Ch 15 Antenas Mimo Uni

download Ch 15 Antenas Mimo Uni

of 11

Transcript of Ch 15 Antenas Mimo Uni

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    1/11

    1

    UNI FIEE EE-525M Antenas 2011-1

    Captulo 15

    EE525M

    UNI

    Ing. Marcial Antonio Lpez Tafur [email protected]

    Antenas MIMO

    Aspiraciones

    Enlaces de comunicaciones inalmbricos con velocidades detransmisin cercanas a 1 Gigabit/segundo.

    Proveer enlaces de alta velocidad que puedan ofrecer unabuena Calidad de Servicio (Quality of Service - QoS) (que sercuantificada matemticamente)

    Aspiraciones (Matematicas) deldiseador del sistema.

    Altas velocidadesde datos

    Calidad

    AlcanzarCapacidad del canal (C)

    Minimizar la Probabilidad deError (Pe)

    Temas de la vida real

    Minimizar complejidad/costo deimplementacin del sistema

    propuesto.Minimizar la potencia de

    transmisin requeridaMinimizar en ancho de banda

    (espectro de frecuencia)usado

    Configuraciones de antenas

    Single-Input-Single-Output (SISO) antenna system

    Tericamente, la barrera del 1Gbps puede ser alcanzadausando esta configuracin si usted est autorizado a usarmucha potencia y tanto ancho de banda como necesite!Extensivas pruebas han sido hechas sobre SISO bajorestricciones de potencia y BW. Una combinacin de tcnicasde modulacin inteligente, codificacin y multiplexacin han

    dado buenos resultados pero lejos de la barrera del 1Gbps.

    canalFlujo de datosdel usuario

    Flujo de datosdel usuario

    Configuracin de antenas MIMO

    Flujo de datosdel usuario

    .

    .

    1

    2

    MT

    .

    .

    .

    1

    2

    MR

    .

    .

    .

    .

    .

    canal

    Usar multiples antenas transmisoras y multiples antenasreceptoras para un solo usuario.

    Este sistema promete enormes velocidades para los datos!

    Flujo de datosdel usuario

    6

    El Concepto de MIMO

    MIMO:Multiple Input/Multiple OutputConsiste en equipar tanto el extremotransmisor como el receptor con mltiplesantenas y procesar adecuadamente lassenales

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    2/11

    2

    UNI FIEE EE-525M Antenas 2011-1

    7

    MIMO

    Diversidad de antenasen recepcin

    Mltiples antenasen transmisin y en recepcin

    8

    9 10

    11 12

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    3/11

    3

    UNI FIEE EE-525M Antenas 2011-1

    13 14

    15 16

    MIMOSe procesan las seales que se van a aplicar a las

    diferentes antenas tanto en el extremo transmisor comoen el receptor, de tal modo que la calidad, detrminadapor el BER, o la tasa de transmisin, se pueden mejorar

    El desvanecimiento selectivo producto de mltiplestrayectorias se puede contrarrestar, utilizandocodificacin espacial-temporal

    El estndar 802.16e incluye MIMO, lo mismo que el802.11n, pendiente de aprobacin

    17

    MIMO, SMART Antenna, ST CodingEl concepto fundamental es el de beamforming , es decir,la modificacin del haz de RF por medios electrnicos, que permiteincrementar la relacin S/N al enfocar la energa en la direccindeseada, una evolucin de los arreglos de antenas de vieja data.

    Estas antenas inteligentes tambin permite minimizar la radiacin en

    otras direcciones, con lo que se puede disminuir la interferencia y hastautilizarlo como tcnica de multiplexaje espacial

    Unidades de datos

    Will use the following terms loosely andinterchangeably,

    Bits (lowest level): +1 and -1 Symbols (intermediate): A group of bits Packets (highest level): Lots and lots of

    symbols

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    4/11

    4

    UNI FIEE EE-525M Antenas 2011-1

    Shannons Capacity (C) Given a unit of BW (Hz), the max error-free transmission rate is

    C = log 2(1+SNR) bits/s/Hz Define

    R: data rate (bits/symbol)RS: symbol rate (symbols/second)

    w: allotted BW (Hz) Spectral Efficiency is defined as the number of bits transmitted per

    second per HzR x R S bits/s/Hz

    WAs a result of filtering/signal reconstruction requirements, R S W.Hence Spectral Efficiency = R if R S = W

    If I transmit data at a rate of R C, I can achieve an arbitrarily low P e

    Eficiencia espectral

    Spectral efficiencies of somewidely used modulationschemes

    The Whole point: Given an acceptable Pe , realistic power andBW limits, MIMO Systems using smart modulation schemesprovide much higher spectral efficiencies than traditional SISO

    Esquema b/s/Hz

    BPSK 1

    QPSK 2

    16-QAM 4

    64-QAM 6

    Modelo del sistema MIMO

    y = Hs + n

    User data stream

    .

    .

    User data stream

    .

    .

    .

    .Channel

    Matrix H

    s1

    s2

    sM

    s

    y1

    y2

    yM

    yTransmitted vector Received vector

    .

    .

    h11

    h12

    Where H =

    h11 h21 ..hM1h12 h22 ..

    hM2h1M h2M ..hMM

    . . .. .

    MT

    MR

    hij is a Complex Gaussianrandom variable that modelsfading gain between the ithtransmit and jth receiveantenna

    Tipos de canales

    Desvanecimiento

    Fading refers to changes in signal amplitude and phase causedby the channel as it makes its way to the receiver

    Define T spread to be the time at which the last reflection arrivesand T sym to be the symbol time period

    Time-spread of signal

    Frequency-selective Frequency-flat

    Tsym

    Tspread

    time

    freq

    1/TsymOccurs for wideband signals (smallTsym)

    TOUGH TO DEAL IT!

    Tsym

    Tspread

    time

    freq

    1/T symOccurs for narrowband signals (large Tsym)

    EASIER! Fading gain is complex Gaussian

    Multipaths NOT resolvable

    Matriz de canal H In addition, assume slow fading MIMO Channel Response

    Taking into account slow fading, the MIMO channel impulse response is constructed as,

    Time-spread

    Channel Time-variance

    Because of flat fading, it becomes,

    a and b are transmit andreceive array factor vectorsrespectively. S is thecomplex gain that isdependant on direction anddelay. g(t) is the transmitand receive pulse shapingimpulse response

    With suitable choices of array geometry and antenna element patterns,H( ) = H which is an MR x MT matrix with complex Gaussian i. i. d random variables

    Accurate for NLOS rich-scattering environments, with sufficient antenna spacing attransmitter and receiver with all elements identically polarized

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    5/11

    5

    UNI FIEE EE-525M Antenas 2011-1

    Capacidad de los canalesMIMO

    y = Hs + n Let the transmitted vector s be a random vector to be very general and n is normalized

    noise. Let the total transmitted power available per symbol period be P. Then,

    C = log 2 (IM + HQH H) b/s/Hzwhere Q = E{ss H} a nd trace(Q) < P according to our power constraint

    Consider specific case when we have users transmitting at equal power over the channeland the users are uncorrelated (no feedback available). Then,

    CEP = log 2 [IM + (P/M T)HHH] b/s/HzTelatar showed that this is the optimal choice for blind transmission

    Foschini and Telatar both demonstrated that as M T and M R grow,

    CEP = min (M T,MR) log 2 (P/MT) + constant b/s/HzNote: When feedback is available, the Waterfilling solution is yields maximum capacity but converges to equal power capacity athigh SNRs

    Capacidad (cont) The capacity expression presented was over one realization of the channel.

    Capacity is a random variable and has to be averaged over infinite realizationsto obtain the true ergodic capacity. Outage capacity is another metric that isused to capture this

    So MIMO promises enormous rates theoretically! Can we exploit thispractically?

    Criterios de diseo MIMO

    MIMO Systems can provide two types of gain

    Spatial Multiplexing Gain Diversity Gain

    Maximize transmission rate(optimistic approach)

    Use rich scattering/fading toyour advantage

    Minimize Pe (conservativeapproach)

    Go for Reliability / QoS etc

    Combat fading

    System designs are based on trying to achieve either goal or a

    little of both

    If only I could have both! As expected, there is a tradeoff

    Diversidad Each pair of transmit-receive antennas provides a signal path

    from transmitter to receiver. By sending the SAME informationthrough different paths, multiple independently-faded replicasof the data symbol can be obtained at the receiver end. Hence,more reliable reception is achieved

    A diversity gain d implies that in the high SNR region, my P edecays at a rate of 1/SNR d as opposed to 1/SNR for a SISOsystem

    The maximal diversity gain d max is the total number ofindependent signal paths that exist between the transmitter andreceiver

    For an (M R,MT) system, the total number of signal paths is M RMT

    1 d d max = MRMT The higher my diversity gain, the lower my P e

    Multiplexacin espacial

    y = Hs + n y = Ds + n (through SVD on H)where D is a diagonal matrix that contains the eigenvalues of HH H

    Viewing the MIMO received vector in a different but equivalentway,

    CEP = log 2 [IM + (P/M T)DDH] = log 2 [1 + (P/M T) i] b/s/Hz

    Equivalent form tells us that an (M T,MR) MIMO channel opens upm = min (M T,MR) independent SISO channels between thetransmitter and the receiver

    So, intuitively, I can send a maximum of m different informationsymbols over the channel at any given time

    =

    m

    i 1

    Sistemas prcticos

    Redundancy in time

    Coding rate = rc Space- time redundancy over Tsymbol periods

    Spatial multiplexing gain = rs

    1

    2

    MT

    Channelcoding

    Symbolmapping

    Space-Time

    Coding

    .

    .

    R bits/symbol

    rs : number of differentsymbols N transmittedin T symbol periods

    rs = N/T

    Spectral efficiency = (R*rc info bits/symbol)(rs)(Rs symbols/sec)

    w

    = Rrcrs bits/s/Hz assuming Rs = w

    rs is the parameter that we are concerned about: 0 rs MT

    ** If rs = MT, we are in spatial multiplexing mode (maxtransmission rate)

    **If rs 1, we are in diversity mode

    Non-redundantportion of symbols

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    6/11

    6

    UNI FIEE EE-525M Antenas 2011-1

    V-BLAST Multiplexacin espacial(Vertical Bell Labs Layered Space-Time Architecture)

    This is the only architecture that goes all out for maximum rate. Hope thechannel helps me out by splitting my info streams!

    .

    .

    s1

    s2

    sM

    s

    User datastream .

    .

    User datastream.

    .

    y1

    y2

    yM

    y

    .

    .

    H V-BLASTProcessing

    Split data into MT streams maps to symbols sendAssume receiver knows HUses old technique of ordered successive cancellation torecover signalsSensitive to estimation errors in Hrs = MT because in one symbol period, you are sending MTdifferent symbols

    MT MR

    V-BLAST(Resultados experimentales)

    The prototype in an indoor environment was operated at a carrier frequency of1.9 GHz, and a symbol rate of 24.3 ksymbols/sec, in a bandwidth of 30 kHz withMT = 8 and M R = 12

    Results shown on Block-Error-Rate Vs average SNR (at one received antennaelement); Block = 100 symbols ; 20 symbols for training

    Each of the eight substreams utilized uncoded16-QAM, i.e. 4 b/symb/trans

    Spec eff = (8 xmtr) ( 4 b/sym/xmtr )(24.3 ksym/s)30 kHz

    = 25. 9 bps/Hz

    In 30 kHz of bandwidth, I can push across 621Kbps of data!! Wirelessspectral efficiencies of this magnitude are unprecedented, and arefurthermore unattainable using traditional techniques

    Receptores alternados

    Can replace OSUC by other front-ends; MMSE, SUC,ML for instance

    OSUC

    ML

    D-BLAST un poco de ambos(Diagonal Bell Labs Layered Space-Time Architecture)

    In D-BLAST, the input data stream is divided into sub streams whichare coded, each of which is transmitted on different antennas timeslots in a diagonal fashion

    For example, in a (2,2) system

    receiver first estimates x2 (1) and thenestimates x1 (1) by treating x2 (1) asinterference and nulling it out

    The estimates of x2 (1) and x1 (1) are fed to ajoint decoder to decode the first substream

    After decoding the first substream, the receiver cancelsthe contribution of this substream from the received signalsand starts to decode the next substream, etc.

    Here, an overhead is required to start the detection process;corresponding to the 0 symbol in the above example

    Receiver complexity high

    MT MR

    Diversidad Esquema de Alamouti

    Transmission/reception scheme easy to implement Space diversity because of antenna transmission. Time diversity

    because of transmission over 2 symbol periods Consider (2, M R) system

    Receiver uses combining and ML detectionrs = 1

    V-BLAST SUC

    Alamouti

    If you are working with a (2,2)system, stick with Alamouti!

    Widely used scheme: CDMA2000, WCDMA and IEEE 802.16-2004 OFDM-256

    Comparaciones

    Esquema EficienciaEspectral P eImplementacinComplejidad

    V-BLAST ALTA ALTA BAJA

    D-BLAST MODERADA MODERADA ALTA

    ALAMOUTI BAJA BAJA BAJA

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    7/11

    7

    UNI FIEE EE-525M Antenas 2011-1

    Orthogonal Frequency DivisionMultiplexing (OFDM)

    As the data rate increases in a multipathenvironment, the interference goes from flat fadingto frequency selective (last reflected componentarrives after symbol period). This results in heavydegradation

    Most popular solution to compensate for ISI:equalizers

    As we move to higher data rates (i.e.> 1 Mbps),equalizer complexity grows to level of complexitywhere the channel changes before you cancompensate for it!

    Alternate solution: Multi-carrier Modulation (MCM)where channel is broken up into subbands such thatthe fading over each subchannel becomes flat thuseliminating the problem of ISI

    Multi-carrier Modulation

    FDMA OFDM

    Efficiencia espectral del OFDM

    Rs symbols/s

    Rs/ 3 symbols/s

    The spectral efficiency of an OFDM-(PSK/ASK) system is same as comparedto using the (PSK/ASK) system alone

    Spec eff = log 2 M bits/s/Hz

    However, you have successfullyconverted an ugly channel into a channelthat you can use

    easy to implement

    Used in IEEE 802.11A, .11G,HiperLAN, IEEE 802.16

    MIMO-OFDM OFDM extends directly to MIMO channels with the IFFT/FFT and CP operations

    being performed at each of the transmit and receive antennas. MIMO-OFDMdecouples the frequency-selective MIMO channel into a set of parallel MIMOchannels with the inputoutput relation for the ith (i = 0, 2,,L-1) tone,

    yi = H is i + n i i = 0, 2,, L-1

    IEEE 802.11 MAC (DCF Mode) As a result of the CSMA/CA with RTS/CT S MAC protocol, two issues

    arise-the unfairness problem-extreme throughput degradation (ETD)

    Throughtput T2 3 > Throughtput T0 1

    Unfairness

    Both throughtput T2 3 and throughtputT0 1 are equally affected

    ETD

    MIMO-Based Solutions

    Use multiple transmit and receive antennas Again, MIMO provides

    -increase in rate-decrease in P e (as a result of diversity, interference cancellation

    abilities etc)Simply use 802.11 with MT=MR=2.VBLAST-ZF is an optionTwo data streams transmittedfrom node 0 to 1 instead of 1.Increases transmission rate.Increases overall capacity ofnetworkDoes not address unfairness andETD

    MIMO-Based SolutionsMIMA-MAC Protocol

    Mitigating Interference using Multiple Antennas (MIMA) MAC protocol[Tang, Park, Nettles, Texas at Austin, submitted to Proc. ACM Mobicom , Philadelphia, PA, USA on Sep. 26 Oct. 1, 2004]

    Each transmitter views it as a (1,2)MIMO system.

    Unfairness (SDT): node 1concentrates on node 0 andsupresses node 2. Increase inthroughput Tro 1

    ETD (ODT): node 1 concentrates onnode 0 and supresses node 3 stream.node 2 concentrates on node 3 andsupresses node 0 stream. Increase inthroughput Tro 1 and Tr3 2

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    8/11

    8

    UNI FIEE EE-525M Antenas 2011-1

    Resultados de la simulacin

    SDT

    Unfairness

    ODT

    Throughputdegradation 44

    UMA

    45

    802.16e Tasas de hasta 63 Mb/s Dl,28 Mb/s Ul por sector en

    un canal de 10 MHz, gracias al empleo de MIMO ysistemas de codificacin y modulacin avanzados.

    QoS imbuida, adjudicacin de recursos de tiempo,frecuencia y espacio en base a cada trama

    Canales de ancho de banda variable desde 1,25MHzhasta 20 MHz, en las bandas 2,3 GHz, 2,5 GHz y 3,5GHz, gracias al empleo de Scalable OFDMA(SOFDMA)

    Seguridad utilizando EAP, autenticacin yencriptacin

    Movilidad con latencias inferiores a 50ms Utiliza TDD inicialmente, luego FDD y HD FDD

    46

    WiMAX Fijo

    Basado en 802.16 d, estndarcompletado en 2004. Tiene buenalcance, puede transmitir an con lalnea de vista obstruida.

    Las pruebas de interoperabilidad sehicieron a la frecuencia de 3,5 GHz,pero tambin existen equipos enotras bandas, como la de 5 GHz

    No es muy atractivo en pasesdesarrollados donde enfrentanumerosas competidores y unmercado saturado.

    47

    WiMAX mvil

    Basado en el estndar 802.16 e, aprobado en dic.2005, permite movilidad hasta 80 km/h, pero adistancias muy reducidas del orden de unos 3 km.Inicialmente en las bandas de 2,3 y 2,5 GHz

    Samsung, est demostrando la tecnologa WiBro enTurn en las olimpiadas de invierno, muchas otrasempresas estn apuntando a un mercado muyinteresante en pases desarrollados

    Texas Instruments anunci un DSP de 1 GHz basadoen 802.16e

    48

    WiMAX mvil

    Airspan anunci un dispositivo USB basado en elestndar 802.16 e,. Inicialmente en las bandas de 2,3y 2,5 GHz

    Samsung, est demostrando la tecnologa WiBro enTurn en las olimpiadas de invierno, muchas otrasempresas estn apuntando a un mercado muyinteresante en pases desarrollados

    Texas Instruments anunci un DSP de 1 GHz basadoen 802.16e

    Alcatel firm convenio con Samsung para WiBromundial

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    9/11

    9

    UNI FIEE EE-525M Antenas 2011-1

    49

    WiMAX Movilidad

    Velocidades: ~ 75 km / h Roaming entre estaciones bases Enrutamiento entre estaciones de suscritor

    50

    OFDM/TDMA vs. OFDMA

    OFDM/TDMA en 16dUn usuario a la vezMultiacceso con subcanalizacines opcional

    Viable slo para fijo

    frecuencia

    p o t e n c

    i a

    Ruido

    Seal

    OFDMA en 16eMultiacceso consubacanalizaci es estndarIntercambio entre S/N yvelocidad Viable para CPE interiores,porttiles o mviles

    frecuencia

    p o t e n c

    i a

    Ruido

    Subcanalizacin de alta potenciaPero se desperdicia espectro

    Espectro desperdiciado

    S/N baja yalcancelimitado

    Multiacceso entiempo y

    frecuenciapermite altacapacidad y

    gran alcance

    51

    Parmetros de S-OFDMA

    52

    Incompatibilidad

    Las versiones fija y mvil de WiMax no soncompatibles porque utilizan esquemas deacceso al medio diferentes, aunque ambosestn basados en OFDM

    802.16d usa TDMA 802.16e usa OFDMA Se definen diferentes perfiles, que incluyen

    bandas de frecuencia, mtodo de duplexing,etc.

    No se descarta que algn fabricante ofrezcasistemas compatibles

    6/29/2011 Pietrosemoli 53

    WiBro es un estndar coreanoalineado con 802.16e

    Demostrado enAgosto 2005.permite handoffa alta velocidadTres operadoresde corea pagaron100 M$ c/u por el uso

    del espectro en 2,3 GHzdurante 7 aos.En Venezuela seInstalar a finales de2006

    54

    Adjudicacin de Frecuencias paraWiBro

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    10/11

    10

    UNI FIEE EE-525M Antenas 2011-1

    55

    Red basada en IP

    56

    IEEE 802.20 La misin de IEEE 802.20 es desarrollar las

    especificaciones de una interfaz de aire basada enpaquetes optimizada para el transporte de serviciosbasados en IP.

    Especificar las capas fsicas y de control de acceso almedio en frecuencias inferiores a 3,5 GHz con tasas detransmisin efectivas por usuario de hasta 1 Mb/s avelocidades de hasta 250 km/h.

    La eficiencia espectral y el nmero de usuarios activossimultneos sern significativamente mayores que losofrecidos por los sistemas celulares existentes.

    57

    8 0 2 . 1 1 8 0 2 . 1 1 8 0 2 . 1 1 8 0 2 . 1 1 M M D S M M D S M M D S M M D S 8 0 2 . 1 6 d 8 0 2 . 1 6 d 8 0 2 . 1 6 d 8 0 2 . 1 6 d 8 0 2 . 1 6 e 8 0 2 . 1 6 e 8 0 2 . 1 6 e 8 0 2 . 1 6 e

    C D M A 1 x / 1 x E V C D M A 1 x / 1 x E V C D M A 1 x / 1 x E V C D M A 1 x / 1 x E V - -- -

    D O D O D O D O

    W C D M A W C D M A W C D M A W C D M A

    a p l i c a c i a p l i c a c i a p l i c a c i a p l i c a c i

    n nn n

    L A N : R e d e s

    l o c a l e s

    f i j a s

    M A N f i j a

    p a r a d a t o s y

    V o I P ;

    M A N f i j a p a r a

    d a t o s y V o I P ;

    M A N m v i l p a r a

    v o z y d a t o s

    W A N a l t a

    v e l o c i d a d , v o z

    y d a t o s

    W A N a l t a

    v e l o c i d a d , v o z

    y d a t o s

    a l c a n c e a l c a n c e a l c a n c e a l c a n c e

    < 1 0 0 m N L O S

    1 0 k m L O S

    1 0 K m N L O S

    4 0 K m L O S

    P T P < 5 0 K m L O S

    P M P < 1 0 K m N L O S

    3 k m N L O S

    8 0 0 m ~ 5 0 K m

    N L O S

    5 0 0 m ~ 1 0 K m

    N L O S

    e s p e c t r o e s p e c t r o e s p e c t r o e s p e c t r o

    T D D

    2 . 4 / 5 . 8 G H z

    B a n d a l i b r e

    F D D / T D D

    2 . 5 / 3 . 5 / 5 . 8 /

    1 0 . 5 G H z

    F D D / T D D /

    2 - 1 1 G H z

    a m b a s

    F D D / T D D /

    2 - 6 G H z

    a m b a s

    F D D

    4 5 0 / 8 0 0 M / 1 . 9 / 2 . 1

    G H z

    r e g u l a d a

    F D D

    2 . 1 G H z

    r e g u l a d a

    B W B W B W B W 2 0 M H z

    3 . 5 / 7 M H z 1 . 5 - 2 0 M H z

    1 . 5 - 5 M H z 1 . 2 5 M H z 5 M H z

    T a s a T a s a T a s a T a s a

    5 4 M b p s

    ( C a n a l 2 0 M H z )

    < 7 5 M b p s

    2 0 M H z

    < 7 5 M b p s

    2 0 M H z

    < 1 5 M b p s

    ( 5 M H z )

    < 2 . 4 M / 1 5 3 k b p s

    d o w n l i n k / u p l i n k

    < 1 4 . 4 M / 2 M b p s

    ( d o w n l i n k / u p l i n k )

    E s t n d a r E s t n d a r E s t n d a r E s t n d a r

    E s t n d a r

    G l o b a l ,

    T e r m i n a l e s

    m u y

    e c o n m i c o s

    N o

    e s t n d a r

    C o s t o s o

    E s t n d a r c o n

    d i f e r e n t e s

    p e r f i l e s ,

    W i M a x

    E s t n d a r

    a p r o b a d o e n 2 0 0 5

    c o n d i f e r e n t e s

    p e r f i l e s , W i M a x

    E s t n d a r m a d u r o ,

    t e r m i n a l e s m u y

    e c o n m i c o s

    E s t n d a r m a d u r o ,

    t e r m i n a l e s

    e c o n m i c o s

    Comparacin de las tecnologas inalmbricas

    6/29/2011 Pietrosemoli 58

    WWAN

  • 8/3/2019 Ch 15 Antenas Mimo Uni

    11/11

    11

    UNI FIEE EE-525M Antenas 2011-1

    61

    Estndares IEEE802.16 10 - 66 GHz, punto a punto

    Lnea de vista,802.16a Extensin a 2-11 GHz, NLOS

    (Non line of sight), Punto a Multipunto802.16d Actualizacin de 802.16 y 802.16aPerfiles

    802.16e Extensin para movilidad y roaming

    802.21 Handoff independiente del medio ( 802.3,802.15, 802.11, 802.16 )

    802.20 Mobile Broadband Wireless Access MBWA Compite con tecnologas celulares Velocidades hasta 250 km/h An sin aprobar

    62

    Estndares 802.16

    802.16 802.16d 802.16e

    Lnea de vista Casi l nea de vista(NLOS) Casi lnea de vista(NLOS)10 66 GHz 2 11 GHz 2 6 GHz32 134 Mbps 75 Mbps 15 Mbps2 5 kilmetros 5 8 km

    Mx. 50 km2 5 km

    Fijo Fijo Movilidadmetropolitana,Roaming

    63

    Comparacin 802.11 802.16

    Rango Optimizado para 100m Hasta 50 km

    Bandas defrecuencia

    Sin licencia, canales fijosde 20 MHz

    Con o sin licencia,Canales de ancho variable

    Eficienciaespectral 2,7 bps / Hz 5 bps / Hz

    Acceso alMedio

    CSMA/CA (Aleatorio)TDD

    Por solicitud (determinstico)TDD o FDD

    Calidad deServicio

    Pendiente con el estndar802.11 e

    Cuatro tipos de QoS, buen soportepara voz y video interactivo

    Seguridad Limitada, WEP, WAPMejorada, 3DES, AES

    EscalabilidadReduccin geomtrica delrendimiento versus nmerode usuarios

    Soporte de cientos de usuarios porcanal RF

    6/29/2011 Pietrosemoli 64

    Ejemplo de 802.20: Flash OFDM de Flarion

    Arquitectura distribuida totalmente IP Soporta QoS Utiliza dos canales apareados de 1,25 MHz Picos de 3,2 Mb/s DL, 900 kb/s UL Latencia de 50 ms 31 conversaciones VoIP simultneas, 126 usuarios

    de datos 250 km/h, handoff (traspaso) continuo de voz y

    datos

    Sumario / Conclusiones

    MIMO Systems are getting us closer to the1Gbps landmark (aspiration 1)

    At the same time, they provide reliablecommunications (aspiration 2)

    Different architectures available for use Developing efficient network protocols for

    a MIMO PHY layer is an area of openresearch

    66

    Muchas gracias por su atencin

    UNI FIEELima Per