Azufre

40
AZUFRE

Transcript of Azufre

Page 1: Azufre

AZUFRE

Page 2: Azufre

El ciclo del azufre Los contenidos totales en suelos agrícolas de regiones húmedas y

subhúmedas es de 100 a 500 mg kg-1.

La fuente original del S en suelo fueron sulfuros metálicos como la pirita (S2Fe) contenidos en los materiales primarios, los cuales por meteorización liberaron S-2, el cual se oxidó pasando a la forma de SO4

-2.

Este anión puede ser utilizado por la biomasa microbiana e incorporado a la fracción orgánica, perdido por lavado, reducido a S -2 o S0 bajo anaerobiosis, perdido por escurrimiento a los océanos y/o precipitar como sales en suelos de zonas áridas o semiáridas.

El agua de mar puede contener hasta 2700 mg L-1 de SO4-2, mientras que

espejos de agua dulce contienen de 0.5 a 50 mg L-1 de SO4-2. Sin

embargo, algunas lagos salinos pueden tener hasta 60.000 mg L-1 de SO4

-2.

Page 3: Azufre

Rango de concentración de S en 37 suelos de IOWA (USA). Valores entre paréntesis corresponden a % del valor de S total.

Adaptado de Echeverría y García 2005.

Forma de S Rango Promedio

--mg S kg-1----

Total 55-618 (100) 292 (100)

Orgánico 55-604 (95-99) 283 (97)

Inorgánico 1-26 (1-5) 8 (3)

Sulfato 1-26 (1-5) 8 (3)

Sulfuro 0 (0) 0 (0)

Page 4: Azufre

S en MO

S en residuos

Biomasa

S en planta

S en cosecha

SO4-2S-2

S0

SO2 ⇒ SO4-2

FertilizantesPestic./Enm.

Lavado

Minerales Suelo

Coloides Suelo

Sales

Ocluído

H2S

FeS2

Minerales Suelo

Ciclo del S

Erosión

Volatilización

Page 5: Azufre

Características generales de la dinámica del S:

Además: forma sales que pueden precipitar y puede ser adsorbido.

Similar a la del N: en general dependiente de la MO, se puede lavar y se puede perder en forma gaseosa.

Similar a la del N: esta sujeto a la reducción y oxidación microbiana.

Difiere del N: en que no puede ser fijado biológicamente.

Page 6: Azufre

Formas del S en el suelo:

• Uniones C-O-S (ésteres sulfato, C-O-SO4H): más lábil. ≈ 27-59% del S orgánico.

Orgánico: En suelos agrícolas de zonas húmedas ≈ 90-97%

Formas:

• Uniones C-S (en aminoácidos y humus): más difícil de mineralizar. ≈ 10-20% del S orgánico, incluye el S en la biomasa microbiana (1.5 al 5% del S total.

• Residual (desconocido, supuestamente C-S protegidas): recalcitrante. ≈ 30-40% del S orgánico.

Page 7: Azufre

Formas del S en el suelo

• SO4-2 en solución: < del 10% del S total, es muy variable debido

a la mineralización-inmovilización, pérdidas gaseosas, lavado y absorción por cultivos. En suelos con alta CIA el lavado es mínimo.

• SO4-2 adsorbido: muy importante en suelos con alta CIA como

ultisoles y oxisoles (hasta 100 ppm), el cual puede contribuir significativamente a la nutrición de los cultivos.

• SO4-2 coprecipitado con CO3Ca: ocurre como CO3Ca-CaSO4 en

suelos calcáreos. • S inorgánico reducido (S0 y S-2):muy baja conc. en suelos bien

drenados. Bajo anaerobiosis el H2S se acumula como la M.O se descompone. En suelos bien provistos de Fe en anaerobiosis se forma FeS.

Page 8: Azufre

Adsorción:

Contenido de arcillas: mayor frecuencia Contenido de arcillas: mayor frecuencia de sitios con carga positivas (bordes). de sitios con carga positivas (bordes).

Tipo de arcillas: retículo 1:1, alofanosTipo de arcillas: retículo 1:1, alofanos

Óxidos de Fe y AlÓxidos de Fe y Al

pH: cargas positivas pH-dependientespH: cargas positivas pH-dependientes

contenido de MOcontenido de MO

Page 9: Azufre

0

20

40

60

80

100

120

140

160

0 200 400 600 800

Contenido de S (mg kg-1)

Pro

fund

idad

(cm

)

S Inorgánico

S Orgánico

Udol (alta MO)Udol (baja MO)

0

20

40

60

80

100

120

140

160

0 200 400 600 800

Contenido de S (mg kg-1)

Pro

fund

idad

(cm

)

0

20

40

60

80

100

120

140

160

0 200 400 600 800

Contenido de S (mg kg-1)

Pro

fund

idad

(cm

)

Ustol

0

20

40

60

80

100

120

140

160

0 200 400 600 800

Contenido de S (mg kg-1)

Pro

fund

idad

(cm

)

Oxisol

0

20

40

60

80

100

120

140

160

0 200 400 600 800

Contenido de S (mg kg-1)

Pro

fund

idad

(cm

)

S Inorgánico

S Orgánico

Page 10: Azufre

Factor Intensidad:

Factor Cantidad:

SO4-2

Orgánico (COS / CS)

SalesIntercambiable

Page 11: Azufre

Mineralización (1.7 al 3.1% por año del S org):

Biológica: relacionada con la oxidación del C de las

uniones C-S S-2, el S es controlada por las

necesidades de C y energía de los

microorganismos.

Amino acid. + 2H2O S-2 + CO2 + NH4+

S-2 S0 + 1 ½ O2 + H2O SO4-2 + 2H+

O2

Bioquímica: hidrólisis por exoenzimas (sulfatasas) de los

ésteres sulfato SO4-2

R-O-SO3- + H2O R-OH + HSO4

-

Inmovilización: rel C:S > 400:1 conduce a la inmovilización

Page 12: Azufre

Factores que afectan el M.I.T.

Contenido de S de los residuos y del suelo: en gral > M.O> mineralización. Relaciones C/S< 200:1= mineralización; relación C/S > 400:1= inmovilización. La relación C/N/S de los suelos es aprox 120:10:1.4.

Temperatura del suelo: es mínima con temp < a 10 0C, aumenta en el rango de 20-40 0C, y decrece con temp > a 40 0C.

Humedad del suelo: el optimo de humedad es de alrededor del 60% de CC.

pH del suelo: el efecto es poco claro. pH cercanos a la neutralidad incrementan la actividad microbiana y la min de S.

Presencia de plantas: la presencia de plantas incrementa la mineralización de S.

Tiempo y laboreo: como el N, cuando el suelo es cultivado el % de S decae rápidamente. Las relaciones C/N/S de suelos vírgenes son mayores que las de suelo bajo cultivo, lo que sugiere que el S es más resistente a la mineralización que el N.

Actividad sulfatasa: el 50% del S total en suelo puede estar presente como éster SO4

-2. La sulfatasa hidroliza estos compuestos y por eso su abundancia regula el proceso de mineralización.

Page 13: Azufre

Efecto del contenido de S total y de la temperatura sobre la mineralización de S.

Contenido de MO y de S Contenido de MO y de S mineralizablemineralizable

Page 14: Azufre

Oxidación del S-2 y S0

Los sulfuros o SLos sulfuros o S00 formados desde la desc. de la M.O son oxidados por formados desde la desc. de la M.O son oxidados por bacterias autotróficas (Thiobacillusbacterias autotróficas (Thiobacillus) para formar sulfatos. L) para formar sulfatos. Los os requerimientos ambientales y la tolerancia de estas especies varía requerimientos ambientales y la tolerancia de estas especies varía ampliamente (el proceso ocurre sobre un rango de pH de 2 a 9).ampliamente (el proceso ocurre sobre un rango de pH de 2 a 9).

2S2SOO + 3 O + 3 O22 + 2H + 2H22OO 2SO 2SO44-2-2 + 4H + 4H++

HH22S + 2 OS + 2 O22 SOSO44-2-2 + 2H + 2H++

2FeS2FeS22 + 7 ½ O + 7 ½ O22 + 7H + 7H22O 8HO 8H++ + 4 SO + 4 SO44++ + 2Fe(OH) + 2Fe(OH)33

Page 15: Azufre

Contenido de humedad: optimo cercano a C.C

Porcentaje del S0 oxidado a SO4-2

en función del contenido de humedad. Adaptado de Havlin et al. (2005).

Page 16: Azufre

Reducción de SO4-2

En condiciones de anaerobiosis, durante la descomposición En condiciones de anaerobiosis, durante la descomposición microbiana de materiales orgánicos se forman gases (Hmicrobiana de materiales orgánicos se forman gases (H22S, CSS, CS22, COS) , COS)

(Desulfovibro y Desulfutomaculum). “Este proceso es relativamente (Desulfovibro y Desulfutomaculum). “Este proceso es relativamente insignificante bajo condiciones de campo”. insignificante bajo condiciones de campo”.

2R---CH2R---CH22OH + SOOH + SO44-2-2 2R---COOH + H 2R---COOH + H22O + SO + S-2-2

Page 17: Azufre

Lavado de SO4-2

“Junto con la exportación en grano es uno de los procesos más relevantes de perdida de S de los suelos”.

Depende de:

Cantidad de agua de percolación (balance entre PP y ETP).

Características físicas y químicas (textura, estructura, CIA o CIC).

Concentración de SO4-2 en la solución.

En el norte de Alemania se han determinado pérdidas de 32 a 77 kg S ha/año.

Page 18: Azufre

Implicancias prácticas de las transformaciones del S

La reducción en los contenidos de M.O de los suelos de la región pampeana y los sistemas de labranza reducida pueden conducir a deficiencias de S.

Cuando los cultivos crecen en suelos de textura gruesa con bajos cont de M.O el aporte por mineralización es bajo y pueden existir altas pérdidas por lavado.

En zonas húmedas es probable que fertilizantes que contengan SO4-2 y

S0 para lograr un mayor período de oferta de S.

Si se va a utilizar S0 como fuente podría ser necesario aplicarla antes o inmediatamente después de la siembra para que el S0 se pueda oxidar a SO4

-2, principalmente en cultivos de invierno.

La inmovilización de S puede provocar deficiencias y rta a este nutriente (ej soja de 2da por efecto de la inmovilización de S por el rastrojo de trigo).

Page 19: Azufre

Concentración en los tejidos vegetales: 0,1 – 0,5%

Factores que determinan la concentración: EspecieCultivarParte de la plantaEstadio fenológicoManejoDisponibilidad

Gramíneas(0,18 – 0,19%)

Leguminosas(0,25 – 0,30%)

Crucíferas(1,10 – 1,70%) > >

Page 20: Azufre

Síntomas de deficiencia efectos de la falta de S sobre las plantas

Dado que el S es relativamente inmóvil en la planta la clorosis se desarrolla primero en las hojas más jóvenes.

Las plantas deficientes en S tienden a tener bajo contenido de azucares pero alto de nitratos en su savia, lo que cobra relevancia en especies hortícola en las que se consumen las hojas.

La deficiencia de S en leguminosas disminuye la concentración de aminoácidos metionina y cistina (aumenta el N no proteico). De esta forma se afecta el valor nutritivo de las leguminosas por la falta de S.

La deficiencia de S en trigo reduce la calidad la calidad industrial de la harina. La extensibilidad de la masa correlacionó positivamente con la concentración de S en la harina desde 0,8 hasta 1,8 g kg-1

Page 21: Azufre

Síntomas de deficiencias de S en maíz y trigo

Page 22: Azufre

Acumulación de MS, N, P y S en biomasa aérea en trigo bajo SD. Reussi Calvo (2005).

Page 23: Azufre

Acumulación de N y S en maíz de alto rendimiento. Adaptado de Echeverría y García (2005).

N= 66% del total acumulado en floración

S= 36% del total acumulado en floración

Page 24: Azufre

Requerimientos de S en planta para producir 1 Mg de grano y su distribución en grano y residuos. Adaptado de Echeverría y García (2005).

Cultivo Planta Grano Residuos IC

-----------Kg ha-1-----------

Maíz 2.5 1.4 1.1 0.56

Soja 9.0 5.4 3.6 0.30

Trigo 4.7 1.6 3.1 0.33

Girasol 5.0 2.0 3.0 0.40

Cebada 4.0 1.3 2.7 0.33

Page 25: Azufre

Factores que conducen a deficiencias de S

Zonas en las que se han disminuido las emisiones de SO2 a la atmósfera (< uso de combustibles fósiles y combustibles con < cont de S).

Fertilizantes mas puros sin S (Urea y PDA).

Disminución del contenido de M.O.

Aumento en el rendimiento de los cultivos.

Quemado de rastrojos.

Difusión de sistemas de labranzas conservacionistas.

Aumento de la frecuencia de soja en la secuencia.

Page 26: Azufre
Page 27: Azufre

Evaluación de la disponibilidad

2. Material vegetal

* Análisis de S total en planta entera o en alguna parte:

Más sensible (¡OJO! Método analítico)

Umbrales: ej. Trigo (0,12%) y Soja (0,23%). ¡Variables!

Muestrear partes jóvenes en momentos de más demanda

* Análisis de relación N:S: Buen indicador (¡OJO! Consumo de lujo de N)Varía con la especie, la fenología, etc.

* Combinación: Ej. Respuesta en Trigo con S < 0,12% y N:S > 17:1

1. Análisis de suelo

SO4-2 en solución más intercambiable.

Evaluación del aporte por mineralización.

Page 28: Azufre

Análisis de suelo

“En general las metodologías de suelo presentan elevada variabilidad interlaboratorios por baja precisión”.

Precaución: considerar profundidad

Page 29: Azufre

Relación entre el rendimiento relativo de trigo y la disponibilidad de S-SO4

-2 a la siembra. Adaptado de Reussi Calvo et al. (2008).

Page 30: Azufre
Page 31: Azufre
Page 32: Azufre

Relación entre la relación N/S y el tiempo térmico en condiciones no-limitantes de nutrientes. Adaptado de

Reussi Calvo et al. (2008).

Page 33: Azufre
Page 34: Azufre

Fertilizantes azufrados

N P2O5 K2O S Otros

Sulfato de amonio

SO4(NH4)2

+620 - - 24

TiosulfatoDe amonio

(NH4)2S2O3

+412 - - 26

Yeso SO4Ca.2H2O - - - 19 24Ca

Azufre S0 - - - 100

Sulfato de magnesio

SO4Mg.7H2O - - - 13 10Mg

Superfosfato simple

Ca(H2PO4)2.CaSO4 - 20 - 14

Urea-azufre CO(NH2)2+S 38 - - 10-20

Page 35: Azufre

Fuentes de azufre

Sulfato de amonio: fuente de N y posee elevado contenido de S rápidamente disponible. Baja higroscopicidad y puede emplearse en mezclas con numerosas fuentes de otros nutrientes, excepto con Ca(NO3)2 y CaCO3.

Tiosulfato de amonio: líquido de origen industrial produce S elemental y sulfato en partes iguales. No es apto para aplicación foliar y se debe almacenar en plásticos, PVC o fibra de vidrio y ataca el estaño, bronce o cobre.

Azufre elemental (S0): es amarillo, sólido insoluble en agua y su efectividad para la planta depende del tamaño de partícula, forma de colocación, tiempo de desde la aplicación y condiciones ambientales.

Sulfato de Ca: se lo encuentra en grandes depósitos de rocas ígneas y metamórficas, o como subproducto de la elaboración de superfosfato. Es relativamente insoluble y debe ser finamente molido y granulado para mejorar la solubilidad. Es un producto que no produce acidez.

Urea con S: el S recubre la urea para retrasar la hidrólisis de la misma para lo cual el mismo tiene que ser previamente oxidado.

Page 36: Azufre

Factores que regulan la oxidación del S0

CO2 + S0 + 2 ½ O2 + 2 H2O CH2O + 2SO4-2 + 2H+

“Thiobacillus sp, es el género mas importante dentro de los que oxidan el S”

Temperatura: temperatura optima entre 25 y 400C

Humedad: la tasa de oxidación es optima a capacidad de campo

pH de suelo: ocurre sobre un amplio rango de pH.

Page 37: Azufre

Efecto de la temperatura sobre la tasa de oxidación de S0. Adaptado de Havlin et al. 2005.

Page 38: Azufre

Efecto de la humedad del suelo sobre la tasa de oxidación de S0. Adaptado de Havlin et al. 2005.

Page 39: Azufre

Relación entre la absorción de azufre de canola y el área superficial del S0. Adaptado de Havlin et al. (2005).

Page 40: Azufre

Acumulación de MS, N, P y S en biomasa aérea en trigo bajo SD. Reussi Calvo (2005).