Componentes de Acero y Digrama Hierro Carbono y

8
Aceros Los aceros son aleaciones férreas con un contenido máximo de carbono del 2%, el cual puede estar como aleante de inserción en la ferrita y austenita y formando carburo de hierro. Algunas aleaciones no son ferromagnéticas . Éste puede tener otros aleantes e impurezas . Dependiendo de su contenido en carbono se clasifican en: El carbón es el elemento responsable de dar la dureza y alta resistencia del acero. Acero bajo en carbono: menos del 0,25% de C en peso. Son blandos pero dúctiles. Se utilizan en vehículos , tuberías , elementos estructurales , etcétera. También existen los aceros de alta resistencia y baja aleación, que contienen otros elementos aleados hasta un 10% en peso; tienen una mayor resistencia mecánica y pueden ser trabajados fácilmente. Acero medio en carbono: entre 0,25% y 0,6% de C en peso. Para mejorar sus propiedades son tratados térmicamente. Son más resistentes que los aceros bajos en carbono, pero menos dúctiles ; se emplean en piezas de ingeniería que requieren una alta resistencia mecánica y al desgaste. Acero alto en carbono: entre 0,60% y 1,4% de C en peso. Son aún más resistentes, pero también menos dúctiles. Se añaden otros elementos para que formen carburos, por ejemplo, con wolframio se forma el carburo de wolframio, WC; estos carburos son muy duros. Estos aceros se emplean principalmente en herramientas . Aceros aleados: Con los aceros no aleados, o al carbono, es imposible satisfacer las demandas de la industria actual. Para conseguir determinadas características de resiliencia , resistencia al desgaste, dureza y resistencia a determinadas temperaturas deberemos recurrir a estos. Mediante la acción de uno o varios elementos de aleación en porcentajes adecuados se introducen modificaciones químicas y estructurales que afectan a la temlabilidad, características mecánicas, resistencia a oxidación y otras propiedades. La clasificación más técnica y correcta para los aceros al carbono (sin alear) según su contenido en carbono: Los aceros hipoeutectoides, cuyo contenido en carbono oscila entre 0.02% y 0,8%. Los aceros eutectoides cuyo contenido en carbono es de 0,8%. Los aceros hipereutectoides con contenidos en carbono de 0,8% a 2%.

Transcript of Componentes de Acero y Digrama Hierro Carbono y

Page 1: Componentes de Acero y Digrama Hierro Carbono y

Aceros

Los aceros son aleaciones férreas con un contenido máximo de carbono del 2%, el cual puede estar como aleante de inserción en la ferrita y austenita y formando carburo de hierro. Algunas aleaciones no son ferromagnéticas. Éste puede tener otros aleantes e impurezas.

Dependiendo de su contenido en carbono se clasifican en:

El carbón es el elemento responsable de dar la dureza y alta resistencia del acero.

• Acero bajo en carbono: menos del 0,25% de C en peso. Son blandos pero dúctiles. Se utilizan en vehículos, tuberías, elementos estructurales, etcétera. También existen los aceros de alta resistencia y baja aleación, que contienen otros elementos aleados hasta un 10% en peso; tienen una mayor resistencia mecánica y pueden ser trabajados fácilmente.

• Acero medio en carbono: entre 0,25% y 0,6% de C en peso. Para mejorar sus propiedades son tratados térmicamente. Son más resistentes que los aceros bajos en carbono, pero menos dúctiles; se emplean en piezas de ingeniería que requieren una alta resistencia mecánica y al desgaste.

• Acero alto en carbono: entre 0,60% y 1,4% de C en peso. Son aún más resistentes, pero también menos dúctiles. Se añaden otros elementos para que formen carburos, por ejemplo, con wolframio se forma el carburo de wolframio, WC; estos carburos son muy duros. Estos aceros se emplean principalmente en herramientas.

• Aceros aleados: Con los aceros no aleados, o al carbono, es imposible satisfacer las demandas de la industria actual. Para conseguir determinadas características de resiliencia, resistencia al desgaste, dureza y resistencia a determinadas temperaturas deberemos recurrir a estos. Mediante la acción de uno o varios elementos de aleación en porcentajes adecuados se introducen modificaciones químicas y estructurales que afectan a la temlabilidad, características mecánicas, resistencia a oxidación y otras propiedades.

La clasificación más técnica y correcta para los aceros al carbono (sin alear) según su contenido en carbono:

• Los aceros hipoeutectoides, cuyo contenido en carbono oscila entre 0.02% y 0,8%.

• Los aceros eutectoides cuyo contenido en carbono es de 0,8%. • Los aceros hipereutectoides con contenidos en carbono de 0,8% a 2%.

Page 2: Componentes de Acero y Digrama Hierro Carbono y

MICROESTRUCTURAS DE LOS ACEROS

Los constituyentes metálicos que pueden presentarse en los aceros al carbono son: ferrita, cementita, perlita, sorbita, troostita, martensita, bainita, y rara vez austenita, aunque nunca como único constituyente. También pueden estar presentes constituyentes no metálicos como óxidos, silicatos, sulfuros y aluminatos.

El análisis de las microestructuras de los aceros al carbono recocidos y fundiciones blancas deben realizarse en base al diagrama metaestable Hierro-carburo de hierro o Cementita.

Page 3: Componentes de Acero y Digrama Hierro Carbono y
Page 4: Componentes de Acero y Digrama Hierro Carbono y

FERRITA:

Es una solución sólida de carbono en hierro alfa, su solubilidad a la temperatura ambiente es del orden de 0.008% de carbono, por esto se considera como hierro puro, la máxima solubilidad de carbono en el hierro alfa es de 0,02% a 723 °C.La ferrita es la fase más blanda y dúctil de los aceros, cristaliza en la red cúbica centrada en el cuerpo, tiene una dureza de 90 Brinell y una resistencia a la tracción de 28 kg/mm2, llegando hasta un alargamiento del 40%.

CEMENTITA:

Es el carburo de hierro de fórmula Fe3C, contiene 6.67 %C y 93.33 % de hierro, es el microconstituyente más duro y frágil de los aceros al carbono, alcanzando una dureza Brinell de 700 (68 Rc) y cristaliza en la red ortorómbica.

PERLITA:

Es el microconstituyente eutectoide formado por capas alternadas de ferrita y cementita, compuesta por el 88 % de ferrita y 12 % de cementita, contiene el 0.8 %C. Tiene una dureza de 250 Brinell, resistencia a la tracción de 80 kg/mm2 y un alargamiento del 15%; el nombre de perlita se debe a las irisaciones que adquiere al iluminarla, parecidas a las perlas. La perlita aparece en general en el enfriamiento lento de la austenita y por la transformación isotérmica de la austenita en el rango de 650 a 723°C.

AUSTENITA:

Es el constituyente más denso de los aceros y está formado por una solución sólida por inserción de carbono en hierro gamma. La cantidad de carbono disuelto, varía de 0.8 al 2 % C que es la máxima solubilidad a la temperatura de 1130 °C. La austenita no es estable a la temperatura ambiente pero existen algunos aceros al cromo-níquel denominados austeníticos cuya estructura es austenita a temperatura ambiente.

La austenita está formada por cristales cúbicos centrados en las caras, con una dureza de 300 Brinell, una resistencia a la tracción de 100 kg/mm2 y un alargamiento del 30 %, no es magnética

MARTENSITA:

Es el constituyente de los aceros templados, está conformado por una solución sólida sobresaturada de carbono o carburo de hierro en ferrita y se obtiene por enfriamiento rápido de los aceros desde su estado austenítico a altas temperaturas.

El contenido de carbono suele variar desde muy poco carbono hasta el 1% de carbono, sus propiedades físicas varían con su contenido en carbono hasta un máximo de 0.7 %C.

Page 5: Componentes de Acero y Digrama Hierro Carbono y

Aceros inoxidables: uno de los inconvenientes del hierro es que se oxida con facilidad. Añadiendo un 12% de cromo se considera acero inoxidable, debido a que este aleante crea una capa de óxido de cromo superficial que protege al acero de la corrosión o formación de óxidos de hierro. También puede tener otro tipo de aleantes como el níquel para impedir la formación de carburos de cromo, los cuales aportan fragilidad y potencian la oxidación intergranular.

El uso más extenso del hierro es para la obtención de aceros estructurales; también se producen grandes cantidades de hierro fundido y de hierro forjado. Entre otros usos del hierro y de sus compuestos se tienen la fabricación de imanes, tintes (tintas, papel para heliográficas, pigmentos pulidores) y abrasivos (colcótar).

Fundiciones

Cuando el contenido en carbono es superior a un 2.11% en peso , la aleación se denomina fundición. Este carbono puede encontrarse disuelto, formando cementita o en forma libre. Son muy duras y frágiles. Hay distintos tipos de fundiciones:

• Gris • Blanca • Atruchada • Maleable americana • Maleable europea • Esferoidal o dúctil

Sus características varían de un tipo a otra; según el tipo se utilizan para distintas aplicaciones: en motores, válvulas, engranajes, etc.

Por otra parte, los óxidos de hierro tienen variadas aplicaciones: en pinturas, obtención de hierro, la magnetita (Fe3O4) y el óxido de hierro III en aplicaciones magnéticas, etc. El Fe (OH)3, se utiliza en radioquímica para concentrar los actínidos mediante co-precipitación.

ELEMENTOS QUE COMFORMAN EL ACERO:

Más del 90% de todos los aceros son aceros al carbono. Están formados principalmente por hierro y carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre.

• Carbono - C : El Carbón - Carbono es el elemento de aleación mas efectivo, eficiente y de bajo costo. En aceros enfriados lentamente, el carbón forma carburo de hierro y cementita, la cual con la ferrita forma a su vez la perlita. Cuando el acero se enfría mas rápidamente, el acero al carbón muestra endurecimiento superficial. El carbón es el elemento responsable de dar la dureza y alta resistencia del acero. •

Page 6: Componentes de Acero y Digrama Hierro Carbono y

• Aluminio - Al : EL Aluminio es usado principalmente como desoxidante en la elaboración de acero. El Aluminio también reduce el crecimiento del grano al formar óxidos y nitruros. Manganeso - Mn : El Manganeso es uno de los elementos fundamentales e indispensables, esta presente en casi todas las aleaciones de acero. El Manganeso es un formador de austenita, y al combinarse con el azufre previene la formación de sulfuro de hierro en los bordes del grano, altamente perjudicial durante el proceso de laminación. El Manganeso se usa para desoxidar y aumentar su capacidad de endurecimiento.

Silicio:

Este elemento aparece en todos los aceros, al igual que el manganeso, se añade intencionalmente durante el proceso de fabricación. Es un desoxidante más enérgico que el manganeso y se emplea como elemento desoxidante complementario del manganeso con objeto de evitar que aparezcan en el acero poros y defectos internos. Las adicione de silicio se hacen durante la fabricación, suelen ser relativamente pequeñas y variables ( 0,2- 0,35% de Si).

Una clase de acero para muelles muy empleadas contiene cantidades de silicio de 1,5 a 2,25% de Si. En los aceros, el silicio sirve para aumentar ligeramente la templabilidad y elevar sensiblemente el límite elástico y la resistencia a la fatiga de los aceros sin reducir su tenacidad.

Se emplean aceros de 1 a 4,5% de Si para la fabricación de chapa magnética.

Cobre:

EL cobre se suele emplear para mejorar la resistencia a la corrosión de ciertos aceros de 0,15 a 0,30% de carbono, que se usan para grandes construcciones metálicas. Se suelen emplear contenidos de cobre variables de 0,4 a 0,5 %.

Nitrógeno - N : El Nitrógeno puede agregarse a algunos tipos de acero, para promover la formación de austenita. ACEROS INOXIDABLES (bajo contenido de carbon hasta .08% 304, 316,317 Extra bajo contenido de carbon 0.03% de carbon 304L,316L,317L para evitar la sensibilizacion:(disminución de cromo en las regiones vecinas a los bordes. Cromo - Cr : El Cromo es un formador de ferrita, aumentando la profundidad del endurecimiento. Asi mismo, aumenta la resistencia a altas temperaturas y evita la corrosión. El Cromo es un elemento principal de aleación en aceros inoxidables, y debido

Page 7: Componentes de Acero y Digrama Hierro Carbono y

a su capacidad de formar carburos se utiliza en revestimientos o recubrimientos duros de gran resistencia al desgaste, como émbolos, ejes, etc. • Niquel - Ni : Es el principal formador de austenita, que aumenta la tenacidad y resistencia al impacto. El Níquel se utiliza mucho en los aceros inoxidables, para aumentar la resistencia a la corrosión. El Níquel ofrece propiedades únicas para soldar Fundición. Molibdeno - Mo : El Molibdeno tambien es un elemento habitual, ya que aumenta mucho la profundidad de endurecimiento del acero, así como su resistencia al impacto. El Molibdeno es el elemento mas efectivo para mejorar la resistencia del acero a las bajas temperaturas, reduciendo, además, la perdida de resistencia por templado. Los aceros inoxidables austeíticos contienen Molibdeno para mejorar la resistencia a la corrosión. ACEROS ALEADOS:

Se da el nombre de aceros aleados a los aceros que además de los cinco elementos: carbono, silicio, manganeso, fósforo y azufre, también contienen cantidades relativamente importantes de otros elementos como molibdeno, cromo, níquel, etc., que sirven para mejorar algunas de sus características fundamentales. También pueden considerarse aceros aleados, a los aceros con mayor proporción que los porcentajes normales de los aceros al carbono de los cuatro elementos diferente del carbono que antes hemos citado y cuyos limites superiores suelen ser los siguientes: Si = 0,50%, Mn = 0,90%, P = 0,10%, S = 0,10%

Los elementos de aleación más frecuentes que se utilizan para la fabricación de aceros aleados son: níquel, manganeso, cromo, vanadio, wolframio, molibdeno, cobalto, silicio, cobre, titanio, zirconio, plomo, selenio, niobio, aluminio y boro.

Tungsteno - W : El Tungsteno se añade para impartir gran resistencia a alta temperatura. • Vanadio - V : El Vanadio facilita la formación de grano pequeño y reduce la perdida de resistencia durante el templado, aumentando por lo tanto la capacidad de endurecimiento. • Boro - B : El Boro logra aumentar la capacidad de endurecimiento cuando el acero esta totalmente desoxidado. Una pequeña cantidad de Boro, (0.001%) tiene un efecto marcado en el endurecimiento del acero, ya que también se combina con el carbono para formar los carburos que dan al acero características de revestimiento duro. ELEMENTOS PERJUDICIALES EN EL ACERO • Azufre - S : El Azufre se considera como un elemento perjudicial en las aleaciones de acero, una impureza. Sin embargo, en ocasiones se agrega hasta 0.25% de azufre para

Page 8: Componentes de Acero y Digrama Hierro Carbono y

mejorar la maquinabilidad. Los aceros altos en azufre son difíciles de soldar pueden causar porosidad en las sodaduras. • Fósforo - P : Fósforo se considera un elemento perjudicial en los aceros, casi una impureza, al igual que el Azufre, ya que reduce la ductilidad y la resistencia al impacto. Sin embargo, en algunos tipos de aceros se agrega deliberadamente para aumentar su resistencia a la tensión y mejorar la maquinabilidad.