación de la piel y los ojos hinchados.

La exposición prolongada a niveles de anilina más bajos puede causar síntomas similares a los observados en casos de exposición aguda a altos niveles. No hay datos fiables acerca de si la anilina afecta adversamente la reproducción en seres humanos. Los estudios en animales no han demostrado efectos adversos de la anilina sobre la reproducción.

Sin embargo sí se ha probado que tiene repercusiones cancerígenas sobre ratas que han ingerido alimentos contaminados por anilina de por vida, desarrollando cáncer de bazo, por lo que hay probabilidades que sea cancerígena en seres humanos.

La anilina también se puede usar para fines de pintura de accesorios

Page 2: Anilina

Benzonitrilo

Fórmula molecularC6H5CN

Punto de inflamabilidadEl punto de inflamabilidad de una sustancia generalmente de un combustible es la temperatura más baja en la que puede formarse una mezcla inflamable en contacto con el aire.72 °C 

Masa molecularUMA Unidad de Masa Atómica, Dalton103,12 g/mol

Punto de fusiónTemperatura del momento en el cual una sustancia pasa del estado sólido al estado líquido.-13 °C

Punto de ebulliciónTemperatura que debe alcanzar una substancia para pasar del estado líquido al estado gaseoso.188 - 191 °C

Densidad1.01

La porción infrarroja del espectro electromagnético se divide en tres regiones; el infrarrojo cercano, medio y lejano, así nombrados por su relación con el espectro visible. El infrarrojo lejano (aproximadamente 400-10 cm-1) se encuentra adyacente a la región de microondas, posee una baja energía y puede ser usado en espectroscopia rotacional. El infrarrojo medio (aproximadamente 4000-400 cm-1) puede ser usado para estudiar las vibraciones fundamentales

Page 3: Anilina

y la estructura rotacional vibracional, mientras que el infrarrojo cercano (14000-4000 cm-1) puede excitar sobretonos o vibraciones armónicas.

La espectroscopia infrarroja se basa en el hecho de que las moléculas tienen frecuencias a las cuales rotan y vibran, es decir, los movimientos de rotación y vibración moleculares tienen niveles de energía discretos (modos normales vibracionales). Las frecuencias resonantes o frecuencias vibracionales son determinados por la forma de las superficies de energía potencial molecular, las masas de los átomos y, eventualmente por el acoplamiento vibrónico asociado. Para que un modo vibracional en una molécula sea activa al IR, debe estar asociada con cambios en el dipolo permanente. En particular, en las aproximaciones de Born-Oppenheimer y armónicas, i.e. cuando el Hamiltoniano molecular correspondiente al estado electrónico puede ser aproximado por un oscilador armónico en la vecindad de la geometría molecular de equilibrio, las frecuencias resonantes son determinadas por los modos normales correspondientes a la superficie de energía potencial del estado electrónico de la molécula. Sin embargo, las frecuencias resonantes pueden estar en una primera aproximación relacionadas con la fuerza del enlace, y la masa de los átomos a cada lado del mismo. Así, la frecuencia de las vibraciones pueden ser asociadas con un tipo particular de enlace.

Las moléculas diatómicas simples tienen solamente un enlace, el cual se puede estirar. Moléculas más complejas pueden tener muchos enlaces, y las vibraciones pueden ser conjugadas, llevando a absorciones en el infrarrojo a frecuencias características que pueden relacionarse a grupos químicos. Los átomos en un grupo CH2, encontrado comúnmente en compuestos orgánicos pueden vibrar de seis formas distintas, estiramientos simétricos y asimétricos, flexiones simétricas y asimétricas en el plano (scissoring o "tijera"' y rocking, respectivamente), y flexiones simétricas y asimétricas fuera del plano (wagging y twisting o aletéo, respectivamente); como se muestra a continuación:

BIbliografia

http://commons.wikimedia.org/wiki/File:Symmetrical_stretching.gif