Control de Microestructura

10
CONTROL DE MICROESTRUCTURA 4.1 ENDURECIMIENTO POR DEFORMACION El Endurecimiento por deformación o endurecimiento en frío es el endurecimiento de un material por una deformación plástica a nivel macroscópico que tiene el efecto de incrementar la densidad de dislocaciones del material. A medida que el material se satura con nuevas dislocaciones, se crea una resistencia a la formación de nuevas dislocaciones. Esta resistencia a la formación de dislocaciones se manifiesta a nivel macroscópico como una resistencia a la deformación plástica. En cristales metálicos, es usual que las dislocaciones formen una deformación irreversible a escala microscópica, y terminan por producir una reestructuración a medida que se propagan por la estructura del cristal. A temperaturas normales las dislocaciones se acumulan en lugar de aniquilarse, y sirven como defectos puntuales u obstáculos que impiden significativamente su movimiento. Esto lleva a un incremento en la resistencia del material y a la consecuente disminución en la ductibilidad. Endurecimiento por deformación plástica en frío. El endurecimiento por deformación plástica en frío es el fenómeno por medio del cual un metal dúctil se vuelve más duro y resistente a medida es deformado plásticamente. Generalmente a este fenómeno también se le llama trabajo en frío, debido a que la deformación se da a una temperatura "fría" relativa a la temperatura de fusión absoluta del metal.

Transcript of Control de Microestructura

Page 1: Control de Microestructura

CONTROL DE MICROESTRUCTURA

4.1 ENDURECIMIENTO POR DEFORMACION

El Endurecimiento por deformación o endurecimiento en frío es el endurecimiento de un material por una deformación plástica a nivel macroscópico que tiene el efecto de incrementar la densidad de dislocaciones del material. A medida que el material se satura con nuevas dislocaciones, se crea una resistencia a la formación de nuevas dislocaciones. Esta resistencia a la formación de dislocaciones se manifiesta a nivel macroscópico como una resistencia a la deformación plástica.

En cristales metálicos, es usual que las dislocaciones formen una deformación irreversible a escala microscópica, y terminan por producir una reestructuración a medida que se propagan por la estructura del cristal. A temperaturas normales las dislocaciones se acumulan en lugar de aniquilarse, y sirven como defectos puntuales u obstáculos que impiden significativamente su movimiento. Esto lleva a un incremento en la resistencia del material y a la consecuente disminución en la ductibilidad.

Endurecimiento por deformación plástica en frío.

El endurecimiento por deformación plástica en frío es el fenómeno por medio del cual un metal dúctil se vuelve más duro y resistente a medida es deformado plásticamente. Generalmente a este fenómeno también se le llama trabajo en frío, debido a que la deformación se da a una temperatura "fría" relativa a la temperatura de fusión absoluta del metal.

En los diagramas se muestra la variación de la resistencia a la fluencia y la resistencia a la tensión para el acero 1040, el bronce y el cobre.Note que la resistencia del material aumenta al aumentar el porcentaje de trabajo en frío, sin embargo la ductilidad del material disminuye tal como se muestra en el siguiente gráfico.

El fenómeno de endurecimiento por deformación se explica así:1. El metal posee dislocaciones en su estructura cristalina.2. Cuando se aplica una fuerza sobre el material, las dislocaciones se desplazan causando la deformación plástica.

Page 2: Control de Microestructura

3. Al moverse las dislocaciones, aumentan en número.4. Al haber más dislocaciones en la estructura del metal, se estorban entre sí, volviendo más difícil su movimiento.5. Al ser más difícil que las dislocaciones se muevan, se requiere de una fuerza mayor para mantenerlas en movimiento. Se dice entonces que el material se ha endurecido.

Distintos metales tienen diferente capacidad para endurecerse cuando se deforman plásticamente. Esa habilidad de endurecerse se mide con el coeficiente de endurecimiento por deformanción (n). Entre mayor es n para un metal, más se endurece al ser deformado plásticamente.

Para que el endurecimiento del metal se mantenga, es necesario que las dislocaciones que fueron creadas durante la deformación se mantengan en la estructura del metal. La estructura cristalina del metal tiene un número "normal" de dislocaciones. La deformación plástica ha causado que hayan más dislocaciones que ese número "normal", por lo que la estructura cristalina tenderá a hacer desaparecer a las dislocaciones "extra".Si se aumenta la temperatura del material hasta el grado que se permita la difusión atómica, las dislocaciones "extra" desaparecerán del material, haciendo que éste recupere las propiedades mecánicas que tenía antes de ser deformado. Sabemos que la difusión se activa a una temperatura mayor que 0.4 veces la temperatura de fusión del material en grados absolutos, por lo tanto se tendrá lo siguiente:

Trabajo en frío.-Existe endurecimiento por deformación.-Se crean dislocaciones y éstas quedan en el material.-El material endureceTrabajo en caliente-No existe endurecimiento por deformación.-Se crean dislocaciones pero éstas desaparecen por difusión.-El material no endurece.

El trabajo en frío no solo causa un aumento de las dislocaciones en la estructura del metal, sin que también causa la deformación de sus granos. La combinación de los granos deformados con el aumento de dislocaciones causa esfuerzos residuales dentro del material. Los esfuerzos residuales no son más que zonas de tensión o compresión que existen dentro del material sin que sean generadas por fuerzas externas. Los esfuerzos residuales pueden causar el debilitamiento del material, haciendo que falle a esfuerzos aplicados menores a su resistencia nominal.

El aumento de las dislocaciones y la deformación de los granos de la estructura cristalina puede causar cambios en las propiedades eléctricas y la resistencia a la corrosión del metal. Todos los cambios

Page 3: Control de Microestructura

asociados a la deformación plástica en frío pueden ser revertidos utilizando el tratamiento térmico apropiado. La restauración de las propiedades a los valores previos a la deformación se logra a partir de dos procesos diferentes que ocurren a temperatura elevada:• La recuperación y recristalización.• El crecimiento del grano.

4.2 TRATAMIENTOS TERMICOS

el proceso que comprende el calentamiento de los metales o las aleaciones en estado sólido a temperaturas definidas, manteniéndolas a esa temperatura por suficiente tiempo, seguido de un enfriamiento a las velocidades adecuadas con el fin de mejorar sus propiedades fisicas y mecánicas, especialmente la dureza, la resistencia y la elasticidad. Los materiales a los que se aplica el tratamiento térmico son, básicamente, el acero y la fundición, formados por hierro y carbono. También se aplican tratamientos térmicos diversos a los sólidos cerámicos.

Propiedades mecánicas

Las características mecánicas de un material dependen tanto de su composición química como de la estructura cristalina que tenga. Los tratamientos térmicos modifican esa estructura cristalina sin alterar la composición química, dando a los materiales unas características mecánicas concretas, mediante un proceso de calentamientos y enfriamientos sucesivos hasta conseguir la estructura cristalina deseada.

Entre estas características están:

Resistencia al desgaste : Es la resistencia que ofrece un material a dejarse erosionar cuando está en contacto de fricción con otro material.

Tenacidad : Es la capacidad que tiene un material de absorber energía sin producir fisuras (resistencia al impacto).

Maquinabilidad : Es la facilidad que posee un material de permitir el proceso de mecanizado por arranque de viruta.

Dureza : Es la resistencia que ofrece un acero para dejarse penetrar. Se mide en unidades BRINELL (HB) o unidades ROCKWEL C (HRC), mediante el test del mismo nombre.

[editar] Mejora de las propiedades a través del tratamiento térmico

Las propiedades mecánicas de las aleaciones de un mismo metal, y en particular de los aceros, reside en la composición química de la aleación que los forma y el tipo de tratamiento térmico a los que se les somete. Los tratamientos térmicos modifican la estructura cristalina que forman los aceros sin variar la composición química de los mismos.

Esta propiedad de tener diferentes estructuras de grano con la misma composición química se llama polimorfismo y es la que justifica los térmicos. Técnicamente el poliformismo es la capacidad de algunos materiales de presentar distintas estructuras

Page 4: Control de Microestructura

cristalinas, con una única composición química, el diamante y el grafito son polimorfismos del carbono. La α-ferrita, la austenita y la δ-ferrita son polimorfismos del hierro. Esta propiedad en un elemento químico puro se denomina alotropía.

El tratamiento térmico en el material es uno de los pasos fundamentales para que pueda alcanzar las propiedades mecánicas para las cuales está creado. Este tipo de procesos consisten en el calentamiento y enfriamiento de un metal en su estado sólido para cambiar sus propiedades físicas. Con el tratamiento térmico adecuado se pueden reducir los esfuerzos internos, el tamaño del grano, incrementar la tenacidad o producir una superficie dura con un interior dúctil. La clave de los tratamientos térmicos consiste en las reacciones que se producen en el material, tanto en los aceros como en las aleaciones no férreas, y ocurren durante el proceso de calentamiento y enfriamiento de las piezas, con unas pautas o tiempos establecidos.

Para conocer a que temperatura debe elevarse el metal para que se reciba un tratamiento térmico es recomendable contar con los diagramas de cambio de fases como el de hierro-carbono. En este tipo de diagramas se especifican las temperaturas en las que suceden los cambios de fase (cambios de estructura cristalina), dependiendo de los materiales diluidos.

Los tratamientos térmicos han adquirido gran importancia en la industria en general, ya que con las constantes innovaciones se van requiriendo metales con mayores resistencias tanto al desgaste como a la tensión. Los principales tratamientos térmicos son:

Temple : Su finalidad es aumentar la dureza y la resistencia del acero. Para ello, se calienta el acero a una temperatura ligeramente más elevada que la crítica superior Ac (entre 900-950 °C) y se enfría luego más o menos rápidamente (según características de la pieza) en un medio como agua, aceite, etcétera.

Revenido : Sólo se aplica a aceros previamente templados, para disminuir ligeramente los efectos del temple, conservando parte de la dureza y aumentar la tenacidad. El revenido consigue disminuir la dureza y resistencia de los aceros templados, se eliminan las tensiones creadas en el temple y se mejora la tenacidad, dejando al acero con la dureza o resistencia deseada. Se distingue básicamente del temple en cuanto a temperatura máxima y velocidad de enfriamiento.

Recocido : Consiste básicamente en un calentamiento hasta temperatura de austenitización (800-925 °C) seguido de un enfriamiento lento. Con este tratamiento se logra aumentar la elasticidad, mientras que disminuye la dureza. También facilita el mecanizado de las piezas al homogeneizar la estructura, afinar el grano y ablandar el material, eliminando la acritud que produce el trabajo en frío y las tensiones internas.

Normalizado : Tiene por objeto dejar un material en estado normal, es decir, ausencia de tensiones internas y con una distribución uniforme del carbono. Se suele emplear como tratamiento previo al temple y al revenido.

4.3 TEMPLES Y REVENIDOS

Page 5: Control de Microestructura

TEMPLE.- El temple comprende el calentamiento de un acero a una temperatura alta y un enfriamiento suficientemente rápido para garantizar que se produce un incremento significativo de la dureza de la superficie de la pieza o de toda la pieza. En la mayoría de los casos el temple se combina con un recalentamiento posterior para revenir el material. La mejora general en la dureza incrementa la resistencia del material al desgaste, mientras que la temperatura de revenido seleccionada influye en la tenacidad.

¿Cómo se consigue el temple?

El proceso de temple de una pieza se puede dividir en tres pasos. En primer lugar la pieza de trabajose calienta a su temperatura de temple, normalmente entre 750 y 1.300 ºC, dependiendo de la composición del material. A continuación se mantiene la pieza a su temperatura de temple con el objetivode disolver los elementos de aleación, incluido el Carbono, para obtener una composición uniforme dentro de la austenita. La última fase es el temple propiamente dicho a un grado de enfriamientoadecuado para obtener una estructura uniforme conocida como martensita. Los aceros tienen un nivel de fragilidad relativamente alto después del temple por lo que a menudo no sirven para aplicaciones prácticas.El calentamiento posterior (revenido) no sólo reduce esta fragilidad sino que, dependiendo de la temperatura seleccionada, modifica las propiedades para cumplir los requisitos técnicos relevantes. En la mayoría de los casos el revenido se realiza después del temple como parte del mismo proceso. En algunas ocasiones el temple es seguido por un proceso bajo cero para potenciar al máximo la transformación de martensita antes del proceso de revenido. Este enfoque puede ser apropiado en algunas aplicaciones específicas.

APLICACIONES

Page 6: Control de Microestructura

Después del temple se efectúa el revenido, cuyo fin es el aumento de la plasticidad (disminución de la fragilidad) del acero con una disminución mínima de la resistencia o la dureza adquiridas durante el temple.La temperatura del revenido se escoge de acuerdo a la posterior utilización de la pieza, pero nunca llegará a la temperatura de transformación (linea G-H de la figura 2).Se distinguen tres tipos de revenido:

1. Revenido de bajas temperaturas (entre 180 y 220oC); Con él se reducen las tensiones internas pero se conserva la estructura martesítica. Se usa en el revenido de herramientas de corte, en las que debe mantenerse la dureza y resistencia al desgaste.

2. Revenido a medias temperaturas (entre 300-400 oC); A estas temperaturas la martensita se modifica y se transforma en lo que se conoce como troostita y se aplica en los muelles o matrices.

3. Revenido de altas temperaturas (500-550 oC); A estas temperaturas la troostita se convierte en otra forma llamada sorbita, se aplica fundamentalmente para el acero de construcción.

La troostita y la sorbita obtenidas durante el revenido de la martensita, sobrepasan por su tenacidad, las estructuras análogas que se obtienen durante el enfriamiento directamente a partir de la austenita.

Es un tratamiento complementario del temple, que generalmente sigue a éste. Al conjunto de los dos tratamientos también se le denomina "bonificado".

Page 7: Control de Microestructura

El tratamiento de revenido consiste en calentar al acero después de normalizado o templado, a una temperatura inferior al punto crítico, seguido de un enfriamiento controlado que puede ser rápido cuando se pretenden resultados altos en tenacidad, o lento, para reducir al máximo las tensiones térmicas que pueden generar deformaciones.

Los fines que se consiguen con este tratamiento son los siguientes:

Mejorar los efectos del temple, llevando al acero a un estado de mínima fragilidad. Disminuir las tensiones internas de transformación, que se originan en el temple. Modificar las características mecánicas, en las piezas templadas produciendo los siguientes efectos: Disminuir la resistencia a la rotura por tracción, el límite elástico y la dureza. Aumentar las características de ductilidad; alargamiento estricción y las de tenacidad; resiliencia.

Los factores que influyen en el revenido son los siguientes: la temperatura de revenido sobre las características mecánicas, el tiempo de revenido (a partir de un cierto tiempo límite la variación es tan lenta que se hace antieconómica su prolongación, siendo preferible un ligero aumento de temperatura de revenido), la velocidad de enfriamiento (es prudente que el enfriamiento no se haga rápido) y las dimensiones de la pieza (la duración de un revenido es función fundamental del tamaño de la pieza recomendándose de 1 a 2 horas por cada 25mm de espesor o diámetro).

El acero templado se vuelve frágil, siendo inútil en estas condiciones, por eso vamos al REVENIDO. Esta operación viene es para que las tiranteces y tensiones generadas en el acero no tengan tiempo de actuar provocando deformaciones o grietas.

Este proceso hace más tenaz y menos quebradizo el acero aunque pierde algo de dureza.

4.4 CARBURIZADO Y NITRURIZADO

Carburizado y nitruración: En el carburizado a cierta temperatura se difunde el carbono desde la superficie, esta tendrá un alto nivel de carbono al ser templado y revenido la superficie cambia a martensita de alto carbono. En la nitruración el nitrógeno se difunde en la superficie a partir de un gas. En estos dos procesos se produce esfuerzo residual a la compresión en la superficie.G