Apuntes de Clase -...

35
Uto-Fni Ingeniería Mecánica Apuntes de Clase MEC 2250 TERMODINAMICA TECNICA II Termodinámica de los compresores Docente: Emilio Rivera Chávez Oruro, julio de 2009

Transcript of Apuntes de Clase -...

Page 1: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Uto-Fni

Ingeniería Mecánica

Apuntes de Clase MEC 2250

TERMODINAMICA TECNICA II

Termodinámica de los

compresores

Docente: Emilio Rivera Chávez

Oruro, julio de 2009

Page 2: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

1

GENERALIDADES

0.1 Procesos Isentrópicos

La entropía de una sustancia de masa fija puede cambiar tanto debido a un pro-ceso de transferencia de calor como a las irreversibilidades presentes en todo proceso real.

Corolario:

Como consecuencia de lo anterior podemos afirmar que: cuando una sustancia de masa constante (sistema cerrado) es sometida a un proceso adiabático e internamente reversible su entropía no cambia.

Un proceso en el que la entropía permanece constante es un proceso isentrópi-co, que se caracteriza mediante la siguiente expresión:

s = 0

Muchos sistemas o dispositivos de ingeniería como bombas, turbinas, toberas y difusores operan de manera esencialmente adiabática, y tienen mejor desempeño cuando se minimizan las irreversibilidades, como la fricción asociada al proceso.

Es importante destacar que un proceso adiabático reversible necesariamente es isentrópico, pero uno isentrópico no es necesariamente un proceso adiabático reversible. Sin embargo el término proceso isentrópico se usa habitualmente en termodinámica para referirse a un proceso adiabático internamente reversible.

Claro… una sustancia tendrá la misma

entropía tanto al principio como al fi-

nal del proceso, si el proceso se lleva a

cabo isentrópicamente.

s2 = s1

Un modelo isentrópico puede servir como un mo-

delo apropiado para los procesos reales, además

de permitirnos definir las eficiencias para proce-

sos al comparar el desempeño real de estos dispo-

sitivos con el desempeño bajo condiciones ideali-

zadas (isentrópicas, p. e.)

Page 3: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

2

12

12

hh

hh

W

W

real

isen

real

isen

c

De lo anterior se deduce que la entropía es una propiedad útil y una valiosa herramienta en el análisis de la segunda ley en los dispositivos de ingeniería, en particular de los compresores. Pero ¿Qué es la entropía?

0.2. Eficiencia Isentrópica de Dispositivos de Flujo Permanente.

Las irreversibilidades son inherentes a todos los procesos reales y su efecto es siempre la degradación del desempeño de los dispositivos. Al realizar análisis en ingeniería es deseable contar con parámetros que permitan cuantificar el grado de degradación de energía en los dispositivos.

El análisis de dispositivos de ingeniería discretos que trabajan bajo condiciones de flujo estable, como son las turbinas, compresores y toberas implica examinar el grado de degradación de la energía causada por las irreversibilidades en estos dispositivos. Para ello es necesario definir un proceso ideal que sirva como mode-lo para los procesos reales.

Aunque es inevitable alguna transferencia de calor entre estos dispositivos y sus alrededores, se plantean muchos dispositivos de flujo estable para operar bajo condiciones adiabáticas. Así, el proceso modelo para estos dispositivos debe ser uno adiabático. Así mismo, un proceso ideal no debe incluir irreversibilidades por-que el efecto de la irreversibilidad será siempre degradar el desempeño de los dispositivos. Por ello, el proceso ideal que puede servir como un modelo conve-niente para los dispositivos de flujo estable adiabáticos es el proceso isentrópico.

Cuanto mas se acerque el proceso real al idealizado, mejor se desempeñará el dispositivo. Por ello es muy importante disponer de un parámetro que exprese cuantitativamente cuan eficazmente un dispositivo real se aproxima a uno ideali-zado, este parámetro es la eficiencia isentrópica o adiabática, que es la medida de la desviación de los procesos reales respecto de los idealizados respectivos.

Las eficiencias isentrópicas están definidas en distinta forma para los diversos dispositivos, porque cada uno de ellos tiene una función diferente. En este apar-tado se definirá la eficiencia isentrópica de un compresor.

0.2.1 EFICIENCIA ISENTROPICA DE COMPRESORES La eficiencia isentrópica de un compresor se define como la relación entre el tra-bajo de entrada requerido para elevar la presión de un gas a un valor especificado de una manera isentrópica y el trabajo de entrada real:

compresordelrealTrabajo

compresordeloisentrópicTrabajoc 0.1

Cuando son insignificantes los cambios de energía potencial y cinética del gas mientras éste es comprimido, el trabajo de entrada para un compresor adiabático, el trabajo de entrada para un compresor adiabático es igual al cambio de entalpía, por lo que para este caso la ecuación de rendimiento adquiere la forma

0.2

Page 4: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

3

Donde h2isen y h2real son los valores de la entalpía en el estado de salida para los procesos de compresión isentrópico y real, respectivamente, como se ilustra en la figura.

El calor de la eficiencia isentrópica depende en gran medida del diseño del com-presor. Los compresores mejor diseñados tienen eficiencias isentrópicas de 80 a 90%.

0.3 El Cambio de la Entropía en los Gases Ideales

Por nuestros estudios de termodinámica 1, sabemos que el cambio de la entropía en un gas ideal esta expresado por las siguientes ecuaciones diferenciales:

1

22

112 ln

p

pR

T

dTcss p 0.3

1

22

112 ln

v

vR

T

dTcss v 0.4

Donde en general los calores específicos cp y cv son funciones de la temperatura, es decir que su valor cambia en función a los cambios de temperatura del gas, con excepción de los gases monoatómicos, como el helio por ejemplo, cuyos ca-lores específicos son independientes de la temperatura. Esto implica que para evaluar estas integrales es necesario conocer la relación funcional entre los calo-res específicos y la temperatura, cp(T) y cv(T), lo que no siempre es posible. Por otra parte no es nada práctico realizar estas tediosas integraciones cada vez que

h

h2real

h2isen

h1

s2isen = s1

1

2isen

2real

p2 (salida)

p1 (entrada)

Proceso real

(adiabático)

Proceso isentrópico

wisen

wreal

Diagrama h-s en el que se muestran los procesos real e isentrópico

de un compresor adiabático.

Page 5: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

4

se calcula el cambio de entropía. Por ello se dispone de dos opciones practicas y razonables para resilover este problema:

i) Resolver las integrales bajo el supuesto de calores especificos constan-tes (independientes de la temperatura), y

ii) Evaluar estas integrales una vez para un cierto rango de temperaturas y tabular los resultados. Esto implica el uso posterior de esta tablas.

i) Calores Específicos Independientes de la Temperatura.- Una Buena Aproximación.

La suposición de calores específi-cos constantes para los gases ideales es una manera de simplifi-car el análisis del cambio de en-tropía en los gases ideales, con la consiguiente pérdida de exactitud en los cálculos. Sin embargo la magnitud del error introducido, por esta suposición, depende de la situación concreta, así por ejemplo para gases monoatómicos ideales, los calores específicos son inde-pendientes de la temperatura por lo que suponer que el calor especí-fico es constante no implica error alguno; en tanto que para gases ideales cuyos calores específicos varían casi linealmente en el ran-go de temperaturas de interés no se puede afirmar lo mismo, en estos casos la magnitud del posible error se mini-miza usando los valores de calores específicos calculados a temperatura prome-dio. Los datos obtenidos con este tipo de aproximación son lo suficientemente exactos si el rango de temperaturas no es mayor que algunos cientos de grados.

Bajo esta consideración, calor específico independiente de la temperatura, las ecuaciones para el cálculo del cambio de la entropía en los gases ideales se pueden expresar de la siguiente manera:

1

2

1

212 lnln

p

pR

T

Tcss p 0.5

1

2

1

212 lnln

v

vR

T

Tcss v 0.6

T1 Tmedia T2

cp

cp,medio

T

cp real

cp medio

La suposición de calor específico constante asume que el calor específico es independiente de la temperatura y se toma como valor para el calculo un valor promedio evalua-

do a una temperatura también promedio.

Page 6: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

5

Análisis aproximado para un proceso isentrópico de gases ideales s=0.

Igualando a cero la ecuación 0.6 se tiene,

1

2

1

2 lnln0v

vR

T

Tcv

Esta última ecuación, luego de un adecuado reordenamiento se puede escribir como

1

1

2

1

2

1

2

kc

R

v

v

v

v

T

T v

0.7

De manera similar a partir de la ecuación 0.5 se obtiene la siguiente relación:

k

k

p

p

T

T1

1

2

1

2

0.8

Combinado estas dos últimas ecuaciones se puede escribir

k

v

v

p

p

2

1

1

2 0.9

Ecuación que tambien se puede expresar de la siguiente manera

kk vpvp 2222

Es decir que

ctepv k 0.10

La delación de calores específicos k varía con la temperatura, por ello debe usra-se un valor promedio para k para el rango de temperaturas dado.

ii) Calores específicos constantes.- Un cálculo exacto

Cuando los cambios de temperatura son grandes, durante un proceso termo-dinámico, y los calores específicos del gas ideal no varían linealmente dentro del rango de temperatura, la suposición de calores específicos constantes (indepen-dientes de la temperatura) puede introducir errores considerables al calcular el cambio de entropía. En estos casos debe considerarse adecuadamente la varia-ción de los calores específicos con la temperatura, utilizando la relaciones exactas

Recur¡erda: las anteriores relaciones isentropicas para los gases ideales, como

su nombre lo indica, son sólo validas para procesos isentropicos cuando la

suposición del calor especifico constante es aplicable.

Page 7: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

6

para los calores específicos, cp(T) y cv(T), para el calculo del cambio de entropía mediante la integración de las ecuaciones respectivas.

Sin embargo, como ya se mencionó, el proceso de integración se vuelve tedioso de realizar cada vez que tiene un nuevo proceso, por ello es recomendable reali-zar una sola vez para un cierto rango de temperatura y tabular los resultados. Pa-ra ello se elige el cero absoluto como temperatura de referencia y se define una función s0 como:

T

pT

dTTcs

0

0 )( 0.11

Los valores de s0 están calculados vara un amplio rango de temperatura y se en-cuentran tabulados, junto a otras propiedades del gas ideal, en los apéndices de casi todos los libros de termodinámica (por ejemplo la tabla A-17.- propiedades de gas ideal del

aire; YUNUS; Quinta edición, pag. 910).

A partir de esta definición (ec. 0.7) la ecuación 0.3 toma la forma

1

20

1

0

212 lnp

pRssss 0.12

La función s0 (y sus valores tabulados) explican sólo la dependencia que tiene la entropía de la temperatura, pues a diferencia de la energía interna y la entalpía la entropía también varía con la presión y el volumen específico, por ello no es posi-ble tabularla exclusivamente en función de la temperatura.

Analisis Exacto para el proceso isentrópico de gases ideales s=0.

Igualando a 0 la ecuación 0.12 se obtiene

1

20

1

0

2 ln0p

pRss

1

20

1

0

2 lnp

pRss 0.13

donde 0

2s es el valor de s0 al final del proceso isentrópico.

0.4 Presión y volumen especifico relativos.

Si bien la última ecuación permite evaluar de manera exacta los cambios de las propiedades termodinámicas de los gases ideales durante procesos isentrópicos, involucra iteraciones tediosas cuando se conoce la relación de volumen en lugar de la relación de presión. Para remediar esta dificultad, se introducen dos pará-metros adimensionales asociados con los procesos isentrópicos.

i) Presión relativa

A partir de la ecuación 0.13 se puede escribir la siguiente relación:

Page 8: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

7

Rs

Rs

R

ss

e

ee

p

p

/

/

1

201

02

01

02

Donde la cantidad Rs

e/0

se define como presión relativa pr, a partir de esta de-

finición la ultima expresión se convierte en

1

2

1

2

r

r

p

p

p

p 0.14

La presión relativa pr es una cantidad adimensional cuyo valor depende solo de la temperatura porque s0 depende de una temperatura única. Por ello los valores de pr pueden ser tabulados para un rango temperatura determinado (Estos valores se encuentran tabulados junto a otras propiedades termodinámicas para diferentes gases

ideales en los apéndices de los libros de termodinámica).

ii) Volumen específico relativo

Cuando se conoce la razón de volúmenes específicos en lugar de la razón de presiones, es necesario trabajar con la razón de volúmenes, para esto se defi-ne otro parámetro relacionado con la razón de volúmenes específicos para procesos isentrópicos, este parámetro de puede obtener a partir de la ecua-ción 0.14 combinándola adecuadamente con la ecuación general de los gases ideales. Así,

1

2

1

2

r

r

p

p

p

p

1

2

11

22

/

/

r

r

p

p

vRT

vRT

11

22

1

2

/

/

r

r

pT

pT

v

v 0.15

Donde la cantidad T/pr, se define como el volumen especifico relativo, este parámetro depende solo de la temperatura.

Para diferentes gases ideales se han calculado y tabulado los valores de pr y vr para amplios rangos de temperatura y se encuentran el los apéndices de casi to-dos los textos de termodinámica. El uso de estas tablas es una muy buena alter-nativa cuando se quiere realizar un análisis mas exacto de los calores específi-cospara el cálculo de la variación de entropía, entalpía, etc.

… las ecuaciones 0.14 y 0.15 se pueden usar solo para los procesos

isentrópicos de gases ideales.

Estas ecuaciones nos muestran la variación de los calores especificos

con la temperatura consiguientemente nos dan valores más exactos que

las ecuaciones establecidas bajo el supuesto de calores especificos

constantes

Page 9: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

8

0.5 Temperatura vs. Presión

La ley de Ley de Charles, establece que:

“Cuando un gas es comprimido, la temperatura aumenta".

Hay tres relaciones posibles entre la temperatura y la presión en un volumen de gas que es sometido a compresión:

Isotérmica

Adiabática

Politrópica

Isotérmica -

El gas permanece a temperatura constante a través del proceso. La energía interna es removida del sistema en forma de calor a la misma

velocidad que es “añadida” por el trabajo mecánico de compresión. La compresión o expansión isotérmica es favorecida por una gran super-

ficie de intercambio de calor, un volumen pequeño de gas, o un lapso de tiempo largo.

Con dispositivos reales, la compresión isotérmica generalmente no es posible. Por ejemplo incluso en una bomba de bicicleta calienta (genera calor) durante su uso.

Adiabática

En este proceso no hay transferencia de calor entre el sistema y su en-torno, y todo el trabajo añadido es (producido) agregado (añadido) a la energía interna del gas, resultando un incremento de temperatura y pre-sión.

Teóricamente el incremento de temperatura es:

T2 = T1·Rc((k-1)/k)), con T1 yT2 en grados Rankine o kelvin,

k.- razón de calores específicos; k=1.4 para el aire estándar

La compresión o expansión adiabática es favorecida por el buen aisla-miento, un gran volumen de gas, o un lapso corto de tiempo,

En la práctica siempre habrá una cierta cantidad de flujo de calor, pues hacer un sistema adiabático perfecto requeriría un perfecto aislamiento

térmico de todas las partes de una máquina. el calor puede

Politrópica

Esto supone que calor puede entrar o salir del sistema, y que el trabajo en el eje que entra al sistema puede aumentar la presión (trabajo generalmente útil) y la

Page 10: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

9

temperatura por encima del adiabático (generalmente pérdidas debido a la efi-ciencia de ciclo). La eficiencia del proceso es la razón de aumento de temperatura en un teórico 100% (adiabático) frente a real (politrópico).

Tanto la transformación adiabática como la isotérmica son impo-

sibles de realizar en la práctica. La primera requiere que no haya

ningún intercambio de calor entre el gas y las paredes del com-

presor y la segunda que el calor se transmita tan perfectamente

que la temperatura del gas se mantenga constante a pesar del

aumento de energía que provoca la compresión. Por consiguien-

te, en la realidad, la compresión sigue una transformación po-

litrópica intermediaria entre la adiabática y la isotérmica.

Como en el caso del aire, el exponente adiabático γ es aproxima-

damente igual a 1,4, los valores del exponente de la politrópica

estarán comprendidos entre este valor y 1 que es el exponente de

la isotérmica.

Page 11: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

10

TERMODINÁMICA DE LOS COMPRESORES DE GAS

1 ¿QUE ES UN COMPRESOR?

Es una máquina que tiene la finalidad de elevar la presión de un fluido compresi-ble (un gas, un vapor o una mezcla de gases y vapores) sobre el que opera. La presión del fluido se eleva reduciendo el volumen específico del mismo durante su paso a través del compresor. Se distinguen de los turbo soplantes y ventiladores centrífugos o de circulación axial, en cuanto a la presión de salida, los compreso-res se clasifican generalmente como maquinas de alta presión, mientras que los ventiladores y soplantes se consideran de baja presión pues estos últimos mane-jan grandes cantidades de gas sin modificar sensiblemente su presión.

Un compresor admite gas o vapor a una presión p1 dada, descargándolo a una presión p2 superior, La energía necesaria para efectuar este trabajo la proporcio-na un motor eléctrico o una turbina.

Los compresores se emplean para aumentar la presión de una gran variedad de gases y vapores para un gran número de aplicaciones. Un caso común es el compresor de aire, que suministra aire a elevada presión para transporte, pintura a pistola, inflamiento de neumáticos, limpieza, herramientas neumáticas y perfo-radoras. Otro es el compresor de refrigeración, empleado para comprimir el gas del vaporizador. Otras aplicaciones abarcan procesos químicos, conducción de gases, turbinas de gas y construcción.

El compresor es una máquina que tiene por objeto aumen-tar la presión de un fluido mediante la disminución de su volumen. También se emplea para transportar fluidos desde una zona de baja presión a otra de presión más elevada. Si bien puede ser de distintos tipos, por. Ej., centrífugo, a émbolo, helicoidal, etc., la transformación que sufre el sis-tema puede estudiarse sin tener en cuenta el mecanismo del compresor. Experimentalmente se ha encontrado que la compresión se realiza de acuerdo a la siguiente ecuación:

p. nn = cte O sea que se trata de una transformación politrópica de exponente n.

Page 12: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

11

2 TIPOS DE COMPRESORES

A

3 COMPRESORES ROTATIVOS (TURBO-COMPRESORES)

Los compresores centrífugos impulsan y comprimen los gases mediante discos rotativos provistos de álabes en su periferia (estas ruedas se conocen también como impulsores o rotores) dentro de una carcasa que fuerza al gas incremen-

tando la velocidad del gas. Un difusor (tubo divergente) convierte la energía cinética en energía de presión. Esos compresores son usados principalmente para servicio continuo estaciona-rio en instalaciones indus-triales, tales como refinerías de petróleo, plantas quími-cas y petroquímicas y plan-tas de procesamiento de gas natural. Sus aplicacio-nes pueden ser desde 75 kW (100 hp) hasta miles de

kW. Con múltiples etapas estás máquinas pueden alcanzar presiones de salida

Un compresor de gas es un dispositivo mecánico que incrementa la presión de un gas por reducción de volumen. La compresión de un gas trae consigo el incremento de la temperatura.

Los compresores son similares a las bombas: ambos incrementan la presión de un fluido y ambos pueden transportar el fluido a través de una tubería. Como los gases son compresibles, el compresor también reduce el volumen del gas. Los líquidos son relativamente incompresibles, por ello la única acción de las bombas es transportar líquidos.

¡Un compresor es a los gases lo que una bomba es a los líquidos!

Page 13: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

12

extremadamente altas de hasta 69 MPa (10000 psi). Son también usados en máquinas de combustión interna como sobrealimentadores o turbocargadores. Los compresores centrífugos son también usados en pequeños motores de turbi-nas de gas o como al final de la etapa de compresión de turbinas de gas de ta-maño medio.

Los ventiladores son compresores centrífugos de baja presión con una rueda de álabes de poca velocidad periférica (de 10 a 500 mm de columna de agua; tipos especiales hasta 1000 mm). Las máquinas soplantes rotativas son compresores centrífugos de gran velocidad tangencial (120 a 300 m/seg.) y una relación de presiones por etapa p2/p1 = 1,1 a 1,7. Montando en serie hasta 12 ó 13 rotores en una caja puede alcanzarse una presión final de 1.2 MPa, comprimiendo aire con refrigeración repetida.

4 TRABAJO DE UN COMPRESOR ROTATIVO

Para el sistema mostrado en la fi-gura se tiene a partir de la primera ley de la termodinámica:

Y para un proceso de compresión adiabático, menospreciando el cambio de energía potencial e incremento de energía sintética, se tiene:

Se puede decir entonces que en estas condiciones; el trabajo de compresión es igual al cambio de entalpía del gas.

Si consideramos calores específicos constantes podemos escribir la siguiente ex-presión a partir de la última relación:

COMPRESORA

Gas baja presión

Gas Alta presión

p1 T1

1

p2 T2

2 dW/dt

0dt

Q

whhmHdt

W)( 12

wT

TTmcTTmc

dt

Wpp

1)(

1

2112

PKHdt

W

dt

Q

Page 14: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

13

y para un proceso de compresión isentrópico (ideal), se tiene:

Además:

1

k

kRc p y

R

VpmT 11

1

Finalmente se tiene:

Donde la razón de presiones p2/p1 se define como relación de presión.

1

2arg

p

p

admisióndepresión

adescdepresiónrp

5 COMPRESORES ALTERATIVOS

Los compresores alternativos usan pistones impulsados por un mecanismo de biela manivela. Estos pueden ser estacionarios o portátiles, pueden ser de simple

o múltiple etapa, de simple o doble efecto, y pueden ser impulsados por motores eléctricos o motores de com-bustión interna. Pequeños compresores alternativos desde 5 hasta 30 hp son comúnmente vistos en aplicaciones automotrices y son típicamente para servicio intermitente. Compresores grandes arriba de 1000 hp son aún comúnmente en-contrados en grandes aplicaciones industriales, pero su número esta declinando pues están siendo reemplazados por otros tipos de compresores. El rango de presiones de descarga puede estar desde baja presión hasta muy alta presión (> 35 Mpa o 5000 psi).

wp

pTmcTTmc

dt

Wk

pp

1)(

1

1

2112

wp

pVp

k

k

dt

Wk

11

1

1

211

Page 15: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

14

V 1

2 3

4

pVk=Cte

dW dp

2

1VdpW

V

p

Ciclo teórico: El ciclo teórico de trabajo de un compresor ideal se entiende fácil-mente mediante el estudio de un compresor monofásico de pistón funcionando sin pérdidas, compresión isentrópica, y que el gas comprimido sea perfecto. Con esto se da por hecho que el pistón se mueve ajustado herméticamente al cilindro, e incluso se considera que el paso del aire hacia y desde el cilindro tiene lugar sin resistencias en válvulas y conductos, es decir, sin cambio de presión.

6 TRABAJO DE UN COMPRESOR ALTERNATIVO

Trabajo teórico.- Se obtiene a partir del supuesto de que el pistón se despla-za de 0-1 en su carrera de aspiración sin espacio muerto y un proceso de compresión isentrópico. En estas condiciones el trabajo de compresión es teóricamente igual al área detrás de la curva de compresión isentrópica.

Entonces de la figura 6.1, se tiene para la franja diferencial:

6.1

de donde por integración de 6.1, se obtiene el trabajo teórico del compresor:

6.2

PMS

VdpdW

Figura 6.1 Trabajo neto del compresor igual al área detrás de la curva de compresión.

Ciclo de trabajo teórico de un compresor ideal, sin

pérdidas, sin espació muerto y con un gas ideal.

PMI PMS

Aspiración

Descarga

Compresión

1

2 3

4

pVk=Cte

Ciclo de trabajo real de un compresor, con

espacio muerto y pérdidas.

VD

Aspiración

Compresión

1

3

4

pVk=Cte

2

V

Descarga

PMI PMS

Reexpansión

Page 16: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

15

k

p

pp

PVW

k

k

k

/11

1

/11

1

2/111

/11

11

1

1

211

k

k

p

pVp

k

kW

1

2

1

1

2

T

T

p

p k

k

1212121

11

11TTmcTTRm

k

kTT

T

Vp

k

kW apa

isentisentD HhhVW 121

k

ppCdp

p

CW

kk

k /11

/111

/112

2

1

además como el proceso de compresión 1-2, se supone isentrópico, se tiene:

y

Reemplazando, estas expresiones en 6.2 e integrando se obtiene:

6.3

Si recordamos que:

A partir de la ecuación 6.3, se puede escribir la siguiente relación para el trabajo teórico.

6.4

Además como no existe, teóricamente, espacio muerto; la masa de gas aspirado se puede calcular a partir del volumen del cilindro VD y la densidad del gas medi-do en las condiciones de aspiración. Entonces la última ecuación adquiere la for-ma:

isentDD hVhhVW 1121 )( 6.5

Se puede decir entonces que en un compresor alternativo ideal, el volumen VD, del gas que proviene de la línea de aspiración es succionado hacia el cilindro, comprimido a continuación y expulsado al final, precisa de una potencia teórica:

6.6

donde VD, es el volumen de desplazamiento del pistón, o volumen barrido por el pistón en su carrera completa. Se ignoran el efecto del volumen de espacio muer-to y las irreversibilidades. Trabajo real del compresor Consideremos ahora el efecto del espacio muerto en el trabajo de compresión, es decir el efecto de la expansión del gas comprimido retenido en el espacio muerto, proceso 2-3, que provoca la disminución del área y por tanto del trabajo neto de compresión. De la figura 6.2, se tiene que:

W =

6.7

Además: p1= p4 y p2 = p3 entonces=> p3/p4 = p2/p1 1

3

4

pVk=Cte

2

V

W

11

11

1

4

344

1

1

211

k

k

k

k

p

pVp

k

k

p

pVp

k

kW

k

k

p

CVctepV

/1

kpVC

/111

Área detrás de la

curva de compresión

Área detrás de la

curva de expansión

Figura 6.2

Page 17: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

16

)(11

41

1

1

21

VVp

pp

k

kW

k

k

11

1

1

211

k

k

a

p

pVp

k

kW

121112

1

11

1

211 11

11

TTRVk

kTT

T

Vp

k

k

T

TVp

k

kW a

aa

isena HisenhhVW 1211

k

k

p

p

T

T

1

1

2

1

2

Luego sustituyendo esta última expresión en 6.7; y agrupando se obtiene:

6.8

Finalmente:

6.9

Ahora si recordamos que:

Reemplazando en 6.9

6.10

Trabajo real absorbido según el diagrama indicado.

La potencia (trabajo) real del compresor es:

Donde (V1a = Va = V1 – V1’) el volumen de gas realmente aspirado (comprimido y

expulsado) proveniente de la línea de aspiración, medido en las condiciones rein-antes en la aspiración.

La potencia real del compresor es menor que la que teóricamente se podría espe-rar, debido a que:

En cada carrera de aspiración del pistón, el valor del volumen de gas succio-nado proveniente de la línea de aspiración Va (medido en las condiciones allí reinantes), es menor que el desplazado VD por dicho pistón; la razón principal de este menor volumen aspirado estriba en el espacio muerto y en que la den-

h

s

1

2

2’

Diagrama real (indicado) de trabajo de un compresor.

Figura 6.2

reala

r HhhVW 1'211

Page 18: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

17

sidad del gas que llena el cilindro al final de la carrera de aspiración, es menor que la del gas situado en la línea de succión

En la carrera de compresión se presentan fugas de gas (en las válvulas por ejemplo), con lo que la cantidad de fluido efectivamente impulsada por el com-presor será todavía menor.

Rendimiento de compresión (adiabático)

1'2

12

TT

TT

h

h

real

oisentropic

W

W

creal

oisentropic

Rendimiento mecánico.- Este rendimiento es una medida de los rozamientos mecánicos del compresor, pistón-cilindro, cabeza y pie de biela, etc. El rendimien-to mecánico del compresor se define como la relación:

Rendimiento global.- Es el cociente entre el trabajo absorbido por el compresor según el ciclo teórico y el trabajo absorbido en el eje del mismo.

También se puede considerar como el producto de los rendimientos, in-dicado, mecánico y eléctrico, de la forma:

= c mec

La eficiencia de la compresión es una medida de las pérdidas que re-sultan de la divergencia entre el ci-clo real o indicado y el ciclo teórico (isentrópico) de compresión. Estas pérdidas son debidas a que tanto el fluido como el compresor, no son ideales sino reales, es decir con im-perfecciones y limitaciones tales

como:

Rozamiento interno a causa de no ser el fluido un gas perfecto y a causa también de las turbulencias

Retraso en la apertura de las válvulas de admisión y escape

Efecto pared del cilindro

Compresión politrópica

Los factores que determinan el valor del rendimiento de la compresión y del ren-dimiento volumétrico real del compresor, son los mismos. El diagrama del ciclo ideal de compresión se fija teóricamente y el del ciclo real de compresión se ob-tiene en el banco de ensayos mediante un sensor introducido en el volumen

Diagrama teórico y real de trabajo de un com-

presor alternativo.

compresordelejeelenabsorvidoTrabajo

compresordelinicadocicloelsegúnabsorvidoTrabajomec

______

_______

p

Page 19: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

18

muerto del compresor, que transmite la presión reinante, que se registra en com-binación con el movimiento del pistón, dando lugar al diagrama (p,v) interno de la máquina). RENDIMIENTO VOLUMÉTRICO

- Factores que influyen en el Rendimiento Volumétrico Real

Volumen de desplazamiento

El volumen de desplazamiento de un compresor es el volumen barrido en la uni-dad de tiempo por la cara o caras del pistón de la primera etapa; en el caso de doble efecto, hay que tener en cuenta el vástago del pistón. El volumen desplaza-do VD por un compresor es el volumen de la cilindrada de la máquina multiplicado por el número de revoluciones de la misma.

En el caso de ser un compresor de más de una etapa, el volumen (masa) aspira-do viene indicado por la primera etapa. Espacio Muerto

El espacio muerto o volumen nocivo corresponde al volumen residual entre el pistón y el fondo del cilindro y las lumbreras de las válvulas, cuando el pistón está

en su punto muerto. El volumen del espacio muerto habitualmente se aprecia en proporciones o porcentajes de volumen de trabajo del cilindro y se llama volumen relativo del espacio muerto, estimándose entre un 3% ¸ 10% de la carrera, de acuerdo con el modelo de compresor. En los compresores de una sola etapa modernos, en el caso cuando las válvulas se encuentran en la tapa de los cilindros, c = 0.025 - 0.06. - Rendimiento Volumétrico

Los cilindros de los compresores siempre se fabrican con espa-

cio muerto; esto es necesario para evitar el golpe del embolo

contra la tapa al llegar este a la posición extrema y para que

las válvulas de admisión y descarga puedan operar.

Page 20: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

19

El volumen de espacio muerto o nocivo, provoca un retraso en la aspiración de-bido a que el aire retenido en el volumen residual a la presión de descarga p2 de-be expandirse hasta la presión de aspiración p1 antes de permitir la entrada de una masa de gas en el cilindro.

Sin embargo, su efecto es doble en razón a que si bien por un lado disminuye el volumen de aspiración, por otro ahorra energía, ya que la expansión produce un efecto motor sobre el pistón; se puede considerar que ambos efectos se compen-san bajo el punto de vista energético.

Si el compresor no tuviese espacio muerto, el volumen residual entre el punto muerto superior PMS y las válvulas de aspiración y escape sería 0; esta salvedad se hace en virtud de que la compresión del gas no se puede llevar, por razones físicas, hasta un volumen nulo, existiendo al extremo de la carrera del compresor un espacio nocivo, que se corresponde con el menor volumen ocupado por el gas en el proceso de compresión.

La causa principal de la disminución del volumen de gas efectivamente desplaza-do por un compresor es el espacio muerto o nocivo. En el ciclo interno teórico del compresor, al término de la compresión la presión es p2; el gas comprimido pasa entonces a la línea de escape, 2-3, pero en el punto 3, punto muerto superior, queda todavía un volumen V3 =V0 de espacio muerto.

En la posterior carrera de aspiración, este volumen (V3) de gas se expansiona hasta el punto 4 y es solamente entonces, al ser alcanzada la presión de la aspi-ración, cuando comienza la admisión de vapor dentro del cilindro.

Cálculo del Rendimiento volumétrico ideal.- El rendimiento volumétrico ideal es una consecuencia de la existencia del espacio muerto, y se define así:

)(

ó_______

cilindradaentodesplazamideVolumen

naspiracidescondicioneenmedidoadmitidorealmenteVolumenv

V

V

D

a

v1

V

p

pVVV

V

p

pVV

V

VV

D

k

D

D

k

Dv

1

1

233

1

1

231

41

Donde:

V3=V0 es el volumen de espacio muerto (nocivo).

VD es el volumen de desplazamiento o cilindrada.

p2/p1 = rc es la relación de presión o grado de compresión.

La expresión del V muestra que el rendimiento volumétrico ideal disminuye al aumentar el espacio muerto V0 y la relación de presión rc.

p

p

V

V k

Dv

11

1

1

23

Page 21: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

20

La relación c = V0/VD se define como la fracción de espacio muerto; usualmente

V

Vc

D

06.00

Entonces el rendimiento volumétrico se puede expresar también, como:

Rendimiento volumétrico real.- El rendimiento volumétrico real Vreal se define

como:

La densidad del gas se mide en las condiciones de presión y temperatura reinan-tes en la línea de aspiración. Si se supone que en los puntos muertos inferior 1 y superior 3 no se llega a alcanzar el equilibrio de la presión exterior e interior, el diagrama real quedaría representado según se muestra en la siguiente figura.

Diagrama de indicador de un compresor real. Obsérvese que, en este caso, las presiones re-ales en los puntos muertos no se llegan a igualar

a los del diagrama ideal.

Diagrama de indicador de un compresor real. Las presiones reales en los puntos muertos se llegan

a igualar a los del diagrama ideal.

rccrc kc

kcv

11

111

Page 22: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

21

MINIMIZACIÓN DEL TRABAJO DEL COMPRESOR

Quedó claro que el trabajo de compresión es mínimo cuando este proceso se eje-cuta a manera internamente reversible (isentrópica).

Por tanto cuanto más se minimicen las irreversibilidades como la fricción, la turbu-lencia y la compresión sin cuasiequilibrio tanto mas nos aproximaremos a un pro-ceso de compresión internamente reversible y consecuentemente el trabajo del compresor se minimizará. Sin embargo esta posibilidad esta limitada por cuestio-nes económicas. Una forma más práctica de disminuir el trabajo de compresión es mantener el volumen específico del gas tan pequeño como sea posible durante el proceso de compresión, para esto es necesario mantener la temperatura del gas lo mas baja que sea posible durante el proceso, pues como sabemos el vo-lumen específico del gas es proporcional a la temperatura. Es decir que para mi-nimizar el trabajo de compresión se requiere enfriar el gas durante la compresión.

Lo anteriormente expuesto se puede expresar a través de los tres siguientes ti-pos de procesos de compresión:

Compresión isentrópica, no implica enfriamiento, pVk = C

Compresión politrópica, incluye algo de enfriamiento, pVn = C

Compresión isotérmica, implica máximo enfriamiento, pV = C

Suponiendo que los tres procesos se llevan a cabo entre las mismas presiones de manera internamente reversible y que el gas se comporta gas ideal con calores específicos constantes, el trabajo desarrollado durante la compresión esta dado por las siguientes expresiones matemáticas.

11

)(1

1

1

21112

k

k

oisentropicp

pVp

k

kTT

k

kRw (J/kg)

11

)(1

1

1

21112

n

n

opolitropicp

pVp

n

nTT

n

nRw (J/kg)

1

211

1

2 lnlnp

pVp

p

pRTwisotérmico (J/kg)

… queda claro que es deseable enfriar un gas cuando se está comprimiendo porque esto minimiza el trabajo requerido por el compresor…

Page 23: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

22

p1

p2

p

V

Isentrópico (n=k) Politrópico (1< n< k) Isotérmico (n=1)

1

Compresión internamente reversible: isentrópica, politrópica e

isotérmica entre los mismos límites de presión.

La representación mediante dia-gramas p-v y T-s, de los tres ti-pos de procesos de compresión nos permite interpretar de mejor manera el efecto de enfriamiento sobre el trabajo de compresión:

Estos diagramas nos muestran que el trabajo de compresión isentrópica (adiabática interna-mente reversible) requiere el tra-bajo de compresión máximo en tanto que la compresión isotér-mica requiere el mínimo. El tra-bajo de compresión requerido por el proceso de compresión politrópica está entre ambos y disminuye a medida que el ex-ponente politrópico n disminuye acercándose al proceso isotérmico, lo que au-menta la producción de calor durante el proceso de compresión. Si se remueve suficiente calor (por refrigeración), el valor de n se aproxima a la unidad y el pro-ceso se vuelve isotérmico. Una manera usual de enfriar el gas durante la compre-sión es haciendo circular agua a través de camisas de refrigeración alrededor de la carcasa de los compresores.

COMPRESION POR ETAPAS MULTIPLES CON INTERENFRIAMIENTO

De lo anterior se concluye que es deseable enfriar un gas cuando está comprimi-do porque esto reduce el trabajo de entrada requerido para la compresión. Sin embargo, no siempre es posible disponer del enfriamiento adecuado a través de la carcasa del compresor por lo que es necesario usar otras técnicas para lograr un enfriamiento eficaz. Una técnica es la compresión por etapas múltiples con interenfriamiento, proceso en el que el gas se comprime por etapas y se enfría entre cada una de estas haciendo pasar el gas a través de un intercambiador de calor llamado ínterenfriador. Idealmente el proceso de enfriamiento tiene lugar a presión constante y el gas se enfría hasta la temperatura inicial T1 en cada ínte-renfriador. Esta técnica es especialmente útil cuando un gas será comprimido a muy altas presiones.

El siguiente figura se ilustra mediante diagramas p-V y T-s el efecto que causa el interenfriamiento sobre el trabajo de un compresor multi-etapa (2 y 3 etapas). El gas es comprimido en cada etapa hasta una presión intermedia, enfriado a pre-sión constante hasta la temperatura T1 y comprimido en la última etapa hasta la presión p2. En general los procesos de compresión pueden modelarse como po-litrópicos (PVn=Cte) donde el exponente politrópico n varia entre k y 1. El área sombreada sobre el diagrama p-v representa el trabajo ahorrado como resultado de la compresión por etapas con interenfriamiento. Para fines de comparación se muestran las trayectorias del proceso isotérmico y tambien los proceso politrópi-cos de una sola etapa.

Page 24: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

23

El tamaño del área sombreada (trabajo ahorrado) varia con el valor de la presión intermedia y para aplicaciones practicas es importante determinar las condiciones bajo las cuales esta área se maximiza. En general el trabajo total de entrada para un compresor de etapas múltiples es la suma del trabajo de entrada en cada eta-pa de compresión.

El tamaño del área sombreada también aumenta con el número de etapas.

Por ejemplo para un compresor de dos etapas el trabajo total de entrada es la suma del trabajo de entrada en cada etapa de compresión:

Wcomp= WcompI+WcompII

p1

p2

p

v

Trabajo ahorrado Politrópico Interenfriamiento

Isotérmico

1

Proceso de compresión politrópica en dos etapas con interenfriamiento. El área sombreada representa el traba-

jo ahorrado .Diagramas p-V y T-s

pi

p1

p2 pi

1

2

2

T

s

Interenfriamiento

T1

p1

p2

p

v

Trabajo ahorrado Politrópico Interenfriamiento

Isotérmico

1

Proceso de compresión politrópica en tres etapas con interenfriamiento. El área sombreada representa el traba-

jo ahorrado .Diagramas p-V y T-s

pi

p1

p2

pi

1

2

2

T

s

Interenfriamiento

T1

pii

pii

Page 25: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

24

11

11

1

21

1

1

1.

n

n

i

n

n

icomp

p

p

n

nRT

p

p

n

nRTW

El valor de presión intermedia pi que minimiza el trabajo total se puede determi-nar derivando esta ecuación respecto a pi e igualando la expresión resultante a cero. El resultado que se obtiene es el siguiente.

21 pppi es decir i

i

p

p

p

p 2

1

Cuando se satisface esta condición, el trabajo de compresión en cada etapa es el mismo.

WcompI = WcompII

Relación de presión optima.

La relación entre la presión absoluta de descarga p2 y la presión absoluta de ad-misión p1, denominado también como grado de compresión, puede tener teórica-mente cualquier valor pero en la práctica, debido a que relaciones de presión muy altas requerirían de un compresor de gran tamaño y por otra parte en virtud a que todo proceso de compresión implica un incremento de la temperatura del fluido que se comprime, es muy probable que en estos casos estas altas temperaturas afectarían a la máquina (tanto en el aspecto mecánico como de lubricación). Por estas consideraciones técnicas, en compresores de una sola etapa la relación de compresión suele estar limitada a un máximo de 3,5 a 4. Cuando la relación de compresión es muy grande, se aconseja el empleo de compresores de varias eta-pas escalonadas con o sin refrigeración intermedia, cada una de las cuales tiene una relación de compresión del orden de 3,5 a 4.

La relación de compresión para cada etapa se puede estimar con la siguiente re-lación matemática, bajo la consideración de que en cada etapa se desarrolla el mismo trabajo de compresión y con la relación de compresión ideal.

n

compresornasipiarció

compresoradesci

p

pr

arg

Donde: n es el numero de etapas;

es la relación de compresión total, es decir la relación entre la presión absoluta final en la descarga de la última etapa y la presión absoluta inicial en la aspiración de la primera etapa;

ri, es la relación de presión parcial de cada etapa, es decir la relación entre la

presión absoluta final en la descarga de una etapa y la presión absoluta en la aspiración de la misma etapa.

compresoradesc

compresorentrada

p

p

arg

… o sea, para minimizar el trabajo de compresión en un compresor de dos etapas, la relación de presión en

cada etapa del compresor debe ser la misma…

Page 26: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

25

COMPRESOR DE DOS ETAPAS

En el siguiente diagrama se muestra esquemáticamente un proceso de compre-sión de aire atmosférico en dos etapas en un compresor alternativo.

En este tipo de compresores, el recorrido del aire en la compresión se realiza en dos etapas por medio de dos pistones, de los cuales uno hace la compresión de la primera etapa, y el otro, la de la segunda.

El compresor, como puede verse esquemática-mente en la figura, aspira el aire exterior que ha

p

p1

pi

VDL

1

2

3

4

VI cVDL

p4

VDH

cVDH

PVn=C

PV=cte.

V s

T

1

2

3

4

pi

p1

p4

Presión de aspiración

Presión de

descarga

Presión intermedia

Diagramas P-V y T-s, para una compresión en dos etapas con enfriamiento y sin perdidas de presión

en el ínter- enfriador.

1

2

3

4

Aire atmosféri-co

CILINDRO DE BAJA PRESION

Agua caliente

Agua fría

INTERENFRIADOR

CILINDRO DE ALTA PRESION

Aire comprimido, al tanque

de almacenamiento

PRIMERA ETAPA SEGUNDA ETAPA

Page 27: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

26

nNLDVD .4

2

de comprimir. Para pasar el aire a la cámara de compresión, es necesario que las válvulas de aspiración se abran. El gas aspirado es comprimido hasta que la pre-sión del mismo vence la fuerza de la válvula de escape, con lo que ésta se abre dejando pasar el aire ya comprimido al refrigerador intermedio (ínter enfriador), cuya función es enfriar el aire comprimido.

En esta etapa podría alcanzarse la presión que se deseara, pero se comprueba en la práctica, y teóricamente, que es antieconómico pretender presiones altas y caudales igualmente altos a base de comprimir el aire en una sola etapa, pues es necesaria más potencia y el aire sale más caliente que cuando se comprime en varias etapas (para presiones desde 0.4 a 1.2 MPa suelen emplearse compreso-res de dos etapas).

Para evitar estos inconvenientes, se hace que el compresor comprima el aire en dos etapas, pero, antes de realizar la segunda, se enfría el aire prácticamente a la temperatura ambiente, con lo que se obtiene un mayor rendimiento y un aire más frío a la presión final de salida. Según esto, el aire se comprime hasta una cierta presión, pi, en la primera etapa; luego se enfría y, seguidamente se realiza la se-gunda etapa o de alta presión. El ciclo de aspiración, compresión y escape es igual que para la etapa de baja presión, si bien, en este caso, la cámara de com-presión suele ser más pequeña, pues al estar comprimido en parte el aire que penetra en ella ocupa menos volumen que cuando lo hizo en la cámara del cilin-dro de baja presión.

VOLUMEN DE DESPLAZAMIENTO

De simple efecto.- Cuando un pistón es de simple efecto, trabaja sobre una sola cara del mismo, que está dirigida hacia la cabeza del cilindro. La cantidad de aire desplazado es igual a la carrera por la sección del pistón.

De doble efecto.- El pistón de doble efecto trabaja sobre sus dos caras y delimita dos cámaras de compresión en el cilindro. El volumen engendrado es igual a

dos veces el producto de la sección del pistón por la carrera. Hay que tener en cuenta el vásta-go, que ocupa un espacio obviamente no dispo-nible para el aire y, en consecuencia, los volú-menes creados por las dos caras del pistón no son iguales.

(m3/min)

N= 1 simple efecto 2 doble efecto n velocidad del árbol motor en rpm. D diámetro interno del cilindro L carrera del pastón.

Page 28: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

27

TRABAJO MINIMO DE UN COMPRESOR DE DOS ETAPAS.

Como se vio anteriormente el trabajo del compresor de dos etapas con ínteren-friador, se minimiza cuando la presión intermedia es igual a

pi = (p1*p2)1/2

En estas condiciones el trabajo desarrollado en cada etapa es el mismo, por lo que el trabajo total del compresor se puede calcular a partir del trabajo de la pri-mera etapa multiplicado por 2.

11

2

1

1

1.

n

n

icomp

p

p

n

nRTW

Sustituyendo el valor de la presión intermedia optima en esta última ecuación se tiene.

11

22

1

1

21.

n

n

compp

p

n

nRTW

Problemas resueltos (examen I-2007): www.geocities.com/satii_2001

Bibliografía:

Termodinámica; Faires M. Virgil ; 1997

Termodinámica; Yunus A. Cengel; 2006

Ingeniería Termodinámica; Huang Francis; 2003

Compresores, Fernández Pedro

http://en.wikipedia.org/wiki/Gas_compressor

http://www.sullair.com

Page 29: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

28

ANEXOS

A Politrópicas y su significado:

Dentro de las evoluciones que describen fenómenos reales, existen las politrópicas. La palabra significa, literalmente, "muchas formas". Las politrópicas constituyen una gran familia de evolucio-nes que permiten estudiar gran cantidad de fenómenos reales. Al momento de entender lo que son las politrópicas debemos tener presente que hasta el momen-to las evoluciones que hemos estudiado tienen un respaldo físico. Así tenemos a:

Las isóbaras (presión constante). Del tipo p = Cte.

Las isócoras (volumen constante). Del tipo V = Cte.

Las isotermas (temperatura constante). Del tipo p·V = Cte.

Las adiabáticas sin roce (δQ = 0, que después llamaremos isentrópicas) Del tipo p·Vk =

Cte.

Todas estas evoluciones tienen un significado físico preciso.

Estas evoluciones las ilustramos en la figura 1.

Fig. 1: Evoluciones típicas

Las politrópicas tienen la forma genérica del tipo:

p·Vn = Cte.

En que n es el coeficiente politrópico. El valor de n puede variar de 0 a infinito.

Debemos tener claro que una politrópica es simplemente un ajuste de una exponencial a una evo-lución real. Por lo tanto es un modelo de ajuste y uno debe tener claro que el significado físico detrás de una politrópica puede ser muy diferente en diversos casos.

En la figura 2 vemos ilustradas una serie de politrópicas, con distintosd valores de exponente n. Vamos ahora al significado físico que puede haber detrás de cada politrópica.

Page 30: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

29

Fig. 2: Evoluciones politrópicas

Si el coeficiente n es 0, la politrópica se asemeja a una isóbara; si n vale 1, será semejante a una isoterma; cuando n vale k, se asemejará a una adiabática sin roce y cuando n tiende a infinito, se parecerá a una isócora.

En el párrafo anterior, debe quedar clara la idea que la politrópica se asemeja a... También nos queda claro que según el valor de n, esta evolución adoptará muchas formas diferentes. De allí su nombre.

Para comprender más a fondo lo que representa una politrópica, veamos un caso particular en que n = 1,22. En este caso el exponente n es menor que y mayor que 1. Consideremos el caso entre 1y 2 ilustrado en la figura 2. Es claro que al final de la compresión, p2 es igual en el caso de la isentrópica, la isoterma y la politrópica. Pero las temperaturas y volumenes específicos están or-denados de acuerdo a lo siguiente:

Tisot < Tpolitropica < Tisentropica

Visot < Vpolitropica < Visentropica

Esto necesariamente permite concluir que:

En la compresión el fluido pierde calor hacia el exterior. Mientras más se acerca el valor de n a 1, más calor se pierde.

Con respecto al trabajo necesario para la compresión (con trasvasije), este es menor que en el caso de la adiabática sin roce si la politrópica es sin roce.

El cálculo correcto de los trabajos y calores intercambiados en las politrópicas requiere, necesa-riamente, tener claro el trasfondo físico de la evolución descrita por la politrópica. En los próximos puntos analizaremos más en detalle cada tipo de evolución. Resumen

Las politrópicas describen en forma aproximada evoluciones reales. Su expresión es un ajuste de una exponencial a una evolución real.

Son de la forma general: p·Vn = Cte.

Su forma puede variar de acuerdo al valor de n. De allí el nombre de politrópicas. El significado físico detrás de la curva específica, es variable en cada caso.

Para resolverlas bien, no olvidar aplicar el Primer Principio

Page 31: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

30

B Miscelánea Algunos aspectos tecnológicos. Abordar temas relativos a la tecnología de estos dispositivos (diseño, construcción, operación, mantenimiento, reparación, aplicaciones, entre otros) cae fuera de los alcances y propósitos de esta asigna-tura. Sin embargo se discuten a continuación algunos aspectos que el estudiante tendrá la oportunidad de profundizar y ver de manera mas exhaustiva y objetiva en las asignaturas respectivas.

Distribución y Regulación

Los órganos de cierre de la entrada y la salida del gas en el cilindro son en general válvulas automáticas de plancha de acero esmerilada por ambas caras y de 2 a 3 mm de espesor, corrientemente con forma anular y cargadas por resorte de presión para seguridad del cierre.

La carrera de la válvula (normalmente de 2 a 4 mm; (para gran número de revoluciones 1 a 1,5 mm) está limitada por un tope atornillado al asiento de válvula. Las válvulas, dispuestas a un costado del cilindro o en la culata del mismo, son fáciles de montar y desmontar. Para que las válvulas se conserven mejor y ocasionen poca pérdida de carga debe exceder de 30 m/seg. Y con presiones superiores a 100 Bar sólo a 15 m/seg. Material para los platos de válvula alta-mente fatigados, acero especial poco aleado.

Las instalaciones de compresores trabajan en general con toma irregular y necesitan, por lo tanto, una regulación. Sis-temas usuales de regulación:

Arranque y paro. Para pequeñas instalaciones con impulsión eléctrica. Según sea la presión del acumulador de aire, se conectan y desconectan automáticamente el motor y el agua de refrigeración. El acumulador debe tener suficiente ca-pacidad para que no se realicen más de 8 a 10 conmutaciones por hora.

Ajuste del número de revoluciones en el accionamiento por máquinas de émbolo. Con número constante de revolucio-nes:

a. Regulación por marcha en vacío. El regulador de presión cargado con peso o resorte conecta el compresor a marcha en vacío en cuanto la presión del acumulador excede de la ajustada y conecta de nuevo a plena carga en cuanto la presión baja un 10%. La marca en vacío se verifica por cierre del tubo de aspiración o manteniendo abierta la válvula de aspiración con ayuda de un descompresor.

b. Regulación escalonada. La potencia se disminuye escalonadamente al 75%, al 50%, al 25% y a vacío, por interca-lación de espacios perjudiciales fijos y conexión a marcha en vacío de las distintas caras de émbolo en los escalones de múltiple efecto.

c. Regulación progresiva del gasto (sin escalonar). En general se realiza manteniendo abierta durante un tiempo graduable (mayor o menor) las válvulas de aspiración durante las carreras de compresión mediante descompresores accionados por gas o aceite a presión o por resortes.

Disposición de los Cilindros

En los compresores alternativos los fabricantes suelen utilizar diversas formas de montaje para los mismos, siendo las más frecuentes:

Disposición vertical,

Horizontal,

En L o en ángulo (90º)

De dos cilindros opuestos,

Disposición en V.

Los compresores verticales sólo se utilizar para potencias bastante pequeñas, ya que los efectos de machaqueo relati-vamente importantes producidos por esta disposición conducen al empleo de fundaciones bastante pesadas y volumi-nosas, en contraposici6n de las disposiciones horizontales o en ángulo, las cuales presentan cualidades de equilibrio tales que el volumen de las fundaciones se reducen muchísimo .

Para compresores pequeños, la disposición en V es la más empleada. Para compresores grandes de doble efecto, se recurre a la forma en L o en ángulo, con el cilindro de baja presión vertical y el de alta presión horizontal.

Page 32: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

31

C Glosario de términos usados en la tecnología de compresores.

http://www.sullair.com

ACFM / (PCMR)

Pies Cúbicos por Minuto Reales. Es el flujo real de aire o gas suministrado en la conexión de descarga de un compre-sor, expresado en pies cúbicos por minuto bajo las condiciones de temperatura y presión existentes a la entrada del compresor. El flujo en ACFM para un determinado compresor funcionando a una velocidad dada permanece constante, independientemente de la temperatura, presión atmosférica o altitud del lugar de operación del compresor.

Aire Estándar

Aire a condiciones estándar especificadas de temperatura, presión y humedad.

Aire libre

Aire a condiciones atmosféricas en cualquier lugar específico. Dado que la altitud, presión barométrica, temperatura y humedad relativa pueden variar en diferentes lugares, de ello se desprende que un pie cúbico de aire libre será siempre un pie cúbico, pero su temperatura, densidad (peso) y composición pueden variar.

Aire normal, a condiciones normales

Término usado antiguamente para describir el Aire Estándar y las Condiciones Estándar, véase este último.

Bomba de vacío

Un compresor que opera con una presión a la entrada menor que la presión atmosférica y generalmente descarga a una presión igual o ligeramente superior a la atmosférica.

Calor Específico

Cantidad de calor requerida para aumentar la temperatura de una unidad de peso de una sustancia en un grado de temperatura; (debe especificarse si es Centígrados o Fahrenheit).

Capacidad

La capacidad de un compresor es el flujo de gas comprimido y suministrado a la velocidad máxima especificada, en las condiciones de temperatura, presión y composición del gas (incluyendo la humedad relativa) existentes a la entrada del compresor. La capacidad puede ser real o nominal.

Capacidad, real

Es la cantidad de gas realmente comprimida y suministrada a la descarga del compresor cuando este está funcionando a la velocidad máxima especificada y bajo condiciones de presión nominales. La capacidad real se expresa generalmen-te en pies cúbicos por minuto (CFM) en las condiciones existentes a la entrada de la primera etapa.

CFM / (PCM)

Pies Cúbicos por Minuto.

Compresibilidad

Es un factor que indica la desviación del gas con respecto a las leyes de la hidráulica.

Compresión, adiabática

Compresión en que no se transfiere calor externo al gas ni se remueve calor del gas durante el proceso de compresión. Es decir, todo el calor generado en la compresión es retenido en el gas. Para los gases perfectos, esto se expresa como que la ecuación PV (Presión x Volumen) es constante, si el proceso es reversible.

Compresión, isentrópica

Compresión en que no hay aumento de entropía; compresión adiabática totalmente reversible.

Compresión, isotérmica

Compresión en que la temperatura del gas permanece constante durante el proceso de compresión. Es decir, todo el calor generado en la compresión es removido en el momento en que se genera.

Page 33: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

32

Compresión, politrópica

Compresión en que la relación entre la presión y el volumen expresada por la ecuación PVn es constante, donde n es el exponente politrópico.

Compresores de desplazamiento positivo

Compresores con dispositivos mecánicos (pistones en cilindros, o rotores en carcasas) en los que volúmenes de aire o gas son confinados en un espacio cerrado y comprimidos por el movimiento del elemento mecánico (pistón o rotor). Los compresores de tornillo rotatorio son compresores de desplazamiento positivo.

Compresores dinámicos

Máquinas en que el aire o gas es comprimido por la acción de paletas rotatorias o impulsores que imparten velocidad y presión al fluido.

Condiciones Estándar

Las condiciones estándar varían de acuerdo con la industria y la autoridad que las especifica. Las condiciones estándar frecuentemente encontradas son: según la ISO/CAGI/PNEUROP, 68 oF, 14.5 psia, seco (0% HR) ó 20 oC, 1 bar, seco (0% HR); según API 60 oF, 14.7 psia, seco (0% HR). HR = Humedad Relativa

Desplazamiento

Volumen barrido por el elemento compresor (pistón, rotor de tornillo, etc.) por unidad de tiempo; generalmente se expre-sa en pies cúbicos por minuto.

Eficiencia

Generalmente se expresa como un porcentaje, léase a continuación:

Eficiencia, adiabática

Relación entre el trabajo adiabático calculado y la potencia de frenado real.

Eficiencia, compresión

Relación entre el trabajo isentrópico calculado y el trabajo termodinámico real requerido de un compresor.

Eficiencia, isotérmica

Relación entre el trabajo isotérmico calculado y el trabajo termodinámico real transferido al gas durante la compresión.

Eficiencia, mecánica

Relación entre el trabajo termodinámico requerido por un compresor y la potencia de frenado real requerida. Refleja las pérdidas por fricción, inercia, resistencia aerodinámica y otras pérdidas mecánicas.

Eficiencia, politrópica

Relación entre la energía de compresión politrópica transferida al gas y la energía real transferida al gas.

Eficiencia, volumétrica

Relación entre la capacidad real y el desplazamiento (volumen barrido).

Entalpía (Contenido de calor)

Suma de las energías internas y externas de una sustancia.

Entropía

Medida de la energía no disponible en una sustancia.

Evacuador

Término aplicado algunas veces a un compresor en el que la presión a la entrada es menor que la atmosférica. Una bomba de vacío es un evacuador.

Expansor

Máquina mecánicamente similar a un compresor, pero en la que el gas se expande de una presión mayor a una menor realizando trabajo y experimentando una caída de temperatura durante el proceso. La caída de temperatura es gene-ralmente, pero no necesariamente, el objetivo principal. El orificio en un sistema de refrigeración también produce una expansión del gas y una caída de temperatura, pero un expansor realiza esto de forma casi isentrópica, y por ello es más eficiente para un proceso criogénico.

Page 34: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

33

Factor de Carga

Relación entre la carga promedio (consumo de aire comprimido) durante un cierto período de tiempo y la capacidad nominal del compresor.

Factor de supercompresibilidad

Factor que expresa la desviación del gas con relación a las leyes de los gases ideales. Para fines prácticos, a las pre-siones y temperaturas normalmente encontradas en los compresores de AIRE, puede considerarse que el aire sigue las leyes de los gases ideales.

Gas

Desde el punto de vista físico, el aire es un gas (uno de los tres estados de la materia). En la práctica, sin embargo, el término se usa para describir gases diferentes al aire.

Gradiente de temperatura

Diferencia de temperatura entre la descarga de un enfriador (interenfriador o postenfriador) y la temperatura de entrada del medio de enfriamiento; generalmente aire o agua.

Gravedad Específica

Relación entre el peso específico del aire o gas y el del aire seco a la misma temperatura y presión.

Humedad, específica

Peso del vapor de agua en una mezcla aire-vapor por unidad de peso del aire seco.

Humedad, relativa

Relación entre la presión parcial de vapor y la presión de saturación de vapor a la temperatura de bulbo seco de la mezcla. Es decir, la relación entre el peso real del vapor de agua en la mezcla y el peso máximo de vapor que la mezcla puede soportar a una temperatura dada. También es el grado de saturación, expresado como un porcentaje.

Humedad, específica

Peso del vapor de agua en una mezcla aire-vapor por unidad de peso del aire seco.

Humedad, relativa

Relación entre la presión parcial de vapor y la presión de saturación de vapor a la temperatura de bulbo seco de la mezcla. Es decir, la relación entre el peso real del vapor de agua en la mezcla y el peso máximo de vapor que la mezcla puede soportar a una temperatura dada. También es el grado de saturación, expresado como un porcentaje.

Interenfriador

Un intercambiador de calor (enfriado por agua o por aire) usado para remover el calor producido en la compresión entre las etapas de un compresor de etapas múltiples. Generalmente condensa y remueve una cantidad significativa de humedad.

Interenfriamiento

Remoción de calor de compresión entre etapas de un compresor de varias etapas.

Interenfriamiento, grado de

Diferencia de temperaturas entre la entrada del compresor y la salida del interenfriador, expresada como un porcentaje inverso.

Interenfriamiento, perfecto

Cuando la temperatura del aire que sale del interenfriador es igual a la temperatura a la entrada del compresor.

Peso Específico

Peso del aire o gas por unidad de volumen a condiciones específicas de temperatura y presión. A menos que se especi-fique de otra forma, generalmente se refiere a las condiciones a la entrada del compresor.

Postenfriador

Intercambiador de calor para refrigerar la descarga de un compresor. El enfriamiento puede ser por aire o por agua. Constituye un medio eficaz para remover la humedad del aire comprimido.

Potencia, de frenado

Entrada de potencia en el eje de accionamiento de una máquina.

Potencia, teórica (politrópica)

Potencia requerida para comprimir politrópicamente el gas o aire entregado por un compresor a la presión nominal.

Page 35: Apuntes de Clase - docentes.uto.edu.bodocentes.uto.edu.bo/eriverac/wp-content/uploads/Termodinámica_de... · Apuntes de Clase Termodinámica Técnica II Termodinámica de los compresores

Apuntes de Clase Termodinámica Técnica II

Termodinámica de los compresores de gas MEC2250

Emilio Rivera Chávez

34

Potencia, teórica o ideal

Potencia requerida para comprimir adiabáticamente el aire o gas entregado por un compresor a una presión especifica-da.

Presión, a la descarga

Presión a la descarga del conjunto compresor, de acuerdo con la norma PN2CPTC2 del CAGI/PNEUROP. Generalmen-te expresada como presión manométrica.

Presión, a la entrada

Presión a la entrada del compresor. Generalmente expresada como temperatura absoluta.

Presión absoluta

Presión total medida con relación al cero absoluto, es decir, al vacío perfecto. En términos prácticos, es la suma de las presiones manométrica y atmosférica.

Presión crítica

Valor límite de la presión de saturación cuando la temperatura de saturación se aproxima a la temperatura crítica.

Presión, manométrica

Presión medida en el manómetro. La presión manométrica es igual a la presión absoluta menos la presión atmosférica, es decir, la presión por encima de la atmosférica.

Punto de rocío

Temperatura a la cual el vapor en un espacio (generalmente el vapor de agua, si no se especifica otra cosa) comenzará a condensarse (a formar rocío) a una presión dada.

Relación de presión (relación o razón de compresión)

Relación entre la presión absoluta a la descarga y la presión absoluta a la entrada.

Temperatura absoluta

Temperatura medida con relación al cero absoluto. Es la temperatura medida en la escala Fahrenheit más 460 grados y se conoce como temperatura Rankine; es la temperatura medida en la escala Celsius más 273 grados y se conoce como temperatura Kelvin.

Temperatura crítica

Máxima temperatura a la que los estados bien definidos de líquido y vapor pueden existir. Puede definirse como la máxima temperatura a la que es posible hacer que un gas cambie al estado líquido (se licue) solamente mediante la presión.