Coordinacion de Aislaciones

48
Protección de los conductores de una línea contra la caída directa de rayos de la severidad de las tormentas eléctricas eráunico N i : 5 a 30 en país templado como Chile o Franci 100 (Florida USA) hasta 180 (regiones tropicales de Africa e d de golpes de rayo a nivel del suelo N s = N i /7 (Fran tivos de medida

description

Aislación tipos

Transcript of Coordinacion de Aislaciones

Protección de los conductores de una línea contra la caída directa de rayos

-Medida de la severidad de las tormentas eléctricas

-Nivel ceráunico Ni : 5 a 30 en país templado como Chile o Francia 100 (Florida USA) hasta 180 (regiones tropicales de Africa e Indonesia

-Densidad de golpes de rayo a nivel del suelo Ns= Ni/7 (Francia)

-Dispositivos de medida

Clasificación de los golpes de rayo

-Golpes de rayo negativos descendentes (80 a 90 %)

-Golpes de rayo negativos ascendentes

-Golpes de rayo positivos descendentes

-Golpes de rayo positivos ascendentes

Modelo electrogeométrico

-Se basa en los golpes de rayo negativos descendentes

-Se inician con una predescarga desde la nube llamada trazador a saltos (desde su parte inferior que es negativa)

-El trazador avanza hacia el suelo

-Cuando se acerca suficientemente al suelo o a un objeto conectado a tierra se produce la descarga de rayo

-La distancia de descarga : d = 9.4 I 2/3 I (kA) d(m)

Definición de corriente crítica

-Sobretensión U provocada por un golpe de rayo de corriente presunta I sobre una línea: U = Z*I/2 Z: impedancia de onda del conductor impactado

-Si U< Usr la sobretensión no provocará falla de la aislación Usr : tensión soportada con impulso de rayo de la línea

-Definición de corriente crítica : Ic = 2 Usr / Z

-Los cables de guardia deben interceptar sólo las corrientes mayores a Ic

Cálculo de la corriente crítica

-Z = 60 Ln ( 2 Ym / eq )

n:número de conductores elementales de un haz -R: radio geométrico del haz (cm) eq : radio de un conductor (cm) -Ym : altura media de los conductores sobre el suelo

-Para conductor único se toma eq = 6 (cm)

- Usr = 0.96*550 d d (cm) Usr (kV)

- dc = 9.4*Ic 2/3

Construcción geométrica del modelo

-Se deben estudiar primero los conductores más expuestos o sea los más altos en líneas de configuración vertical y los más externos en líneas de configuración horizontal

-Luego se verifica si los demás conductores quedan también protegidos

Angulo de protección teórico

Línea de configuración horizontal

TA2 > 1.1rc

T1A2 < rc

-Línea de configuración horizontal de doble circuito : se debe elevar mucho los dos cables de guardia o usar un tercer cable (ubicado en el eje)

-En este caso los cables extremos podrían ser separados

-Agrupaciones de líneas : Se presentan cerca de SS/EE y centrales , la protección debe ser especialmente eficaz

-Líneas muy cercanas entre si proveen una protección mutua

Falla de blindaje

Descarga de retorno

-Cuando el rayo cae directamente sobre la torre o el cable de guardia

-Cuando el rayo cae sobre un conductor de fase y una corriente de valor de cresta muy elevado

Cálculo del número de descargas de retorno

Hay varios fenómenos poco conocidos :

-Respuesta de una torre y su puesta a tierra frente a una corriente de rayo

-Repartición de corrientes en cable impactado

-Tensión de descarga del intervalo de aire conductor- cabeza del poste

Hipótesis básicas

-El poste se modela con una inductacia de 0.4 H/m (0.3 a 0.7 H/m)

-La puesta a tierra se modela mediante la resistencia pura medida a baja frecuencia y pequeña corriente en serie con inductancia de 5 H

-La corriente de rayo se reparte por mitades hacia ambos lados del punto de impacto

-Tensión de descarga: U>0.85Usr descarga monofásica U>1.15Usr descarga polifásica Usr tensión soportada con impulso de rayo por el intervalo de aire cable de guardia – conductor de fase

-No existe correlación entre la amplitud y la pendiente del rayo

Desarrollo del cálculo

-De la figura siguiente se clasifican las pendientes del frente (dI/dt) en cierto número de tramos caracterizados c/u por su valor medio -Se calcula : U = L dI/dt si rayo impacta el poste, o U = ½ L dI/dt si rayo impacta el cable de

guardia

-Se calcula : U1= 0.85 Usr- U

U2= Usr –U

U3=1.15 Usr-U

Curva de probabilidad de valor de pendiente de rayo

Se pueden presentar los siguientes casos :

-Línea con cable de guardia. Si RI/2 > U1 hay descarga monofásica Si RI/2> U3 hay descarga polifásica

-Línea sin cable de guardia. Si RI> U1 hay descarga monofásica Si RI> U3 hay descarga polifásica

-El porcentaje de rayos que provocan falla se obtiene de la figura siguiente, considerando la altura ponderada de los cables de guardia o de los conductores de fase

-El número total de rayos que provocan descarga de retorno por 100 km de línea y por año se obtiene multiplicando el porcentaje anterior por NL

-NL : golpes de rayo / 100 km de línea y año

Cálculo de NL :

-NL = Ni [ N1/ 30 + l / 70 ] L / 100

Ni : nivel ceráunico de la zona N1 :número de rayos que impactan una línea horizontal, por 100 km y por año para Ni = 30, se calcula usando el modelo electrogeométrico, depende de la altura ponderada de los cables de guardia (o conductores) y se muestra en la diapositiva siguiente l :ancho de la línea en metros L : longitud de la línea en km :factor de influencia de las torres o postes

Línea de configuración horizontal

TA2 > 1.1rc

T1A2< rc

Protección de SS/EE contra la caída directa de rayos

-Las SS/EE mas críticas son las SS/EE terminales -La densidad de rayos a nivel del suelo es 4 por km2 y por año para Ni= 30 y de 2 para Ni= 10 a 15. Por lo tanto para una SS/EE de superficie igual a 0.1 km2 el riesgo de ser golpeada por un rayo es en promedio una vez cada 2 a 5 años según sea Ni .-Si un rayo golpea una parte viva de una SS/EE, en bornes aparecerá una sobretensión igual a :

u(t) = ( Z/n )i(t) Z: impedancia característica de la línea (~ 400 ohm) n: número de líneas conectadas en el momento a la SS/EE

-El caso mas desfavorable es cuando n = 1 (SS/EE terminal) en que la sobretensión puede alcanzar 800 kV para la corriente de rayo mas pequeña o sea 2 kA .La descarga es segura y los chisperos y pararrayos deberán proteger los equipos mas costosos (transformador)

-Si el rayo golpea la parte viva de una SS/EE aislada (n = 0) la sobretensión puede alcanzar teóricamente 1000 MV por Coulomb de la corriente de descarga con pendientes de varias centenas de MV/ s

-En este caso los chisperos ni los pararrayos con chisperos pueden desempeñar su papel protector, debido al retardo a las descargas de las aislaciones de aire

-Si el rayo cae en las estructuras metálicas conectadas a tierra en la SS/EE, no hay peligro de descarga de retorno dado que la resistencia de puesta a tierra de ella es muy baja (del orden de 1 ohm)

-El modelo electrogeométrico permite verificar si las estructuras metálicas conectadas a tierra desempeñan su papel de interceptar eficazmente los golpes de rayo

Método de la esfera ficticia para determinar la protección de una SS/EE

-Según el modelo electrogeométrico, es al objeto (incluído el suelo) que alcanza primero la distancia de descarga d al extremo del trazador descendente

-Todo sucede como si la punta del trazador estuviera rodeada de una esfera de radio d centrada en la punta y que se mueve siguiendo la trayectoria aleatoria de la punta del trazador

-Al acercarse al suelo el primer objeto tocado por la esfera determinará el punto de impacto del rayo

Así se elabora el procedimiento :

-Se supone que la esfera ficticia de radio d rueda por el suelo en todas direcciones sin perder jamás contacto con el suelo o con un objeto prominente

-Si durante el movimiento la esfera toca los dispositivos de protección (barra vertical, cable horizontal, malla de cables, caja de Faraday) sin tocar jamás un objeto a proteger, entonces la protección está asegurada

-Si en este movimiento la esfera toca uno de los objetos a proteger, la protección deberá ser rediseñada hasta que no se produzca ningún contacto con los objetos a proteger

Algunas aplicaciones simples

-Zona de protección de dos barras verticales a distancia 2D (ver diapositiva siguiente)

- D<d de lo contrario las dos barras tienen una acción independiente a) d>h , la altura protegida p en el centro es :

p = d – (d – h)2 + D2

-La distancia de protección al suelo es :

x0 = h( 2d –h)- D2

-b) d < h , la altura protegida es : p = d – D

-La distancia de protección al suelo es :

x0 = d2 – D2

-Si se mueve la esfera en torno a las barras siempre en contacto con sus cabezas, el rayo r del círculo cortado en el plano que contiene las dos barras crece. En el momento en que el centro de la esfera está exactamente en ese plano , la altura de protección es :

p = h – d + d2 – D2

Que es superior a los casos (a) y (b) citados

Zona de protección comprendida entre cuatro barras

-Las cuatro barras forman un cuadrado de lados 2D (diapositiva siguiente)

-Para una aproximación horizontal, la figura muestra que la altura de protección en el centro del cuadrado es :

p = h –d + d2 – D2

-En la figura se muestra la zona total de protección provista por las cuatro barras

Zona de protección de un cable horizontal

-Si la altura del cable h cumple d >> h el radio de protección en el suelo es :

x0 = 2hd – h2

-La altura máxima hmax que puede tener un objeto para estar protegido directamente se reduce a :

p = 2d –h (diapositiva siguiente)

Zona de protección de una capa de cables horizontales -Distancia entre cables 2D

-Altura máxima de objeto protegido :

Criterio para elegir d

-El modelo electrogeométrico muestra que las zonas de protección dependen de la distancia de descarga d -Si el estudio se hace con una cierta distancia dc que llamaremos distancia de descarga crítica, será buena para d > dc e incompleta para d < dc , lo que puede suceder con corrientes de rayo pequeñas-Si la protección deseada debe ser completa, tienen que acercarse las mallas de barras o de cables de protección y hay un óptimo que depende del costo de la instalación y de la tasa de seguridad especificada -Si es necesaria una protección absoluta, como en una SS/EE muy importante, dc deberá corresponder a la menor corriente de rayo esperable es decir 2kA en cuyo caso dc = 15 m

Si se puede aceptar cierto riesgo de falla, se procede así :

-Supongamos que limitamos la protección a una corriente de rayo I > 5 kA . En la figura siguiente se ve que la protección estará garantizada en un 97% , es decir sólo un 3% de los rayos previsibles podrán producir falla

-Recordando que en una gran SS/EE, en una zona de pequeña severidad de rayo (0.2 rayos por año ), la protección caerá a 0.2*0.03 o sea un riesgo de una falla cada 150 años.

Esta protección se obtiene con dc = 27 m