Bryan

3
Se usará el método de secciones, ya que se desea calcular las fuerzas en un número reducido de barras en la armadura. Dibujamos el diagrama de cuerpo libre: Aplicando las ecuaciones de equilibrio obtenemos: ! = 0: 36 2,4 13,5 + 20 9 + 20 4,5 = 0 = 36 2,4 + 20 9 + 20 4,5 13,5 = , ! = 0: 36 + ! = 0 = ! = 0: 26,4 20 20 + ! = 0 4 ,5 ! ! ! ! 4 ,5 ! 4 ,5 ! ! ! ! B 20 !" 20 !" 2 ,4 ! ! ! 36 !"

description

Bryan

Transcript of Bryan

Page 1: Bryan

Se usará el método de secciones, ya que se desea calcular las fuerzas en un número reducido de barras en la armadura.

Dibujamos el diagrama de cuerpo libre:

Aplicando las ecuaciones de equilibrio obtenemos:

𝑀! = 0:          36 2,4 − 𝐵 13,5 + 20 9 +  20 4,5 = 0

𝑩 =  36 2,4  + 20 9 +  20 4,5

13,5 = 𝟐𝟔,𝟒  𝒌𝑵   ↑

𝐹! = 0:                  − 36+  𝐾! = 0

 𝑲𝒙 =  𝟑𝟔  𝒌𝑵   →

𝐹! = 0:                  26,4− 20− 20  +  𝐾! = 0

4,5!!!

!!

!!

4,5!!! 4,5!!!

!! !!

!!

B !

20!!"! 20!!"!

2,4!!! !!

36!!"!

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΣ = − =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΣ = + + =

380 N or 380 Nx x

C∴ = − =C

( )0: 0.8 300 N 0y y

F CΣ = + =

N 240or N 240 =−=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

−−=⎟⎟

⎞⎜⎜⎝

⎛= −−

276.32380

240tantan

11

x

y

C

or 449 N=C 32.3°▹

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΣ = − =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΣ = + + =

380 N or 380 Nx x

C∴ = − =C

( )0: 0.8 300 N 0y y

F CΣ = + =

N 240or N 240 =−=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

−−=⎟⎟

⎞⎜⎜⎝

⎛= −−

276.32380

240tantan

11

x

y

C

or 449 N=C 32.3°▹

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΣ = − =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΣ = + + =

380 N or 380 Nx x

C∴ = − =C

( )0: 0.8 300 N 0y y

F CΣ = + =

N 240or N 240 =−=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

−−=⎟⎟

⎞⎜⎜⎝

⎛= −−

276.32380

240tantan

11

x

y

C

or 449 N=C 32.3°▹

Page 2: Bryan

 𝑲𝒚 = 40− 26,4 = 𝟏𝟑,𝟔  𝒌𝑵   ↑

Al calcular el valor en cada componente de las reacciones, seccionara la armadura en los elementos AD, CD y CE:

Aplicando de nuevo las ecuaciones de equilibrio obtenemos:

𝑀! = 0:          36 1,2 − 26,4 2,25 − 𝐹!" 1,2 = 0

𝑭𝑨𝑫 =  36 1,2 − 26,4 2,25

1,2 = −𝟏𝟑,𝟓  𝒌𝑵  

𝐹!" = 13,5  𝑘𝑁            𝑪   𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒐    𝒆𝒏  𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒊𝒐𝒏

𝑀! = 0:                    817 𝐹!" 4,5 = 0

𝐹!" =  0

𝑀! = 0:                    1517 𝐹!" 2,4  − 26,4 4,5 = 0

17!

!! !!

36!!"!

1,2!!!

!!"

!!

!! 1,2!!!

4,5!!!

!!"

!!" 26,4!!"!

2,25!!! !!

8!

17! 8!

15! 15!

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΣ = − =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΣ = + + =

380 N or 380 Nx x

C∴ = − =C

( )0: 0.8 300 N 0y y

F CΣ = + =

N 240or N 240 =−=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

−−=⎟⎟

⎞⎜⎜⎝

⎛= −−

276.32380

240tantan

11

x

y

C

or 449 N=C 32.3°▹

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΣ = − =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΣ = + + =

380 N or 380 Nx x

C∴ = − =C

( )0: 0.8 300 N 0y y

F CΣ = + =

N 240or N 240 =−=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

−−=⎟⎟

⎞⎜⎜⎝

⎛= −−

276.32380

240tantan

11

x

y

C

or 449 N=C 32.3°▹

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΣ = − =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΣ = + + =

380 N or 380 Nx x

C∴ = − =C

( )0: 0.8 300 N 0y y

F CΣ = + =

N 240or N 240 =−=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

−−=⎟⎟

⎞⎜⎜⎝

⎛= −−

276.32380

240tantan

11

x

y

C

or 449 N=C 32.3°▹

Page 3: Bryan

𝑭𝑪𝑬 =  17 26,4 4,5

15 2,4 = 𝟓𝟔,𝟏  𝒌𝑵  

𝑭𝑪𝑬 =  𝟓𝟔,𝟏  𝒌𝑵            𝑻   𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒐  𝒆𝒏  𝒕𝒓𝒂𝒄𝒄𝒊𝒐𝒏