Crecimiento, caracterización y modelización de ... - uv.es · Según el grado de confinamiento de...

104
Crecimiento, caracterización y modelización de la emisión óptica de hilos cuánticos semiconductores InAs/InP por David Fuster Signes Valencia, Septiembre de 2003 Trabajo de investigación para la obtención del Diploma de Estu- dios Avanzados “Fotónica: Fundamentos y Dispositivos”

Transcript of Crecimiento, caracterización y modelización de ... - uv.es · Según el grado de confinamiento de...

Crecimiento, caracterización y modelización de la emisión óptica

de hilos cuánticos semiconductores InAs/InP

por

David Fuster Signes

Valencia, Septiembre de 2003

Trabajo de investigación para la obtención del Diploma de Estu-dios Avanzados “Fotónica: Fundamentos y Dispositivos”

A mi madre

Agradecimientos

Agradezco la ayuda y el apoyo que me han aportado mis directores de tesis Dr.

Juan Martínez Pastor y Dra. Luisa González Sotos durante la realización de este

trabajo, además de sufrirme y no haberme echado a patadas y devuelto al lugar de

donde salí.

También quiero dar las gracias a mis compañeros del Instituto de Ciencia de los

Materiales de la Universidad de Valencia (Benito Alén, Pepe Bosch, Carlos Ruda-

mas y, a ti también, Jordi Gomis) por su ayuda y aportación a este trabajo.

A Eduardo Moya:

Me hubiese gustado que leyeras y revisaras mi trabajo, y espero que exista un

lugar donde algún día nos reunamos todos y podamos discutir sobre éste. Tus colegas

y amigos te echamos de menos.

1

Índice general Introducción...............................................................................................3

1. Nanoestructuras cuánticas semiconductoras .....................................5

1.1 Definición y propiedades ópticas básicas ...................................................... 5

1.2 Evolución con la temperatura de la emisión óptica ..................................... 11

1.3 Nociones básicas de crecimiento epitaxial de nanoestructuras ................... 17

2. Experimentos .......................................................................................21

2.1 Crecimiento de hilos cuánticos InAs/InP..................................................... 21

2.1.1 Crecimiento por MBE.......................................................................... 21

2.1.2 Proceso de crecimiento de las muestras............................................... 30

2.1.3 Morfología de los hilos cuánticos........................................................ 32

2.2 Estudio de la fotoluminiscencia................................................................... 34

3. Resultados ............................................................................................37

3.1 Fotoluminiscencia en función de la potencia de excitación ........................ 37

3.2 Fotoluminiscencia en función de la polarización lineal............................... 39

3.3 Fotoluminiscencia en función de la temperatura ......................................... 41

4. Análisis .................................................................................................43

4.1 Sintonización de la emisión ......................................................................... 43

4.2 Modelización de la fotoluminiscencia ......................................................... 49

4.2.1 Descripción del modelo ....................................................................... 49

4.2.2 Aplicación a muestras de cajas cuánticas ............................................ 57

4.2.3 Aplicación a las muestras de hilos cuánticos....................................... 69

5. Conclusiones ........................................................................................81

Apéndice A...............................................................................................85

Apéndice B ...............................................................................................89

Bibliografía 93

3

Introducción La utilización de nanoestructuras cuánticas semiconductoras como medio activo de

láseres de diodo ayuda a reducir la corriente umbral de éstos y aumentar la ganancia.

En la actualidad, la mayoría de dispositivos ópticos de semiconductor llevan como

medio activo pozos cuánticos, dando lugar a láseres de diodo con corrientes umbral

del orden de 10-100 A/cm2. En el campo de las telecomunicaciones por fibra óptica es

interesante disponer de láseres de baja corriente umbral y alta ganancia, fácilmente

integrables, con longitudes de onda de emisión en 1.3 µm y 1.5 µm. Los dispositivos

basados en la heteroestructura semiconductora InAs/InP serían unos buenos candida-

tos en ambas ventanas espectrales.

En este trabajo se ha estudiado el crecimiento de muestras que contienen hilos

cuánticos auto-organizados de InAs sobre InP (001) por epitaxia de haces moleculares

y se ha realizado una caracterización de sus propiedades ópticas. Se estudiará el efecto

que tiene el cambiar las condiciones de crecimiento de las muestras sobre su espectro

de emisión óptica, a través de experimentos de fotoluminiscencia en onda continua.

También se estudiarán con mayor profundidad, apoyándonos en un modelo basado en

ecuaciones de balance, cómo la dependencia con la temperatura de los procesos de

captura, escape y recombinación de portadores afecta a la banda de emisión óptica en

muestras conteniendo nanoestructuras cuánticas semiconductoras.

La investigación se ha llevado a cabo conjuntamente en el Instituto de Microe-

lectrónica de Madrid (CNM-CSIC) y en el Instituto de Ciencia de los Materiales de la

Universidad de Valencia, dentro del proyecto de investigación “Nanoestructuras de

semiconductores compuestos y su aplicación en dispositivos optoelectrónicos y fotó-

nicos” (TIC2002-4096-C03).

El trabajo se ha estructurado en cuatro partes principalmente. En el primer capí-

tulo se hace una introducción para describir las nanoestructuras cuánticas semiconduc-

toras, sus propiedades ópticas básicas y fundamentos de crecimiento. En el segundo

capítulo se explica con detalle el crecimiento de las muestras y el montaje de los expe-

rimentos de fotoluminiscencia. En el tercer capítulo se presentan los resultados expe-

rimentales para luego ser analizados en el último capítulo, donde también se describe

y aplica un modelo para estudiar la dinámica de recombinación basado en las ecuacio-

nes de balance. Al final se expondrán las principales conclusiones extraídas de la in-

vestigación.

5

Capítulo 1

Nanoestructuras cuánticas semicon-ductoras

1.1 Definición y propiedades ópticas básicas Los efectos cuánticos de una estructura empiezan a ser notables cuando se reduce el

tamaño de al menos una de sus dimensiones a un espesor del orden de la longitud de

onda de De Broglie, que viene dada por la expresión:

Em2 *∆=λ

h (1-1)

Para el caso de semiconductores, considerando la masa efectiva de los portado-

res, los efectos cuánticos podrían observarse para espesores del orden de 10 a 1000

veces la constante de red del material semiconductor considerado. Una forma simple

de conseguir confinamiento cuántico por tamaño es construir pozos cuánticos, que

combina dos semiconductores de gap* directo diferentes. En estas heteroestructuras

semiconductoras se crea un pozo de potencial para los portadores. En la figura 1.1 se

muestra una estructura de pozo cuántico de tipo I, para el que electrones y huecos es-

tarían confinados en el semiconductor de menor banda prohibida.

Al tener semiconductores con bandas prohibidas diferentes y el tipo de alinea-

miento de las bandas de conducción y de valencia de la figura 1.1, obtenemos las ba-

rreras de potencial Ve y Vh para los electrones y huecos, respectivamente. Si la anchura

del pozo L es suficientemente pequeña podremos obtener un confinamiento cuántico

* gap = banda prohibida.

CAPÍTULO 1. NANOESTRUCTURAS CUÁNTICAS

6

por tamaño. Es posible resolver la ecuación de Schrödinger en una dimensión para un

pozo de potencial de este tipo, y obtener los estados estacionarios para electrones y

huecos, y así las transiciones ópticas correspondientes. Cuando el pozo de potencial se

extiende a más de una dimensión, caso de nanoestructuras cuánticas tipo hilo o caja, la

resolución de la ecuación de Schrödinger es más complicada, ya que el potencial no se

puede separar en las distintas dimensiones espaciales, a no ser que exista una simetría

como en estructuras cilíndricas o esféricas [1].

Figura 1.1. Diagrama de energías de una heteroestructura semiconductora de tipo I.

Según el grado de confinamiento de los portadores, es decir, el número de di-

mensiones en las que se confina a éstos, podremos conseguir tres tipos de nanoestruc-

turas. Si sólo confinamos en una dirección tendremos una estructura bidimensional

(2D), llamado pozo cuántico. Confinando dos direcciones obtenemos una estructura

monodimensional (1D), hilo cuántico, y confinando en las tres direcciones una estruc-

tura cerodimensional (0D), caja cuántica. Esta diferencia en el confinamiento da lugar

a grandes diferencias en la densidad de estados. La densidad de estados representa el

número de estados disponibles por unidad de volumen y energía. Para un semiconduc-

tor masivo o estructura tridimensional, la densidad de estados viene dada por:

2123 EEdEd

dEdN

=∝ ; (1-2)

para un pozo cuántico tenemos una función escalón,

( ) ∑∑<ε<ε

=ε−∝EE

iii

1EdEd

dEdN ; (1-3)

para un hilo cuántico tenemos una singularidad,

1.1 DEFINICIÓN Y PROPIEDADES

7

( ) ( )∑∑<ε

ε−=ε−∝E

21i

E

21i

ii

EEdEd

dEdN ; (1-4)

para una caja cuántica tenemos,

( ) ( )∑∑<ε<ε

ε−δ=ε−Θ∝E

iE

iii

EEdEd

dEdN . (1-5)

siendo iε los niveles discretos de energía, Θ la función escalón de Heaviside y δ la

función delta de Dirac. La figura 1.2 muestra la representación gráfica de la densidad

de estados para los cuatro tipos de estructuras. Los niveles de energía dependerán de

la elección de los materiales semiconductores que formen el pozo, las barreras de po-

tencial y la geometría de la estructura. El confinamiento espacial de los portadores

favorece el solapamiento de las funciones de onda del electrón y el hueco, con lo que

los efectos excitónicos son mucho más importantes que en el material masivo. Desde

el punto de vista tecnológico, el estudio de las propiedades ópticas y de transporte de

tales sistemas ha demostrado que su eficiencia cuántica y ganancia espectral son supe-

riores a las de heteroestructuras simples (una o varias intercaras, con L>> λe) de cali-

dad comparable [2]. Actualmente se disponen comercialmente de dispositivos basados

en pozos cuánticos.

Energía

(a) (b) (d)

3D 2D 1D 0D

(c)

ε1

ε2

ε3ε1

ε1

ε2

ε2ε3

ε3

Figura 1.2. Densidad de estados en función de la energía en sistemas con diferente dimensionalidad. (a)

semiconductor masivo, (b) pozo cuántico, (c) hilo cuántico y (d) caja cuántica.

Al tener un espectro discreto o quasi-discreto de energías de los portadores para

el caso de cajas cuánticas o hilos cuánticos, respectivamente, se espera que la anchura

de línea de una transición óptica sea pequeña. De hecho, experimentalmente se tiene

CAPÍTULO 1. NANOESTRUCTURAS CUÁNTICAS

8

que la anchura total a media altura (FWHM) es menor de 100 µeV [3]. Si se considera

que esta anchura de línea es homogénea, su valor estará limitado por la dispersión de

los pares electrón-hueco con fonones acústicos, ópticos o por impurezas. El tiempo de

vida radiativo nos da un límite inferior para la anchura de línea Γ , que de acuerdo con

la relación de incertidumbre de Heisemberg:

)ps(1

65822.0)meV(,τ

≈Γτ

≈Γh

Para tiempos radiativos típicos de estas nanoestructuras cuánticas semiconducto-

ras del orden de ≈τ 1 ns, el ensanchamiento es muy pequeño, ≈Γ 1 µeV. En el caso

del confinamiento tridimensional se observa la desaparición de la dependencia de la

anchura de línea con la temperatura, cosa que no ocurre con pozos o hilos cuánticos.

En una situación más realista, cuando la muestra consiste en un conjunto de na-

noestructuras cuánticas, existe una distribución de tamaños, formas y otros factores

que más tarde se pondrán de manifiesto. Por consiguiente existirá una distribución de

niveles de energía en la muestra, obteniendo un ensanchamiento inhomogéneo en el

espectro de absorción y emisión óptica. El principal efecto al ensanchamiento in-

homogéneo suele deberse a las fluctuaciones de tamaño de las nanoestructuras. Es

razonable suponer una distribución Gaussiana P con un volumen medio V0 y una des-

viación típica Vσ . Como ejemplo particular, vamos a suponer una distribución Gaus-

siana P(R) de cajas cuánticas esféricas de radio medio R0 y desviación típica

( )212

0R RR−

−=σ :

( )

σ−

−πσ

= 2R

20

R 2RRexp

21)R(P (1-6)

Suponiendo barreras infinitas por simplificidad, el coeficiente de absorción óptica de

una sola caja cuántica de radio R es, despreciando el pequeño ensanchamiento homo-

géneo:

( ) ( )∑

µπ

−−ωδ+=ωαnl

2

2nl

22

g Rq

2E1l2

VAR, h

hh (1-7)

1.1 DEFINICIÓN Y PROPIEDADES

9

donde nlnl qk π= es el n-ésimo cero de la función Bessel jl. A recoge las constantes

numéricas:

3p

cnmeA

2cv

r020

2

ωεπ

= (1-8)

suponiendo que el módulo cuadrado de la función de onda envolvente coincide con

F2=1. Como aproximación vamos a suponer que A es el mismo para todas las transi-

ciones.

La absorción total del conjunto viene dada por la superposición, es decir convo-

lución, de ( )R,ωα h y P(R):

( ) ( ) ( )

( )∑

∑ ∫

ξ−

−ξ+

ππ=

µ

π−−ωδ

σ−

−+πσπ

=ωα

nl2

20nl

2nl0

nl2

2nl

22

g2R

20

3R

21qqexp

q1l2

R43

2B

dRRq

2E

2RRexp

R11l2

43

2A h

hh

(1-9)

donde se han introducido la energía reducida del fotón,

0

g20

22g2

0 EE

)R2(E

q−ω

=µπ

−ω=

h

h

h (1-10)

y la desviación típica relativa 0R Rσ=ξ . La constante B contiene los factores que

son independientes de ωh , n y l, ( )22hAB πµ= .

Los espectros de conjunto para diferentes valores de ξ se representan en la

figura 1.3. Ellos consisten (para ξ pequeños) en una serie de picos de absorción

Gaussianos centrados en las posiciones 1qq 0nl = esto es, energías características:

20

2nl

22

gnl Rq

2E

µπ

+=ωh

h (1-11)

donde Eg es la banda prohibida del material masivo. La posición de los picos del es-

pectro está determinada únicamente por el tamaño medio de las cajas R0. Además de

una distribución gaussiana de tamaños también podemos encontrarnos con fluctua-

ciones de composición, lo que daría lugar a una distribución de valores de Eg (y, por

CAPÍTULO 1. NANOESTRUCTURAS CUÁNTICAS

10

tanto de Ve y Vh) , dando como resultado algo parecido a lo que acabamos de ver so-

bre el efecto de fluctuaciones de tamaños de las cajas cuánticas.

1 2 3

E12

E11

E10

ξ=0.02 ξ=0.05 ξ=0.1 ξ=0.2

Abso

rció

n (u

nida

des

arb.

)

Energía del fotón (q02)

Figura 1.3. Absorción de un conjunto de cajas cuánticas esféricas con distribución gaussiana de radios

con diferentes desviaciones típicas relativas ξ.

En un experimento de fotoluminiscencia real de cajas cuánticas de InAs (Eg2=

0.415 eV) en GaAs (Eg1= 1.519 eV) se obtiene un resultado como el de la figura 1.4.

La energía de emisión de cada caja corresponde a la energía del excitón confinado en

ella, que es algo diferente a la separación entre los estados ligados del electrón y el

hueco, debido a la interacción Coulombiana entre ellos. Se observa un espectro ancho

por la existencia de una distribución ancha de tamaños y formas de las cajas cuánticas.

Con un estudio más detallado de la fotoluminiscencia en función de la temperatura y

de la potencia de excitación se puede distinguir la emisión de estados excitados, si

éstos existen.

1.1 DEFINICIÓN Y PROPIEDADES

11

1.1 1.2 1.3 1.4 1.5

Fotoluminiscencia cajas InAs/GaAs T=67K

Inte

nsid

ad (

unid

. arb

.)

Energía fotón (eV)

Figura 1.4. Espectro de fotoluminiscencia de una muestra de cajas cuánticas de InAs en GaAs.

1.2 Evolución con la temperatura de la emisión

óptica La recombinación de portadores (excitones) en nanoestructuras cuánticas depende de

la temperatura, tanto su componente radiativa, así como posibles canales no radiati-

vos. Estos pueden ser tan importantes a alta temperatura que la fotoluminiscencia de-

jaría incluso de observarse. De hecho, uno de los objetivos fundamentales para conse-

guir dispositivos optoelectrónicos eficientes, es la minimización de tales mecanismos

no radiativos de recombinación de portadores.

Por otra parte, tanto en emisión como absorción, la anchura homogénea de una

transición óptica dada aumenta con la temperatura, sobre todo en pozos e hilos cuánti-

cos, ya que en estas estructuras no tenemos confinamiento en las tres dimensiones. En

pozos e hilos cuánticos, los portadores pueden moverse, es decir, pueden llevar una

energía cinética dentro de la nanoestructura. Bajo una situación de inyección de porta-

dores, al no ser una situación de equilibrio, tendremos un cierto nivel de quasi-Fermi

para los electrones y otro para los huecos. Ambos tipos de portadores obedecerán a

una distribución de Fermi-Dirac:

CAPÍTULO 1. NANOESTRUCTURAS CUÁNTICAS

12

( )

−+

=

TkEEexp1

1Ef

B

*F

(1-12)

siendo *FE el nivel de quasi-Fermi y kB la constante de Boltzmann. Combinando esta

función de distribución con la densidad de estados del sistema considerado obtenemos

la función de ocupación, es decir, la densidad de portadores para cada energía E. El

valor del nivel de quasi-Fermi dependerá de las condiciones de inyección de portado-

res, principalmente. En la figura 1.5 se representan las funciones de ocupación para

sistemas 3D, 2D y 1D. Se observa un ensanchamiento de la función de ocupación en

los tres tipos de estructura. En el caso de una caja cuántica, sistemas 0D, la distribu-

ción de estados es una delta de Dirac, no existe ensanchamiento de la función de ocu-

pación al aumentar la temperatura porque sólo existe una energía accesible. Esta fun-

ción de ocupación que hemos obtenido para las tres estructuras es aplicable a

electrones y huecos, y determinan su recombinación radiativa. La correlación de am-

bas funciones de ocupación representaría la forma que tendría el espectro de emisión.

1D2D3D

T>0

T=0

Densidad de estados

T>0

T=0

Densidad de estados

Energía del nivel de quasi-Fermi

T>0

T=0

Densidad de estados

Figura 1.5. Funciones de ocupación de electrones/huecos para un cierto nivel de quasi-Fermi de estruc-

turas 3D, 2D y 1D para baja y alta temperatura. En línea punteada se representa la densidad de estados.

Además, al aumentar la temperatura, se favorece la interacción con los fonones

de la red. El acoplamiento excitón-fonón da lugar a un ensanchamiento en la emisión

1.2 EVOLUCIÓN CON LA TEMPERATURA

13

óptica, que para pozos cuánticos tiene una dependencia con la temperatura según la

expresión [4]:

( ) ( ) 1eTT TkE

LOac0

BLO −

Γ+Γ+Γ=Γ (1-13)

donde 0Γ es la anchura debido a las fluctuaciones composicionales o de anchura del

pozo, acΓ es un parámetro de contribución al ensanchamiento debido a la interacción

con fonones acústicos, mientras que LOΓ caracteriza la contribución al ensanchamiento

debido a la interacción con fonones longitudinales ópticos.

Por otra parte, debido a que las energías de localización (diferencia de energía

entre el nivel confinado y la barrera) son finitos, los portadores podrían escapar de la

nanoestructura por activación térmica (ver figura 1.6). Este proceso llega a ser impor-

tante a temperatura ambiente, tanto más cuanto menor es la energía de localización de

los portadores. Los portadores, una vez en la barrera, podrían ser re-capturados nue-

vamente en las nanoestructuras o recombinan aquí no radiativamente, por lo que el

escape térmico de portadores es el origen de uno de los mecanismos de recombinación

no radiativa de portadores más importantes en nanoestructuras cuánticas. En el estado

estacionario, el ritmo medio de recombinación en estas estructuras iguala el ritmo neto

de captura:

( )[ ] ( )[ ]p1ppn1nnpnD

fpf1pfnf1nff1−−ν=−−ν=

τ (1-14)

donde fn y fp son las probabilidades de ocupación para electrones y huecos, y la opera-

ción ... denota el valor medio sobre todas las nanoestructuras; n y p son las densida-

des de portadores en la barrera, n1 y p1 son factores proporcionales a la densidad total

de estados en la barrera y a la probabilidad de que salte por activación térmica un por-

tador desde la nanoestructura hacia la barrera, por lo tanto, determinan el ritmo de

escape térmico de electrones y huecos desde las nanoestructuras hacia la barrera, nν y

pν son las velocidades de captura de portadores por las nanoestructuras desde la ba-

rrera, que puede ser escrito como thσυ=ν , siendo σ la sección eficaz de captura del

CAPÍTULO 1. NANOESTRUCTURAS CUÁNTICAS

14

portador y thυ la velocidad térmica de los portadores Los tiempos característicos para

escapes inducidos térmicamente de un electrón o un hueco desde una caja cuántica

hacia la barrera vendrían dados, pues, por

1nn,e n

=τ y 1p

p,e p1

ν=τ (1-15)

respectivamente [5].

Figura 1.6. Diagrama esquemático de energías para la nanoestructura y la barrera.

La relación entre los ritmos de escape y recombinación radiativa controlará la

población de portadores en las nanoestructuras que estén en equilibrio térmico:

(a) Obviamente, si la recombinación de los portadores es mucho más rápida que el

escape dominará una fuerte situación de no-equilibrio y la población no de-

penderá de la energía del electrón o el hueco; es decir, nanoestructuras de dife-

rentes tamaños tendrán la misma población. En este caso las nanoestructuras

estarán desacopladas térmicamente y el intercambio de portadores no domina-

rá la recombinación.

(b) En el caso inverso, si un portador es promovido térmicamente hacia la barrera

(con una probabilidad que depende de la energía de localización) muchas ve-

1.2 EVOLUCIÓN CON LA TEMPERATURA

15

ces antes de que recombine, se establecerá un equilibrio térmico entre la barre-

ra y el conjunto de las nanoestructuras. Las nanoestructuras más grandes, al te-

ner asociadas una mayor energía de localización, llegan a estar más pobladas

que las pequeñas, para las que el escape térmico es más fácil.

Las situaciones típicas para nanoestructuras cuánticas están entre estos dos casos

extremos. En equilibrio térmico, el tiempo de escape térmico eτ desde una trampa

(para el cual no existen otros mecanismos de pérdidas) viene dado por [6]:

τ≈τ

TkE

expB

loc0e (1-16)

con ps100 ≅τ cuando se usa una densidad de estados tridimensional típica. A tempe-

ratura ambiente, para una energía de localización típica de 120 meV, toma el valor

eτ =1 ns, el cual es del orden del tiempo radiativo típico de las nanoestructuras cuánti-

cas semiconductoras. La dinámica del escape térmico de portadores será entonces muy

sensible a la energía de localización, en una misma muestra habrá nanoestructuras

cuyo tiempo de escape térmico sea mucho menor que el tiempo radiativo (las de me-

nor energía de localización) y otras que no (las de mayor energía de localización).

Para temperaturas muy bajas, se podría considerar el caso (a) anteriormente comenta-

do donde domina el tiempo radiativo, y el espectro de luminiscencia estaría determi-

nado con la densidad de estados de las nanoestructuras.

Finalmente, además de los factores térmicos comentados hasta ahora, sería inte-

resante señalar otros aspectos fenomenológicos de interés observados en conjuntos de

nanoestructuras cuánticas, que podemos resumir en:

• El espectro de emisión de una sola nanoestructura se desplaza hacia el rojo al

aumentar la temperatura siguiendo la variación de la banda prohibida del mate-

rial semiconductor del que está compuesto [7].

• Típicamente, el espectro de luminiscencia de un colectivo de nanoestructuras

sufre un corrimiento hacia el rojo al aumentar la temperatura mucho más rápi-

do de cómo lo hace la correspondiente anchura de la banda prohibida del mate-

CAPÍTULO 1. NANOESTRUCTURAS CUÁNTICAS

16

rial masivo y algunas veces su máximo de energía exhibe un comportamiento

sigmoidal con la temperatura [8].

• La FWHM de la emisión de un colectivo de nanoestructuras cuánticas también

puede exhibir algunas veces un comportamiento sigmoidal con la temperatura.

• La banda de emisión de un colectivo de nanoestructuras sufre fuertes cambios

al aumentar la temperatura, en particular la emisión correspondiente al lado de

menores energías de la banda gana en intensidad con respecto al lado de mayo-

res energías.

En la figura 1.7 se muestra la evolución de la emisión de fotoluminiscencia de

una muestra de cajas cuánticas de InAs en GaAs. Se observan claramente los procesos

aquí mencionados. El corrimiento hacia el rojo, al aumentar la temperatura, es eviden-

te y en el régimen de baja temperatura (al pasar de 36 K a 67 K) se observa el incre-

mento de población en las cajas de menor energía (cajas más grandes) y la disminu-

ción en las cajas de mayor energía (cajas más pequeñas). A altas temperaturas la

emisión disminuye drásticamente al dominar el escape térmico de los portadores en

las cajas cuánticas.

1.15 1.20 1.25 1.30 1.35 1.40

164 K

120 K

67 K36 K

Seña

l de

foto

lum

inis

cenc

ia (u

. a.)

Energía (eV) Figura 1.7. Evolución con la temperatura de la fotoluminiscencia de una muestra de cajas cuánticas de

InAs en GaAs.

1.3 CRECIMIENTO

17

1.3 Nociones básicas de crecimiento epitaxial de nanoestructuras

Desde el desarrollo de sistemas de baja dimensionalidad, tales como el pozo cuántico,

y sus aplicaciones más conocidas, como, por ejemplo, el láser bidimensional y el tran-

sistor de electrones de alta movilidad (HEMT), dispositivos que se producen en gran-

des cantidades hoy en día, este tipo de estructuras han atraído el interés de muchos de

los que trabajan en el campo de la microelectrónica. El avance tecnológico más natu-

ral sería, en consecuencia, la fabricación de dispositivos basados en nanoestructuras

de una (1D) y cero (0D) dimensiones. Los primeros intentos para crear tales estructu-

ras emplearon la litografía en sistemas bidimensionales, que se fabrican fácilmente y

con una alta calidad. Las herramientas de litografía han sido mejoradas tanto en los

últimos años que se pueden conseguir de forma reproducible estructuras en el rango

de nanómetros. Pero estas técnicas tienen el inconveniente de que involucran ataques

químicos posteriores al proceso de grabado que producen una cantidad considerable

de defectos en la estructura deteriorando sus propiedades ópticas. Además, resulta

difícil y costoso conseguir una gran densidad de puntos cuánticos con las técnicas

litográficas, sobre todo si estas estructuras, además, deben ser uniformes en tamaño.

En este trabajo nos centraremos en comentar cómo es posible obtener estructuras se-

miconductoras de tamaño nanométrico, que cuando son rodeadas por otro material

semiconductor de banda de energía prohibida mayor presentan efectos cuánticos de

confinamiento. Hoy en día es relativamente fácil obtener tales estructuras con distintas

combinaciones de materiales III/V y II/VI, e incluso compuestos ternarios o cuaterna-

rios. La forma más eficiente para obtener puntos cuánticos fue observada por vez pri-

mera por Moison et al. [9] en el sistema heteroepitaxial InAs/GaAs (001), donde tras

el crecimiento epitaxial capa a capa (2D) de unas pocas monocapas atómicas de InAs

(típicamente 1,8 monocapas (ML), 1 ML corresponde a un espesor de la mitad del

parámetro de red del material) se produce una transformación de la superficie formán-

dose espontáneamente islas de tamaño nanométrico. En este sistema heteroepitaxial

existe un desajuste de parámetro de red entre la capa epitaxial y el substrato

CAPÍTULO 1. NANOESTRUCTURAS CUÁNTICAS

18

%2.7a)aa(f GaAsGaAsInAs ≈−= . La formación espontánea de islas 3D no ocurre en

todos los sistemas heteroepitaxiales. Este es el caso del sistema AlAs/GaAs donde la

diferencia de parámetros de red es muy pequeña ( %1.0f ≈ ). Esto indica que de todas

las características a tener en cuenta a la hora de elegir los materiales que van a formar

parte de nuestra nanoestructura, sin duda una de las más importantes es el valor del

parámetro de red de los compuestos a utilizar.

Existen tres modos bien conocidos de crecimiento hetero-epitaxial: Frank-van

der Merwe (FvdM) [10], Volmer-Weber (VW) [11] y Stranski-Krastanow (SK) [12]

(Ver esquemas en la figura 1.8).

Figura 1.8. Diagramas esquemáticos de los tres diferentes tipos de crecimiento. Frank-van der Merwe

(FvdM), Volmer-Weber (VW) y Stranski-Krastanow (SK).

El primero es el modo de crecimiento bidimensional, es decir, cada capa nuclea

de modo bidimensional sobre las anteriores, manteniendo así una superficie perfecta-

mente plana. Sería deseable conseguir este modo de crecimiento para obtener pozos

cuánticos, nanoestructuras cuánticas 2D. El VW sería el modo contrario en el que en

ningún momento el material a depositar nuclea de forma bidimensional en la superfi-

cie del substrato, sino que forma islas tridimensionales. La obtención de un modo de

crecimiento u otro viene gobernado por las energías superficiales. Si la suma de la

energía superficial de la capa depositada y de la intercara es menor que la energía su-

perficial del substrato, 1122 γ<γ+γ , esto es, si el material depositado “moja” el subs-

trato, el crecimiento ocurre en modo bidimensional, modo FvdM. Por el contrario, si

1.3 CRECIMIENTO

19

la energía superficial del substrato es menor que 122 γ+γ , el crecimiento ocurre por

formación de islas tridimensionales. Existe una situación intermedia donde el creci-

miento epitaxial se produce inicialmente de forma 2D (modo FvdM), y posteriormente

se forman núcleos 3D. Este modo de crecimiento (SK) tendría lugar en sistemas donde

el material epitaxiado que “moja” al substrato tiene un parámetro de red diferente al

mismo. En este caso, tras el crecimiento de unas pocas capas planas, el sistema ha

acumulado energía elástica y resulta más favorable energéticamente la formación de

núcleo 3D donde a pesar de un aumento de la energía superficial ( 2γ ) por creación de

más área, el balance energético es positivo porque la formación de núcleos 3D produ-

ce una disminución de energía elástica. Este es el modo de crecimiento que se ha ob-

servado en distintas combinaciones de semiconductores, y constituye la mejor forma

de obtener nanoestructuras.

El comportamiento de sistemas de diferente parámetro de red para sistemas don-

de 1122 γ<γ+γ se describe en el diagrama de fases de la figura 1.9.

HD

HCCU

Γ0

Q

Γ

Figura 1.9. Diagrama de fases en función de la cantidad de material depositado Q y la cantidad

erfsupdisloc E/E ∆=Γ . Las etiquetas CU, HC y HD se refieren a capa uniforme, heteroestructura coheren-

te y heteroestructura con dislocación, respectivamente [13].

En la figura se observa cómo cambia la estructura en función de la cantidad de

material depositada Q y erfsupdisloc EE ∆=Γ , donde erfsupE∆ es el cambio en la ener-

CAPÍTULO 1. NANOESTRUCTURAS CUÁNTICAS

20

gía superficial debido a la formación de heteroestructuras coherentes y dislocE es la

energía asociada a la dislocación de la interfase. El cociente Γ/Γ0 depende básicamen-

te de la energía elástica acumulada y por tanto del desacoplo de parámetro de red entre

capa epitaxial y substrato. Para conseguir núcleos 3D coherentes con el substrato, es

decir, sin que aparezcan dislocaciones u otros defectos que relajan el material, nos

gustaría que la combinación de materiales elegida pudiera existir en la fase HC (figura

1.9). Observaciones experimentales han permitido establecer que la formación de islas

3D es más probable que la relajación por formación de dislocaciones cuando f > 2%.

En los sistemas en que se forman nanoestructuras auto-ensambladas, la forma y

distribución de tamaños de las mismas dependen de diversos factores, como las condi-

ciones cinéticas en que tiene lugar el crecimiento epitaxial [14] (en el caso de las ca-

jas cuánticas) y también de la posible existencia de asimetría en la tensión de intercara

(caso de formación de estructuras direccionales, como hilos cuánticos).

El crecimiento por el modo SK, observando la figura 1.8, crea además de las na-

noestructuras una pequeña capa de material, que, rodeada por el material del substrato

(la barrera de potencial), forma un pozo cuántico. Esta capa, llamada capa mojante por

el modo en que crece sobre el substrato, según su anchura podrá tener niveles de ener-

gía que participarán en la dinámica de inyección y escape de portadores en las nanoes-

tructuras. Y su papel será muy importante cómo veremos en el capítulo que se expone

el modelo para describir esta dinámica.

21

Capítulo 2

Experimentos

2.1 Crecimiento de hilos cuánticos InAs/InP Las muestras estudiadas en este trabajo fueron crecidas por epitaxia de haces molecu-

lares (MBE), técnica utilizada por primera vez por Cho [15]. Por ello, realizaremos

una breve introducción sobre este sistema de crecimiento.

2.1.1 Crecimiento por MBE La técnica MBE es una técnica de evaporación en ultra-alto vacío (UHV) en la que se

evaporan los compuestos deseados en células de evaporación (células de Knudsen) en

forma de haces moleculares en dirección a un substrato con una superficie plana, so-

bre la que se incorporan epitaxialmente a temperaturas adecuadas. Los flujos molecu-

lares pueden interrumpirse rápidamente mediante dispositivos de cierre, “pantallas”,

con lo que se obtiene un excelente control de la cantidad de las especies depositadas,

pudiendo obtenerse heteroestructuras con cambios de composición a nivel de la mo-

nocapa atómica. En el caso de crecimiento de semiconductores, los substratos suelen

ser monocristales pulidos, cortados en direcciones cristalográficas adecuadas.

Se acepta generalmente que la técnica MBE implica condiciones cinéticas aleja-

das del equilibrio termodinámico. Consecuentemente, se acepta que el proceso de cre-

cimiento por MBE estaría gobernado fundamentalmente por la cinética de reacción de

las especies incidentes sobre la superficie del substrato. Cuando se habla de la cinética

nos referimos a varios procesos simultáneos [16]:

CAPÍTULO 2. EXPERIMENTO

22

• Adsorción de los átomos o moléculas de los elementos evaporados a partir de

las células de evaporación.

• Desorción de las partículas, tanto las incorporadas como también las no incor-

poradas en la red cristalina.

• Migración superficial de las partículas.

• Disociación de las moléculas adsorbidas.

• Incorporación de los átomos procedentes de dichas moléculas.

Uno de los primeros trabajos sobre el estudio de la cinética del proceso es el tra-

bajo de Arthur [17], donde se establece que el crecimiento de compuestos III-V es

controlado cinéticamente por la adsorción del elemento del grupo V, y por otra parte,

la velocidad de crecimiento se gobierna por el flujo del elemento del grupo III. La

explicación de este hecho se basa en la diferencia del coeficiente de incorporación

entre los elementos del grupo III y V. Los elementos del grupo III implicados nor-

malmente en el crecimiento MBE, Ga, Al e In, tienen la probabilidad 1 de que una vez

lleguen a la superficie del substrato, permanezcan allí independientemente de la tem-

peratura del mismo en el rango de interés para el crecimiento. Es decir cada átomo de,

por ejemplo, Ga que llega a la superficie del substrato se queda en ella y de este modo

la llegada de átomos de Ga controla la velocidad de crecimiento.

Por otro lado, la adsorción de los elementos del grupo V, es decir: As, P y Sb, es

menos probable y sobre todo depende esencialmente de la temperatura y de la pobla-

ción de átomos del elemento III en la superficie. Por lo tanto, la fracción desorbida de

la superficie del substrato de estos elementos es grande y de este modo, hay que ga-

rantizar un flujo de elemento V hacia la superficie del substrato que es entre uno o dos

órdenes de magnitud mayor que el de los elementos del grupo III.

En particular veamos el proceso de incorporación del As durante el crecimiento

de GaAs, proceso que fue estudiado exhaustivamente por Foxon y Joyce [18] [19]. El

proceso de incorporación de Arsénico depende de que el haz molecular que llega a la

superficie sea As4 o As2. La figura 2.1 muestra el esquema de la incorporación de As2

en una superficie de GaAs. El proceso fundamental es una quimisorción disociativa

2.1 CRECIMIENTO DE HILOS CUÁNTICOS InAs/InP

23

del As2 sobre un átomo de Ga, siendo posible también una redesorción de la molécula

o una asociación formando As4 seguida por una desorción de esta molécula o incluso

una disociación de GaAs a temperaturas muy altas.

Figura 2.1. Modelo de la incorporación de As2 en la red cristalina. En este caso se incorporan en princi-

pio todos los átomos que llegan a la superficie a la temperatura correspondiente [20].

Por otro lado, para la incorporación de As4 es necesaria una disociación en pares

de dos moléculas de As4. 4 átomos se incorporan en la red cristalina mientras que los

cuatro restantes se desorben en forma de As4 (ver figura 2.2). Partiendo de una super-

ficie estable en Ga al principio es probable la adsorción de dos As4 en sitios vecinos,

pero estando la capa de Ga casi recubierta de As esto se pone cada vez más difícil. Por

esta razón los últimos sitios para As se quedan sin ocupar, resultando en un ligero ex-

ceso ( %10≈ ) de Ga en la capa de GaAs crecido con As4.

De los dos modelos descritos se deduce que el coeficiente de incorporación de

As2 es1, mientras que el de As4 es como máximo 0.5.

CAPÍTULO 2. EXPERIMENTO

24

Figura 2.2. Modelo de incorporación de As4. Por cada 2 moléculas (8 átomos) se incorporan 4 átomos,

es decir la probabilidad asciende al 50% como máximo.

La gran ventaja que tiene la técnica MBE es que su baja velocidad de crecimien-

to (típicamente 1 µm/h) está controlada directamente por el flujo del elemento III, ya

que el coeficiente de incorporación es 1 a temperaturas de crecimiento, y ello permite

controlar los espesores de las capas crecidas con una exactitud de una décima de mo-

nocapa (ML) y poder cambiar de material de una monocapa a otra.

Figura 2.3. Esquema del sistema MBE.

2.1 CRECIMIENTO DE HILOS CUÁNTICOS InAs/InP

25

El sistema MBE donde se crecieron las muestras que se estudian en este trabajo

consiste en dos sistemas MBE acoplados diseñados y fabricados en el Instituto de Mi-

croelectrónica de Madrid (Centro Nacional de Microelectrónica, CSIC). Su esquema

puede verse en la figura 2.3. El procedimiento para crecer hilos cuánticos InAs sobre

substratos de InP (001) empieza pegando con indio los substratos, en nuestro caso de

InP, en obleas de silicio, que nos sirven de porta-muestras. Estos porta-muestras se

colocan en un carro metálico para introducirlo por un sistema de rodillos a través de la

cámara de introducción, donde se calientan los substratos para que se evapore el agua

adsorbida. Después de obtener un buen vacío en la cámara de introducción (P ~ 5· 10-8

Torr), se comunica a la pre-cámara, anterior a la cámara de crecimiento. Aquí se coge

un porta-muestras con la barra de transferencia entre la pre-cámara y la cámara de

crecimiento, en la cual está el horno para establecer la temperatura del substrato. An-

tes de introducir la muestra en la cámara de crecimiento se calienta de nuevo a unos

200 ºC en la pre-cámara. Las cámaras de crecimiento disponen de bombas iónicas y

bombas de sublimación de Ti, además disponen de una circulación de nitrógeno líqui-

do obteniendo así una crio-trampa y manteniendo una presión base del orden de 10-10

torr. Todo el control de temperaturas (substrato y células) y apertura-cierre de células

se realiza mediante la comunicación con el ordenador.

Una de las herramientas más importantes para el operador de un sistema MBE es

el sistema de difracción de electrones reflejados de alta energía (RHEED). Este consta

de un cañón de electrones, montado de tal manera que el ángulo de incidencia del haz

de electrones sobre la superficie de la muestra es aproximadamente de 1 a 2 grados

con respecto a la superficie. Debido a este ángulo pequeño y debido a la energía elec-

trónica de típicamente 5 a 50 keV, se garantiza que los electrones penetran en el cristal

como mucho 2 monocapas y de este modo se obtiene una información puramente su-

perficial. Una pantalla fluorescente situada en el lado opuesto permite visualizar los

electrones difractados observándose la representación de la red recíproca superficial

de la muestra. Dicho más exactamente, el diagrama RHEED es una representación de

los puntos de intersección de la esfera de Ewald con la red recíproca. Sin embargo, en

una superficie idealmente perfecta, debido a vibraciones atómicas y a que la energía

CAPÍTULO 2. EXPERIMENTO

26

del haz de electrones tiene una cierta anchura, nunca de observan estos puntos, sino

barras estrechas, como puede verse esquemáticamente en la figura 2.4.

Figura 2.4. Esquema ilustrativo de la formación de líneas en el diagrama RHEED como resultado de la

intersección de la esfera de Ewald y las barras de la red recíproca de la superficie.

Pero también la morfología de la superficie influye en el diagrama RHEED. Así

pues, se observan halos concéntricos cuando se trata de una capa policristalina o pun-

tos cuando se trata de una superficie arrugada y se produce difracción de volumen de

irregularidades de la muestra.

La configuración de las barras del diagrama RHEED da información de la es-

tructura geométrica de la superficie. En el caso de semiconductores, los átomos de la

superficie se reagrupan en configuraciones más estables, resultando en una periodici-

dad distinta a la del volumen, esto son las reconstrucciones superficiales, que depen-

den de las condiciones de crecimiento y por ello el RHEED proporciona información

muy valiosa sobre las mismas.

Además, el diagrama RHEED nos da información de la velocidad de crecimien-

to. Cada vez que se reinicia el crecimiento, la intensidad del haz de electrones refleja-

do (el (00)) oscila con el mismo periodo con el que se crece una capa monoatómica

tras otra [21] [22]. De esta manera es posible calibrar el flujo de átomos, procedentes

2.1 CRECIMIENTO DE HILOS CUÁNTICOS InAs/InP

27

de una célula a una temperatura dada, que llega a la superficie del substrato en unida-

des de monocapas por segundo con sólo medir el periodo de las oscilaciones, como en

la figura 2.5.

0 5 10 15 20

Cierre célula

Apertura célula

Inte

nsid

ad (u

. a.)

Tiempo (s)

Figura 2.5. Oscilaciones RHEED que se utilizan para la calibración de la velocidad de crecimiento de

las diferentes células.

Este comportamiento de la intensidad del haz de electrones puede entenderse por

medio de un sencillo modelo representado en la figura 2.6 . Partiendo de una superfi-

cie perfectamente plana se obtiene la máxima reflectividad de los electrones. A medi-

da que se vayan formando islas de altura monoatómicas en la superficie durante el

crecimiento, se aumenta la densidad de escalones en ésta y en consecuencia, se dismi-

nuye su reflectividad. La densidad de escalones es máxima cuando se ha depositado

media monocapa y entonces el haz reflejado es mínimo. Si se sigue depositando la

densidad de escalones disminuye hasta formar de nuevo una superficie perfectamente

plana, obteniendo así la máxima reflectividad inicial. Sin embargo, estas oscilaciones

sufren una amortiguación, que procede del hecho de que en el caso real los procesos

CAPÍTULO 2. EXPERIMENTO

28

superficiales no son homogéneos en el plano de crecimiento. Es decir, dado la com-

plejidad de estos procesos, pueden producirse, por ejemplo, velocidades de crecimien-

to localmente diferentes cuya adición de lugar a dicha amortiguación.

Figura 2.6. Las distintas etapas de recubrimiento durante el crecimiento epitaxial (izquierda) y las co-

rrespondientes intensidades del punto de difracción (00).

Para realizar un crecimiento realmente bidimensional, Briones et al. [23] (IMM-

CNM, CSIC) desarrollaron una técnica denominada epitaxia de haces moleculares de

capas atómicas (ALMBE) que es una modificación de la técnica de MBE convencio-

nal. En esta técnica se sustituye el suministro continuo de los materiales, tanto del

2.1 CRECIMIENTO DE HILOS CUÁNTICOS InAs/InP

29

grupo III como del grupo V por el suministro consecutivo de los mismos. De este mo-

do las distintas especies químicas llegan separadamente a la superficie del substrato.

En la práctica se mantiene constante el flujo del material del grupo III, por ejemplo In,

y se pulsa el flujo del material del grupo V, por ejemplo P, de tal manera que al final

del tiempo necesario para suministrar exactamente una monocapa de In se deposita la

cantidad exacta de P para obtener una monocapa de InP. Esta modificación de la téc-

nica MBE permite obtener crecimiento 2D en condiciones de temperatura de substrato

y/o crecimiento de sistemas con desacoplo de parámetro de red no accesibles por

MBE convencional. Para controlar la estequiometría de este modo de crecimiento se

implementa la técnica de reflectancia diferencial (RD). En el año 1985 Aspnes et al

[24] desarrollaron una técnica, denominada espectrometría de reflectancia diferencial

(RDS), con la cuál es posible medir la estequiometría superficial entre átomos del

grupo III y los del grupo V, es decir esta técnica nos facilita información sobre qué

fracción de una monocapa, por ejemplo de In, se ha depositado.

Utilizando un láser de He-Ne polarizado a 45 º respecto a las direcciones princi-

pales de la red cristalina, en nuestro caso ]110[ y ]011[ por crecer en el plano (001),

medimos la reflectividad en la muestra separando las componentes en las direcciones

]110[ y ]011[ con un prisma de Rochon con dos fotodiodos ubicados a la salida de

los haces de luz. La señal de los fotodiodos se introduce en un amplificador diferen-

cial, obteniendo así la diferencia relativa de las señales. Cuando la superficie de la

muestra está cubierta por una capa de elemento del grupo III, por ejemplo In, los enla-

ces libres de dos átomos de In forman los denominados dímeros, que se alinean en la

dirección ]110[ . A la longitud de onda utilizada (λ = 634 nm) cuando en la superficie

haya una capa de elemento del grupo III obtendremos más reflectividad en la compo-

nente polarizada en la dirección ]110[ . Al depositar el elemento del grupo V, por

ejemplo P, esta diferencia de reflectividad desaparece. De esta forma se puede contro-

lar la estequiometría en la superficie, garantizando un crecimiento capa a capa y este-

quiométrico mediante ALMBE.

CAPÍTULO 2. EXPERIMENTO

30

2.1.2 Proceso de crecimiento de las muestras Las muestras de hilos cuánticos han sido crecidas sobre substratos de InP (001) semi-

aislantes. Primero se desorbió el óxido de la superficie a una temperatura de substrato

de 500 ºC con una presión equivalente al flujo (BEP) de fósforo de unos 6·10-6 torr,

obteniendo un diagrama RHEED correspondiente a la reconstrucción (2x4) del InP

(ver figura 2.7.a). Se depositó el fósforo en forma de P2, disociando la molécula de P4

por medio del “cracker” dispuesto en la boca de la célula. Este consiste en un filamen-

to a la salida del crisol de la célula que llega a calentarse hasta los 1000 ºC y al pasar

las moléculas de P4 son disociadas en P2.

Figura 2.7. Diagrama RHEED en la dirección ]011[ , (a) de la reconstrucción (2x4) de una superficie

plana de InP, (b) superficie donde se han formado los hilos cuánticos de InAs.

2.1 CRECIMIENTO DE HILOS CUÁNTICOS InAs/InP

31

Posteriormente se procede a la calibración de la célula de indio, es decir obtener la

relación entre monocapas por segundo y la temperatura de la célula, dado que interesa

el valor preciso de las temperaturas de la célula de indio para las velocidades de cre-

cimiento a utilizar: 1 ML/s y 0,1 ML/s, concretamente. Por otra parte, utilizando la

técnica RD, elegimos las condiciones de presión y secuencia de pulsado de la célula

de fósforo para un crecimiento bidimensional por ALMBE a una temperatura de 380

ºC, ya que esta temperatura es muy baja para un buen crecimiento plano por MBE

convencional. Antes del crecimiento de los hilos se deposita una capa suavizadora de

InP de un espesor de unos 1000 Å a una velocidad de 1 ML/s por MBE a una tempera-

tura de 400 ºC. Para crecer los hilos de InAs, se prepara la célula de indio para crecer

a una velocidad de 0,1 ML/s y la temperatura del substrato se eleva a 515 ºC. Con una

presión BEP de arsénico de 1.5 · 10-6 Torr, medida mediante un nanómetro de ioniza-

ción colocado en la posición de crecimiento de la muestra. Para el crecimiento de In-

As hemos elegido una secuencia de pantallas que consiste en depositar 0.1 ML de

InAs a la velocidad de 0.1 ML/s (células de In y As abiertas durante 1 s.) y 2 s. de

espera, con la célula de As abierta, para permitir que sea posible una reordenación de

los átomos en la superficie. Este proceso se mantiene hasta que se observa un cambio

en el diagrama RHEED 2D-3D. En efecto, nada más empezar a depositar InAs la re-

construcción (2x4) del InP desaparece y se observa la β(2x4) del InAs, con una distri-

bución de intensidades en el diagrama RHEED diferente. Con la secuencia de deposi-

ción escogida se puede ir contando los pulsos de 0.1 ML de InAs que se depositan.

Entonces, cuando se han depositado 17 pulsos, es decir, 1,7 ML, se observa en la pan-

talla el diagrama RHEED de la figura 2.7.b correspondiente a una morfología tridi-

mensional en la superficie que identificamos con los hilos cuánticos [25][26].

Hasta aquí las tres muestras que se crecieron siguieron el mismo proceso. Una

de las muestras, al llegar a este punto se bajó la temperatura y se extrajo de la cámara

de crecimiento para la caracterización con el microscopio de fuerzas atómicas (AFM),

que veremos en el siguiente apartador de esta memoria. Las otras dos muestras se re-

cubrieron con una capa de InP de 20 nm de espesor a una velocidad de 1 ML/s para su

CAPÍTULO 2. EXPERIMENTO

32

caracterización por fotoluminiscencia. La diferencia entre las dos muestras está en la

temperatura de crecimiento de la capa de recubrimiento de InP. En la primera muestra,

que llamaremos muestra HT, se depositó la capa de InP por MBE convencional a la

misma temperatura de crecimiento de los hilos de InAs (515 ºC). La segunda muestra,

que llamaremos muestra LT, se creció el InP por ALMBE con las condiciones pre-

viamente escogidas anteriormente a la temperatura de substrato de 380 ºC, compro-

bando que la estequiometría es la correcta con el RD. Al terminar, las muestras se

extrajeron del sistema MBE.

2.1.3 Morfología de los hilos cuánticos Para comprobar que se han crecido bien los hilos cuánticos de InAs, se procede a me-

dir la muestra de hilos sin recubrimiento con el microscopio de fuerzas atómicas

(AFM) en el modo de contacto. Este microscopio consiste en medir la deflexión de un

haz láser que incide y se refleja sobre una pestaña metálica muy pequeña (tamaños del

orden del micrómetro) al curvarse. Este microscopio tiene tres partes principales:

a) Sonda del microscopio, consistente en una pestaña metálica con una anchura

del orden de la micra, en cuyo extremo se fija una punta cónica (verdadera

sonda), típicamente de tungsteno, la cual estará en contacto con la superficie

de la muestra.

b) Mesa de desplazamiento, consistente en un desplazador XYZ grueso (manual

o con accionadores DC) y uno fino de tipo piezoeléctrico. El movimiento Z

sirve para realizar el enfoque o aproximación de la punta a la superficie y el

XY sirve para realizar el barrido en el plano de la muestra.

c) Electrónica de control e interfaz con el ordenador.

La medida de la morfología de la superficie es posible por la interacción atracti-

va entre ésta y la punta. Cuanto mayor sea ésta mayor será la deflexión que se produ-

cirá en la pestaña metálica. Para medir esta deflexión se hace incidir un haz láser sobre

la cara superior de la pestaña, y se detecta en un fotodiodo de cuatro segmentos o cua-

drantes el cambio de dirección que sufrió el haz reflejado en la pestaña.

2.1 CRECIMIENTO DE HILOS CUÁNTICOS InAs/InP

33

Con este tipo de microscopio se puede obtener un mapa topográfico de la super-

ficie con una resolución de pocos Ángstroms (esta dependerá de la calidad de la pun-

ta). En la figura 2.8 se puede ver un esquema de su funcionamiento.

Figura 2.8. Esquema del funcionamiento del AFM.

La muestra de hilos sin recubrimiento fue medida utilizando un microscopio

AFM desarrollado en el IMM utilizando puntas y una electrónica de control comercia-

les. La imagen obtenida se puede ver en la figura 2.9. Se observan claramente hilos

cuánticos a lo largo de la dirección ]011[ . El periodo típico de los hilos es de unos 17

nm, sus alturas de alrededor de 1.5 nm (que corresponde a unas 5 ML de InAs) y su

longitud media del orden de 1 µm. A lo largo de los hilos se observa variaciones de su

altura de hasta un 1 nm.

CAPÍTULO 2. EXPERIMENTO

34

0 50 100 150 200 250 300 350 400 450 5000.0

0.5

1.0

1.5

2.0

Z (n

m)

X (nm) Figura 2.9. Imagen de AFM de la muestra de hilos cuánticos de InAs sin recubrimiento (izquierda) y

perfil obtenido de la imagen cruzando la línea pintada (derecha).

2.2 Estudio de la fotoluminiscencia

Las medidas de fotoluminiscencia (PL) de las muestras fueron obtenidas utilizando

como excitación la línea de 514,5 nm de un láser de Argón. Este haz de excitación se

modula con un modulador óptico o chopper a una cierta frecuencia, que se introduce

como referencia en el amplificador síncrono o lock-in. La muestra se coloca en un

criostato conectado a una bomba de vacío con un circuito cerrado de Helio, que puede

bajar la temperatura hasta los 10 K. Para las medidas en función de la temperatura se

dispone de un calentador y una resistencia de platino Pt-100 dentro del criostato co-

nectados a un controlador externo. El haz de excitación se focaliza en la superficie de

la muestra con una lente de focal 200 mm. La luz emitida se recoge con un sistema de

dos lentes llevándola a un monocromador con una distancia focal de 220 mm. A la

salida del monocromador se ubica un detector de Germanio refrigerado con Nitrógeno

líquido y amplificado con una fuente de alta tensión. La señal del detector se introduce

en el amplificador síncrono y con él se comunica el ordenador a través de un puerto

GPIB. El ordenador también se comunica con el monocromador para accionar los

barridos en longitud de onda. El esquema del montaje experimental puede verse en la

figura 2.10.

2.1 CRECIMIENTO DE HILOS CUÁNTICOS InAs/InP

35

Figura 2.10. Esquema del montaje experimental para las medidas de fotoluminiscencia.

Con este montaje se realizan medidas de los espectros de PL en función de la

temperatura, de la potencia de excitación y de la polarización. Para variar la potencia

de excitación se colocan filtros neutros a la salida del láser de Argón. Para realizar las

medidas en función de la polarización se coloca un polarizador lineal a la entrada del

monocromador. Estas medidas se realizan orientando el polarizador lineal en las dos

direcciones cristalográficas principales ]110[ y ]011[ sucesivamente. Para que el sis-

tema experimental sea invariante en cuanto a su eficiencia, se colocan las muestras

dentro del criostato de forma que la dirección ]011[ forme 45º con la vertical, que

marca la disposición de la red de difracción en el monocromador.

Un aspecto a tener en cuenta en la interpretación de los resultados de un experi-

mento de fotoluminiscencia es el hecho de que el espectro registrado es la convolu-

ción de la señal procedente de la muestra y la respuesta del sistema (transmitancia del

sistema experimental sin la muestra y curva de respuesta del detector). Aunque en

ocasiones se puede considerar que la respuesta del sistema es esencialmente plana, no

CAPÍTULO 2. EXPERIMENTO

36

es así cuando la luminiscencia se extiende en un rango de longitudes de onda amplio.

Para tener en cuenta este hecho y eliminar su aportación a la señal medida, todos los

espectros obtenidos han sido divididos por la curva experimental de respuesta del sis-

tema para cada caso. Estas curvas han sido medidas utilizando una lámpara halógena

de cuarzo-tungsteno (ver ejemplo en la figura 2.11), con el sistema experimental en

las mismas condiciones de medida pero sin muestra. Pese a que la propia lámpara tie-

ne una dependencia espectral en el rango de interés, esta dependencia es muy suave y

mucho menor que la de los elementos que se pretende corregir, lo que justifica el mé-

todo empleado.

800 1000 1200 1400 1600 1800

Inte

nsid

ad (u

. a.)

Longitud de onda (nm)

Figura 2.11. Curva de respuesta del sistema experimental utilizado en las medidas sin el polarizador

lineal.

37

Capítulo 3

Resultados

3.1 Fotoluminiscencia en función de la poten-cia de excitación

En este apartado se muestran los espectros de PL de las muestras de hilos cuánticos de

InAs recubiertas obtenidos al variar la potencia de excitación en el rango de densida-

des de potencia: 0-30 kW/cm2.

0,75 0,80 0,85 0,90 0,95 1,00 1,05

Energía (eV)

x15

x3

x2

I PL (u

nida

des

arb.

)

x40

25 kW/cm2

10 kW/cm2

5 kW/cm2

1 kW/cm2

0.5 kW/cm2

Figura 3.1. Espectros de fotoluminiscencia de la muestra LT a 12 K para diferentes densidades de exci-

tación.

CAPÍTULO 3. RESULTADOS

38

En la figura 3.1 se muestran las medidas de la muestra LT y en la figura 3.2 las de la

muestra HT. En las dos muestras se observa un comportamiento semejante. No se

aprecia ningún aumento relativo apreciable con la potencia de las componentes de alta

energía con respecto a las de baja y las componentes que existen a baja potencia se

mantienen con el aumento de ésta. Ello nos permite suponer que las distintas compo-

nentes en las que se descompone el espectro provienen de la recombinación de porta-

dores en hilos cuánticos diferentes y no de estados excitados de un mismo hilo, tal y

como ocurría en muestras anteriores [27].

0,90 0,95 1,00 1,05 1,10 1,15 1,20

30 kW/cm2

Energía (eV)

20 kW/cm2

x1.5

x3

x6

x12

I PL (u

nida

des

arb.

)

10 kW/cm2

4 kW/cm2

2 kW/cm2

Figura 3.2. Espectros de fotoluminiscencia de la muestra HT a 12 K para diferentes densidades de exci-

tación.

Para calcular la densidad de potencia de excitación se ha considerado un diáme-

tro del spot láser incidente en la muestra de unos 10 µm. Este valor se obtiene al con-

siderar la propagación del haz láser de argón con una distribución de intensidad gaus-

siano (haz gaussiano). Éste tiene su cintura situada a la salida, con un diámetro de w0

= 1.5 mm. Al propagarse por el aire, la anchura del haz varía según la expresión [28]:

3.1 FOTOLUMINISCENCIA EN FUNCIÓN DE LA POTENCIA

39

λ+=

2

20

20

2

wz1w)z(w (3-1)

para m6z ≅ , que es la distancia desde el láser a la lente que focaliza en la muestra y

con nm5.514=λ se obtiene una anchura de haz de unos 2.6 mm. El diámetro del spot

sobre la muestra podemos calcularlo utilizando la expresión:

wfd0 πλ

= (3-2)

que da como resultado un diámetro de spot de unos 13 µm (siendo f = 200 mm la fo-

cal de la lente que focaliza el haz láser en la muestra).

3.2 Fotoluminiscencia en función de la polari-zación lineal

La figura 3.3 y la figura 3.4 muestran los resultados de fotoluminiscencia medidos con

el polarizador lineal a lo largo de las direcciones ]110[ y ]011[ para las muestras LT

y HT, respectivamente. La emisión de las muestras claramente tiene una mayor com-

ponente polarizada en la dirección de los hilos cuánticos. El grado de polarización que

se representa en las figuras se calcula como:

100x)II(

)II((%)P

]110[]011[

]110[]011[

PLPL

PLPL

+

−= (3-3)

Se observa un grado de polarización de un 20% y un 15% para las muestras LT y HT,

respectivamente. Estos grados de polarización medido son independientes de la poten-

cia de excitación y de la temperatura de la muestra. Es interesante destacar aquí que

parece tener una tendencia a disminuir desde la parte de baja energía a la de alta de los

espectros de emisión. Si se extrapola el valor de P en la muestra LT hacia energías

próximas a las de la emisión medida en la muestra HT, el valor encontrado sería

~10%, apreciablemente menor que el medido en la muestra HT.

CAPÍTULO 3. RESULTADOS

40

0,75 0,80 0,85 0,90 0,95

0

5

10

15

20

25

grad

o de

pol

ariz

ació

n (%

)

Energía (eV)

Figura 3.3. Espectros de fotoluminiscencia a 12 K con una excitación de 1 kW/cm2 de la muestra LT

con el polarizador lineal en la dirección de los hilos (línea discontinua) y perpendicular a éstos (línea

punteada). El grado de polarización se representa en línea contínua.

0,95 1,00 1,05 1,10 1,15

0

5

10

15

20

25

grad

o de

pol

ariz

ació

n (%

)

Energía (eV)

Figura 3.4. Espectros de fotoluminiscencia a 12 K con una excitación de 2 kW/cm2 de la muestra HT

con el polarizador lineal en la dirección de los hilos (línea discontinua) y perpendicular a éstos (línea

punteada). El grado de polarización se representa en línea contínua.

3.3 FOTOLUMINISCENCIA EN FUNCIÓN DE LA TEMPERATURA

41

3.3 Fotoluminiscencia en función de la tempe-ratura

En las figuras 3.5 y 3.6 se presentan los espectros de fotoluminiscencia de las mues-

tras LT y HT para diferentes temperaturas, advirtiéndose que emiten luz hasta tempe-

ratura ambiente. Los máximos de intensidad de la luminiscencia a temperatura am-

biente están centrados en 0.8 eV y 0.95 eV para las muestras LT y HT,

respectivamente. Este tipo de nanostructuras cuánticas son óptimas para dispositivos

optoelectrónicos utilizados en telecomunicaciones por su sintonización entre las longi-

tudes de onda importantes en este campo: 1.55 y 1.3 µm.

En el espectro de fotoluminiscencia, se observa un claro desplazamiento al rojo

de la emisión con el aumento de la temperatura y una disminución de intensidad más

rápida de la parte de alta energía del espectro. Esto apunta a un mecanismo de escape

térmico de portadores de las nanoestructuras hacia la barrera, explicado brevemente en

el primer capítulo. La anchura del espectro no cambia mucho con la temperatura a

primera vista, pero esta evolución del espectro de fotoluminiscencia con la temperatu-

ra se estudiará más a fondo en el siguiente capítulo, aplicando un modelo que incluye

tal mecanismo, origen de la recombinación no radiativa de portadores en las barreras.

En resumen, las muestras de hilos cuánticos de InAs objeto de este trabajo emi-

ten luz en longitudes de onda muy diferentes, y en todo caso, de gran interés tecnoló-

gico. La diferencia entre estas dos muestras es la temperatura de crecimiento de la

capa de recubrimiento de InP. Este hecho indica que el proceso de recubrimiento de

las nanoestructuras afecta al tamaño de las mismas. El estudio de los fenómenos que

tiene lugar en el proceso de recubrimiento de los hilos está siendo estudiado en la ac-

tualidad. Por otro lado, las propiedades ópticas de ambas muestras son muy similares,

como evidencian las medidas de PL en función de la potencia de excitación, de la

temperatura y la polarización de la luz emitida.

En el capítulo siguiente se presenta un estudio detallado y comparativo de las

propiedades ópticas de estas muestras.

CAPÍTULO 3. RESULTADOS

42

0,75 0,80 0,85 0,90 0,95

x1.4

x2.4

x4

x12

x35

280 K232 K202 K

166 K

118 K

80 K

45 K

12 K

I PL (u

nida

des

arb.

)

Energía (eV) Figura 3.5. Espectros de fotoluminiscencia a diferentes temperaturas de la muestra LT medidos con una

densidad de excitación de 5 kW/cm2.

0,90 0,95 1,00 1,05 1,10 1,15

x1.2

x4

x11

x20

x50

300 K229 K

198 K

160 K

70 K

12 K

I PL (u

nida

des

arb.

)

Energía (eV)

Figura 3.6. Espectros de fotoluminiscencia a diferentes temperaturas de la muestra HT medidos con una

densidad de excitación de 4 kW/cm2.

43

Capítulo 4

Análisis

4.1 Sintonización de la emisión En esta sección vamos a centrarnos en las diferencias entre las dos muestras estudia-

das. La principal diferencia está en la longitud de onda en la que está centrada la emi-

sión de fotoluminiscencia de cada una. En la figura 4.1 mostramos de nuevo el espec-

tro de fotoluminiscencia a baja temperatura de ambas muestras. Se ha realizado un

ajuste numérico del espectro con varias componentes gaussianas, lo que se justifica

por el carácter inhomogéneo del ensanchamiento de los estados energéticos debido a

las fluctuaciones de tamaño de las nanoestructuras. Los valores de las anchuras de las

gaussianas ajustadas están entre 20 y 40 meV. Se puede observar que la posición en

energía de los picos gaussianos P3 y P4 coinciden en las dos muestras. De las medidas

en función de la densidad de excitación, figuras 3.1 y 3.2, como no se observa ningún

cambio aparente en los espectros de fotoluminiscencia de baja a alta excitación, se

puede deducir que los diferentes picos no corresponden a estados excitados de un

mismo hilo. De las medidas de AFM se observa que la principal dimensión de confi-

namiento es la altura del hilo, pues es mucho menor que su longitud y anchura. Este

comportamiento multimodal en la emisión de fotoluminiscencia de hilos cuánticos

InAs/InP de varios picos separados a distancias de unos 30 meV ya ha sido estudiado

en profundidad anteriormente, concluyéndose que cada pico del espectro de emisión

corresponde a hilos cuya altura se diferencia en 1 monocapa [29]. Alén et al. [27] pro-

pusieron un modelo para obtener los estados ligados de los electrones y huecos de una

red infinita de hilos cuánticos rectangulares acoplados y tensionados bi

CAPÍTULO 4. ANÁLISIS

44

axialmente, basado en el método de expansión en funciones propias [30]. De este mo-

delo se obtuvo una curva representando la energía de la transición fundamental en

función de la altura del hilo (anchura y periodo fijos). En la figura 4.2 se puede obser-

var esta curva superpuesta a las energías de los picos gaussianos P1-P9 ajustados en el

espectro de fotoluminiscencia a baja temperatura colocados de forma que entre pico y

pico haya una fluctuación de una monocapa en altura. Aquí nos interesa destacar que

la muestra HT, con P2 y P3 como componentes gaussianas de mayor intensidad

(figura 4.1), presenta hilos con una altura promedio bastante menor, una 5 ML, que la

muestra LT, cuyas componentes gaussianas más intensas eran las P7 y P8 (figura 4.1).

0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 1,15 1,20

P9

P8 P7

P6

P3P5

I PL (u

nida

des

arb.

)

Energía (eV)

P4P1

P4

P3

P2

muestra LT

muestra HT

Figura 4.1. Ajuste de múltiples gaussianas de los espectros de fotoluminiscencia a baja temperatura de

las dos muestras.

4.1 SINTONIZACIÓN DE LA EMISIÓN

45

4 6 8 10 12

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

P9P8

P7P6

P5

P4

P3

P2

P1 muestra HT muestra LT Modelo

E e1-E

hh1 (

eV)

Altura del hilo (ML)

Figura 4.2. Energías teóricas [27] de la transición fundamental interbanda para hilos cuánticos InAs/InP

de diferentes alturas y picos experimentales del espectro de fotoluminiscencia.

Previamente se han estudiado los perfiles obtenidos de varias imágenes de AFM

medidas en diferentes puntos de la muestra sin recubrimiento. De estos perfiles, como

el de la figura 2.9, se ha hecho un estudio estadístico de las alturas máximas de las

nanoestructuras. En la figura 4.3 mostramos la distribución de estas medidas.

0 1 2 3 4 5 6 70

10

20

30

40

50

60

70

80 Total cuentas=404

Cue

ntas

Altura (MLInAs) Figura 4.3. Distribución de alturas de los hilos cuánticos obtenida de imágenes de AFM de la muestra

sin recubrimiento.

CAPÍTULO 4. ANÁLISIS

46

Las alturas absolutas aquí presentadas no tiene porqué ser exactas debido a la capaci-

dad resolutiva del microscopio de fuerzas atómicas. Para nanoestructuras situadas tan

cerca unas de otras, como es el caso de los hilos cuánticos, como la punta del AFM

tiene una determinada anchura puede no ser capaz de penetrar suficientemente entre

dos hilos y contactar con el fondo. Esto da lugar a un falso origen en la altura deducida

de la imagen topográfica del AFM y, por tanto, a una altura promedio ligeramente

inferior a la real. Este inconveniente no afectaría a la forma de la distribución, para la

que un ajuste gaussiano arroja una anchura de 2 ML. Esto explicaría porque el espec-

tro de emisión de las muestras LT y HT muestra principalmente dos picos muy inten-

sos correspondientes a hilos de una monocapa de diferencia. El valor absoluto encon-

trado para la altura más probable sería de unas 3.7 ML, sería muy próxima a la que

deducimos de la superposición de las energías experimentales con las calculadas

(figura 4.2) para la muestra HT, pero apreciablemente menor que la estimada para la

muestra LT.

La diferencia en el crecimiento de las dos muestras radica en la distinta tempera-

tura del substrato durante el crecimiento de la capa de recubrimiento de InP. De las

medidas de fotoluminiscencia se puede deducir que los hilos de la muestra LT son

mayores en altura que los hilos de la muestra HT. De los resultados de la polarización

en el apartado 3.2, observamos que el grado de polarización a lo largo del eje de los

hilos cuánticos es mayor para la muestra LT, la que supuestamente tiene hilos más

altos. La aparición de esta anisotropía en la polarización de la emisión es debido al

solapamiento de las funciones de onda de los estados de hueco pesado y hueco ligero,

debido al confinamiento y a la naturaleza triaxial de la tensión [31]. En trabajos sobre

la anisotropía de polarización de la emisión de hilos cuánticos en función de la geome-

tría del hilo, es decir según la relación entre anchura y altura, se obtiene que, para la

emisión de fotoluminiscencia en el plano (001), el grado de polarización en la direc-

ción del hilo es mayor para alturas mayores [31][32]. Esto es comprensible ya que si

la altura del hilo se reduce mucho, manteniendo su anchura, la geometría se parecería

más a un pozo cuántico (la función de ondas de los portadores estaría más deslocali-

zada), y en la fotoluminiscencia de un pozo cuántico no existe anisotropía de polariza-

4.1 SINTONIZACIÓN DE LA EMISIÓN

47

ción (en el plano del pozo). En nuestro caso, la muestra HT tiene un grado de polari-

zación del 15 %, menor que el 20 % medido en la muestra LT. Esto apoya la idea de

que en la muestra HT tenemos hilos de menor altura que en la otra.

Para explicar porqué los hilos en ambas muestras tienen alturas netamente dife-

rentes, hemos de acudir a la dinámica de su crecimiento, cuando se recubren con InP.

El origen de esa diferencia podría venir dedo por la dependencia con la temperatura

del intercambio entre átomos de arsénico y fósforo en la superficie de la muestra [33].

Veamos de describir esquemáticamente el proceso de recubrimiento de los hilos de

InAs con InP. En primer lugar examinaremos el caso de la muestra LT, cuyo recubri-

miento se realizó a una temperatura de 380 º C, suficientemente baja como para espe-

rar que, con la célula de arsénico abierta a una presión BEP de 1.5 ·10-6 Torr, la

superficie de InAs quede saturada en dímeros de arsénico. Además, cuando la célula

de As se cierra, estos dímeros tardan mucho tiempo en desorberse de la superficie. En

esta muestra se crece la capa de recubrimiento por ALMBE, en cuyo proceso inicial-

mente se deposita una monocapa de indio recubriendo la superficie. El tiempo entre

cerrar la célula de arsénico y abrir la de indio es muy corto y cuando llegan los átomos

de In a la superficie ésta está llena de arsénico. Este arsénico de la superficie rápida-

mente forma enlaces con el nuevo indio que acaba de llegar, sobre-creciendo el InAs

que ya había. En el caso de los hilos, ello provocaría un ligero incremento de su altura,

como puede verse en el esquema de la figura 4.4.

Figura 4.4. Esquema del sobre-crecimiento de los hilos en la muestra LT. Puntos blancos representan

átomos de In, puntos grises los átomos de P y puntos rayados los átomos de As.

CAPÍTULO 4. ANÁLISIS

48

Al continuar con el crecimiento del recubrimiento de InP por ALMBE, al abrir la cé-

lula de fósforo, ya se producirá crecimiento de InP sobre los hilos. Además, también

habrá que tener en cuenta que, dependiendo del bombeo de vacío del sistema se puede

tener una cantidad considerable de arsénico dentro de la cámara de MBE ya que hace

sólo un momento que se acaba de cerrar la célula de As.

Para la muestra HT ocurre lo contrario. Mantenemos los hilos de InAs a alta

temperatura (515 ºC) con la célula de arsénico abierta. En esta situación el equilibrio

entre la incorporación de As en la superficie y las pérdidas por desorción térmica hace

que no se llegue a saturar la superficie con dímeros de arsénico. Así, una vez se cierra

la célula, la superficie se queda sin arsénico rápidamente y, si se espera el tiempo sufi-

ciente, podría llegarse a desorber parte del InAs depositado. Al crecer la capa de recu-

brimiento de InP por MBE se cierra la célula de As y se abren las de In y P2. En ese

corto tiempo, se podría desorber algo de As de la superficie ayudado por la adsorción

del fósforo, pudiéndose esperar una reducción de la cantidad de InAs inicialmente

depositado. Esto se puede ver esquemáticamente en el esquema presentado en la

figura 4.5.

Figura 4.5. Esquema de la reducción de altura de los hilos en la muestra HT. Puntos blancos

representan átomos de In, puntos grises los átomos de P y puntos rayados los átomos de As.

Por tanto, en la muestra HT, el recubrimiento de los hilos con InP podrá inducir una

ligera reducción de su tamaño. Los procesos de intercambio del elemento V, como los

descritos hasta aquí en nuestras muestras, en hilos cuánticos InAs/InP, ya se han cita-

do en muestras crecidas mediante epitaxia por haces químicos (CBE) [34]. Como re-

4.1 SINTONIZACIÓN DE LA EMISIÓN

49

sultado del cambio de la altura de los hilos se obtiene un cambio en la longitud de

onda de emisión de la muestra. De esta forma, disponemos de un método sencillo para

sintonizar la longitud de onda de emisión de las muestras, que consiste en cambiar la

temperatura del substrato durante el crecimiento de la capa de recubrimiento de InP.

Para demostrar que el proceso de intercambio As/P durante el recubrimiento de los

hilos cuánticos de InAs por InP es el mayor responsable del cambio de tamaño de és-

tos, estamos en la actualidad realizando medidas in situ y en tiempo real mediante

RHEED y medidas de tensión acumulada.

4.2 Modelización de la fotoluminiscencia Este apartado se va a centrar en el comportamiento de la fotoluminiscencia con la

temperatura de las muestras con nanoestructuras. En primer lugar se hará una descrip-

ción del modelo utilizado y luego se mostrará su aplicación a las muestras con hilos

cuánticos que aquí se han estudiado. Como paso intermedio se validará el modelo con

medidas previas sobre cajas cuánticas InAs/GaAs, para las cuales dicho modelo (aun-

que menos elaborado) se propuso inicialmente[35].

4.2.1 Descripción del modelo El modelo que utilizamos para representar el comportamiento de la fotoluminiscencia

en función de la temperatura está basado en las ecuaciones de balance sobre la pobla-

ción de portadores en cada estado energético del sistema de niveles que constituye la

muestra con nanoestructuras. En principio, los niveles que hay en una nanoestructura

y su alrededor corresponderían a los que se pueden ver en la figura 1.6. Pero, como

vimos en el apartado 1.3, en el modo de crecimiento SK aparece además de las na-

noestructuras, una capa delgada del mismo material a la que se denomina capa mojan-

te. Al recubrir las nanoestructuras con el material del substrato para formar la barrera

de potencial, el emparedado substrato-capa mojante-recubrimiento constituye un pozo

cuántico. Este pozo tendrá sus niveles de energía característicos para electrones y hue-

cos, que intervendrán decisivamente en la dinámica de la transferencia de portadores

entre las nanoestructuras y la barrera. Aunque sabemos que tenemos dos tipos de por-

CAPÍTULO 4. ANÁLISIS

50

tadores, aquí vamos a considerar que la dinámica está dominada por la presencia del

par electrón-hueco correlacionado, es decir, del excitón, ya que el confinamiento cero-

dimensional o uni-dimensional dan lugar a una fuerte interacción coulombiana entre

los portadores [36]. Por otra parte, en el caso de pozos cuánticos, se ha demostrado

que la dependencia con la temperatura de la fotoluminiscencia no se ve afectada por la

alineación de las bandas de conducción y valencia [37][38]. Por ello no es necesario

una dinámica separada para electrones y huecos en la descripción de la captura y el

escape térmico de portadores. Un esquema de los niveles excitónicos, considerando la

barrera y la capa mojante alrededor de la nanoestructura cuántica, se muestra en la

figura 4.6, que servirá de base para el modelo cinético que se describirá en lo que si-

gue.

Figura 4.6. Esquema de los niveles de energía para los excitones del sistema considerado en el modelo.

Vamos a suponer que cada nanoestructura cuántica puede capturar a un solo ex-

citón, ya que, en particular para cajas cuánticas, esta consideración no está en conflic-

to con estudios anteriores sobre biexcitones [39]. De hecho, como la energía de enlace

excitón-excitón es baja, para nuestro modelo es equivalente un estado doble degenera-

WLf

Be

WLBte nn−κ B

fWLe

WLBc nn−κ

WLf

Qe

QWLc nn−κQ

fWLe

QWLte nn−κ

Bf

Bp nκ

WLf

WLp nκ

Qfrnκ

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

51

do que dos estados simples. Entonces, para las ecuaciones de balance vamos a consi-

derar las poblaciones de nanoestructuras ocupadas ( Qfn ) y nanoestructuras vacías

( Qen ) cumpliendo:

Qe

Qf

Qt nnn += (4-1)

siendo Qtn la densidad total de nanoestructuras. Para los estados de la barrera y la ca-

pa mojante estas magnitudes representan la densidad de estados ocupados ( Bfn y

WLfn ) y vacíos ( B

en y WLen ), en lugar de nanoestructuras por unidad de área,

WLe

WLf

WLt

Be

Bf

Bt

nnn

nnn

+=

+= (4-2)

siendo Btn y WL

tn las densidades de estados totales para la barrera y la capa mojante,

respectivamente.

En la figura 4.6 la ganancia (G) representa la inyección de portadores a la barre-

ra producida debido a la absorción de la luz proveniente de la excitación con el láser

de Argón, por ejemplo. Esta inyección es un término externo ya que depende de la

potencia de excitación, controlada a voluntad en la experiencia. Otro término de ga-

nancia de excitones en la barrera vendrá originado por los portadores que llegan de la

capa mojante por excitación térmica ( WLf

Be

WLBte nn−κ ), que, además, es un término de

pérdidas en la capa mojante. Este término es proporcional a la densidad de estados

llenos de la capa mojante, ya que cuantos más excitones haya en ésta más podrán es-

capar térmicamente a la barrera. También es proporcional a la densidad de estados

vacíos de la barrera, lo que permitiría incluir efectos de saturación (experimentos bajo

alta potencia de excitación), es decir si existen pocos estados vacíos en la barrera no

habrá sitio para los que puedan venir de la capa mojante por excitación térmica. Por

otra parte, se considera la pérdida de excitones por vías no-radiativas y por recombi-

nación radiativa del electrón y el hueco incluidos en el mismo factor Bf

Bp nκ , para la

barrera, y WLf

WLp nκ , para la capa mojante. Para la barrera también resultan pérdidas

CAPÍTULO 4. ANÁLISIS

52

su conexión con la capa mojante, que permite a ésta la captura de portadores, repre-

sentada por el término Bf

WLe

WLBc nn−κ , donde también se considera un posible efecto de

saturación.

La conexión directa entre las nanoestructuras y la barrera no es razonable tenerla

en cuenta pues tanto la captura como el escape térmico de los portadores en las na-

noestructuras es más probable que tanga lugar a través de los niveles de la capa mo-

jante, por estar más cerca energéticamente que el borde de absorción de la barrera. En

las nanoestructuras tendremos una componente relacionada con la captura de excito-

nes provenientes de la capa mojante, WLf

Qe

QWLc nn−κ y, además, pérdidas provocadas

por el escape térmico de los portadores, Qf

WLe

QWLte nn−κ , términos análogos a los que

gobiernan la conexión entre la barrera y la capa mojante. Aquí no vamos a considerar

pérdidas no-radiativas de portadores, pues si alguna nanoestructura contiene centros

de recombinación no-radiativa (o en su intercara con la capa mojante o la barrera),

ésta no participará en la banda de emisión a baja temperatura. Los excitones en las

nanoestructuras se recombinarán radiativamente con un cierto tiempo de vida. Consi-

derando todos los términos descritos, las ecuaciones de balance se podrían escribir

como:

Qfr

Qf

WLe

QWLte

WLf

Qe

QWLc

Qf

WLf

WLp

WLf

Be

WLBte

WLf

Qe

QWLc

Qf

WLe

QWLte

Bf

WLe

WLBc

WLf

Bf

Bp

Bf

WLe

WLBc

WLf

Be

WLBte

Bf

nnnnndt

dn

nnnnnnnnndt

dn

nnnnnGdt

dn

κ−κ−κ=

κ−κ−κ−κ+κ=

κ−κ−κ+=

−−

−−−−

−−

(4-3)

Los factores para describir los efectos de activación térmica de los portadores

dependerán de la energía de éstos con respecto a la barrera y de la temperatura, a tra-

vés de la función de distribución de Boltzmann [6] [40], como se mencionó en el pri-

mer capítulo con relación a la ecuación (1-16),

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

53

∆−κ=κ

∆−κ=κ

−−−

−−−

TkEexp

TkEexp

B

QWLQWLc

QWLte

BWLBWLB

cWLB

te

(4-4)

donde kB es la constante de Boltzmann. Las energías de activación las tomaremos co-

mo la diferencia entre el nivel de la barrera (EB) y la capa mojante (EWL) para

WLBE −∆ , y como la diferencia entre el nivel de la capa mojante y la energía de emi-

sión de la nanoestructura (EQ) para QWLE −∆ . Por simplicidad vamos a despreciar las

posibles dependencias con la temperatura de los demás parámetros (excepto las ener-

gías de los niveles) así como reducir el número de parámetros de ajuste del modelo a

los resultados experimentales.

Las ecuaciones (4-3) describen el comportamiento del sistema para una sola na-

noestructura o para la existencia de un solo tipo de nanoestructura con un cierto nivel

fundamental. Para extenderlas a un conjunto de nanoestructuras de diferentes tamaños

con diferentes niveles de energía hay que considerar una distribución de estados. Hay

que generalizar la ecuación (4-1) con QEE ≡ a

)E(n)E(n)E(n Qe

Qf

Qt += (4-5)

y considerar que ∫= dE)E(nn Qt

Qt es la densidad total de nanoestructuras (o estados).

Dado que se puede considerar que ninguna nanoestructura tiene prioridad para ser

ocupada con portadores, es decir, que el proceso de captura de excitones en las na-

noestructuras es aleatorio y no depende de su tamaño [41], podemos suponer que la

densidad de estados es proporcional al espectro de fotoluminiscencia a muy baja tem-

peratura.

Sin considerar transmisión de portadores directamente entre nanoestructuras di-

ferentes por efecto túnel, solamente habrá que sumar las contribuciones de todas las

nanoestructuras en los procesos de captura y escape térmico. De esta forma las ecua-

ciones (4-3) quedan como:

CAPÍTULO 4. ANÁLISIS

54

)E(n)E(nn)T,E(n)E(ndt

)E(dn

nnn)T(dEn)E(n

dE)E(nn)T,E(nndt

dn

nnnnn)T(Gdt

dn

Qfr

Qf

WLe

QWLc

WLf

Qe

QWLc

Qf

WLf

WLp

WLf

Be

WLBc

WLf

Qe

QWLc

Qf

WLe

QWLc

Bf

WLe

WLBc

WLf

Bf

Bp

Bf

WLe

WLBc

WLf

Be

WLBc

Bf

κ−γκ−κ=

κ−βκ−κ−

γκ+κ=

κ−κ−βκ+=

−−

−−

−−

−−

(4-6)

donde ( )( )TkEEexp)T( BWLB −−=β y ( )( )TkEEexp)T,E( BWL −−=γ .

Hasta aquí el modelo es similar al propuesto por Sanguinetti et al. [35], aunque

éste no considera la dinámica global de la barrera que aquí hacemos, además de no

contemplar el efecto de saturación de los estados de la capa mojante, limitándose a la

aproximación de que la densidad total de estados de ésta es mucho mayor que la de las

nanoestructuras.

Para que el sistema fuese más realista también habría que considerar una distri-

bución de estados para la capa mojante, ya que no es un pozo uniforme en anchura y

composición. Este no es un efecto despreciable, pues la banda de luminiscencia aso-

ciada a la capa mojante es ancha, del orden de 10-20 meV, o más en muchos casos.

Sin embargo, si se considera una distribución de estados continua para la capa mojante

( WLtn , WL

fn y WLen ) habría que resolver sus integrales en las ecuaciones acopladas de

la capa mojante y las nanoestructuras. Ello complicaría la resolución numérica del

sistema de ecuaciones. Una aproximación más simple es la discretización de la distri-

bución de estados de la capa mojante a un número finito de niveles. Cada uno de estos

niveles contribuirá con una densidad de estados total específica igual a su peso en la

distribución de estados continua (de tipo gaussiano), tal y como se muestra gráfica-

mente en la figura 4.7.

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

55

5

4

3

2

1Den

sida

d de

est

ados

Energía

Figura 4.7. Discretización en cinco niveles de una distribución de estados gaussiana (curva segmenta-

da).

De esta forma, tendremos que añadir al sistema de ecuaciones (4-6) una ecuación por

cada nivel de la capa mojante. La contribución de éstos a la ecuación de la barrera y

las nanoestructuras es simplemente una suma discreta al número N de niveles elegidos

para la capa mojante,

)E(n)E(nn)T,E(n)E(ndt

)E(dn

nnn)T(dEn)E(n

dE)E(nn)T,E(nndt

dn

nnnnn)T(Gdt

dn

Qfr

i

Qf

WLei

QWLc

i

WLf

Qe

QWLc

Qf

WLf

WLp

WLf

Bei

WLBc

WLf

Qe

QWLc

Qf

WLei

QWLc

Bf

WLe

WLBc

WLf

Bf

Bp

i

Bf

WLe

WLBc

i

WLf

Bei

WLBc

Bf

iiii

iiiiii

iiiii

iiii

κ−γκ−κ=

κ−βκ−κ−

γκ+κ=

κ−κ−βκ+=

∑∑

∫∫

∑∑

−−

−−

−−

−−

(4-7)

donde ahora ( )( )TkEEexp)T( BWLBi i−−=β y ( )( )TkEEexp)T,E( BWLi i

−−=γ y el

subíndice i representa el número del nivel de la discretización realizada para la emi-

CAPÍTULO 4. ANÁLISIS

56

sión de la capa mojante con energía iWLE . La densidad total de estados para cada ni-

vel i cumplirá:

iii WLe

WLf

WLt nnn += (4-8)

Como los materiales que constituyen las muestras son semiconductores, la ener-

gía de cada nivel dependerá con la temperatura en la forma que lo hace la anchura de

la banda prohibida del semiconductor en cuestión, según la ley de Varshni [42]:

2

21

gg TT)0(E)T(Eα+

α−= (4-9)

donde los factores Eg(0), 1α y 2α dependerán del material semiconductor considera-

do.

Combinando las ecuaciones (4-7) con (4-2), (4-5) y (4-8), se elimina la depen-

dencia con las densidades de población de estados vacíos. Para el caso estacionario, se

obtiene un sistema de ecuaciones que puede resolverse numéricamente para unos va-

lores concretos de los parámetros y para una temperatura dada (ver Apéndice A). La

solución de )E(nQf será función de la energía E de tal forma que podrá ser separada en

el producto de una cierta función de ocupación por la distribución de estados de las

nanoestructuras. Finalmente, la intensidad de la PL a una energía E será proporcional

a la densidad de población de nanoestructuras llenas, es decir, ocupadas con excitones:

)E(nA)E(I QfrPL κ= , donde A será un factor de normalización entre las medidas y el

resultado del ajuste. De ahí que podamos asimilar la densidad de estados a la banda de

emisión a baja temperatura (en forma espectral), como se dijo más arriba, para la cual

la conexión térmica hacia estados de mayor energía (capa mojante) es despreciable.

La densidad de nanoestructuras la tomamos por unidad de área y se podrá esta-

blecer su valor a partir de las imágenes de AFM de muestras sin recubrir. Esto implica

que todas las densidades de población o estados se darán también por unidad de área.

Aunque parezca erróneo considerar como bidimensional la densidad de estados en la

barrera, el valor que se asignará en las ecuaciones corresponderá a una densidad efec-

tiva por unidad de área en el plano de las nanoestructuras. También hay que fijarse en

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

57

las dimensiones de los parámetros que intervienen en las ecuaciones, ya que los rela-

cionados con el intercambio entre niveles, es decir los de captura y escape ( cκ ), tie-

nen dimensiones de área por unidad de tiempo (L2 T-1). Esto es, la velocidad de captu-

ra de los excitones por las nanoestructuras desde la capa mojante será Qe

QWLc n−κ , que

depende de la cantidad de nanoestructuras que estén vacías.

El modelo contiene muchos parámetros, por lo que intentaremos fijar algunos de

ellos de forma razonable. Uno sería la densidad de nanoestructuras, que se establecería

como el valor medido en la caracterización por AFM. El tiempo radiativo ( rτ ) de la

recombinación en nanoestructuras se fijará al tiempo típico de 1 ns [43]. Fijar estos

dos parámetros es importante ya que definen las escalas de densidades y tiempos que

se van a emplear en el modelo.

Para la inyección de portadores (G) se ha visto que, para una excitación en onda

continua a baja temperatura, el primer estado excitado aparece en el espectro de PL

cuando 2.0nG Qtr ≥τ [41]. Entonces, un valor que esté de acuerdo con las potencias

de excitación que aquí manejamos, de tal forma que no aparezcan estados excitados,

sería 001.0nG Qtr =τ . Otros parámetros podrán ser fijados o simplificados según los

materiales de que esté compuesta la muestra y las características de la emisión de la

capa mojante.

El procedimiento para los ajustes de las medidas al modelo será similar en todos

los casos. Para unos ciertos valores iniciales de los parámetros se resolverá el sistema

de ecuaciones para las diferentes temperaturas de medida, deduciendo así para cada

temperatura IPL(E). Con estas funciones se procederá a ajustar por mínimos cuadrados

la curva de intensidad integrada de la PL en función de la temperatura, además de

ajustar un espectro de PL a alta temperatura, ya que el ajuste de la intensidad integrada

puede no reproducir la forma de los espectros a las distintas temperaturas.

4.2.2 Aplicación a muestras de cajas cuánticas Aquí vamos a mostrar los resultados del ajuste del modelo a medidas de fotoluminis-

cencia de muestras de cajas cuánticas realizadas por C. Rudamas [44]. El comporta-

CAPÍTULO 4. ANÁLISIS

58

miento de la PL con la temperatura es muy similar a otros descritos en la literatura, y

en algún caso explicado con el modelo de Sanguinetti [35], lo que nos servirá para

validar el modelo descrito en el epígrafe anterior. Las muestras contienen cajas cuán-

ticas de InAs crecidas sobre un substrato de GaAs (001) con diferentes espesores no-

minales de InAs depositados: 1.5 ML, 1.8 ML y 2.5 ML, y recubiertas con una capa

de GaAs de espesor 50, 50, y 24 nm, respectivamente. Como tenemos GaAs como

material de la barrera fijamos:

204TT10405.5519.1)T(E

24

B +⋅

−=−

(4-10)

y para la variación con la temperatura de los niveles de la capa mojante y de las cajas

cuánticas se usa la variación de la banda prohibida del InAs:

83TT1076.2

EE

)T(E)T(E 24

WLWL

+⋅

=

(4-11)

Como distribución de estados de las cajas cuánticas se hace un ajuste multi-gaussiano

del espectro de PL a la temperatura más baja medida, el cual se introduce en las ecua-

ciones después de normalizar y multiplicar por la densidad total de cajas Qtn , que se

fija con un valor diferente para cada muestra, según medidas de AFM de muestras

similares sin recubrir. Para las tres muestras se ha fijado el tiempo de transición desde

la barrera a la capa mojante y desde ésta a las cajas cuánticas a 3 ps y 30 ps, respecti-

vamente [45], quedando fijados los parámetros:

Qt

19QWLc

WLt

19WLBc

ns1033.33

ns103.333

−−

−−

⋅=κ

⋅=κ

(4-12)

donde ∑=i

WLt

WLt

inn

los cuales representan la velocidad de captura de los portadores por las cajas cuánticas

cuando éstas están prácticamente vacías, sin efectos de saturación.

Ahora vamos a detallar los resultados del modelo para cada una de las muestras.

El proceso seguido es el mismo pero en cada una se ha realizado alguna consideración

específica, principalmente sobre la capa mojante.

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

59

Muestra 1.5 ML

En esta muestra fijamos la densidad de cajas cuánticas a Qtn = 0.9 ·1010 cm-2. La línea

de PL de la capa mojante la discretizamos en tres niveles con su peso correspondiente

según el espectro representado en la figura 4.8.

1,10 1,15 1,20 1,25 1,30 1,35 1,40 1,45 1,50

I PL(u

nida

des

arb.

)

Energía (eV)

Espectro de PL a T=36 K

Capa mojante

1,40 1,41 1,42 1,43 1,44 1,45

EWL3

EWL2

EWL1

I PL(u

nida

des

arb.

)

Energía (eV)

Figura 4.8. Espectro de PL de la muestra de cajas cuánticas 1.5 ML a baja temperatura (36 K) donde se

aprecia la luminiscencia de la capa mojante y de la barrera de GaAs en 1.5 eV.

Así, las energías elegidas para los niveles de la capa mojante son:

eV424.1E1WL = eV414.1E

2WL = eV434.1E3WL =

y su peso estadístico (densidad de estados):

12 WLt

WLt n27.0n = y 13 WL

tWLt n27.0n =

donde el valor de 1WLtn será un parámetro de ajuste. La comparación de algunos es-

pectros experimentales y los calculados con el modelo para diferentes temperaturas,

después del ajuste de los parámetros se puede ver en la figura 4.9.

CAPÍTULO 4. ANÁLISIS

60

1,10 1,15 1,20 1,25 1,30 1,35 1,40

T=46 K

Energía (eV)

T=120 K

T=164 K

I PL (u

nida

des

arb.

)

T=205 K

T=215 K

Figura 4.9. Espectros de PL de la muestra 1.5 ML de cajas cuánticas experimentales (círculos) con los

calculados con el modelo (línea continua).

De forma más detallada, en la figura 4.10 se representa la evolución de la energía de

pico de la emisión, la anchura de la banda de PL y su intensidad integrada.

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

61

40 80 120 160 200 240

Int.

I PL (u

. a.)

Max

imo PL

(eV)

c

Temperatura (K)

5060708090

100

b

1,15

1,20

1,25

FW

HM

(meV

)

a

Figura 4.10. Evolución de la energía de pico de la PL (a) de la FWHM (b) y de la intensidad integrada

(c) con la temperatura, para la muestra 1.5 ML. Los datos experimentales se muestran con cuadros y el

calculado con el modelo en línea continua. En la gráfica (a) se muestra la evolución típica de la banda

prohibida del InAs en línea punteada.

En la tabla 4.1 se muestran los valores de los parámetros obtenidos para el mejor ajus-

te de los resultados experimentales. Se puede observar que el modelo es capaz de re-

producir el comportamiento sigmoidal de la energía de pico y de la FWHM de la ban-

da de emisión. Este comportamiento, al que hicimos referencia en el primer capítulo,

es típico de muestras que contienen distribuciones inhomogéneas multimodales de

cajas cuánticas [8]. La parte de alta energía de la banda de PL sufre un fuerte decai-

miento debido al escape térmico de portadores, ya que energéticamente está muy cer-

ca de los niveles de enrgía de la capa mojante. A alta temperatura, la banda de PL co-

CAPÍTULO 4. ANÁLISIS

62

mo un todo sufre una fuerte reducción porque llegan muy pocos portadores a las cajas

cuánticas, debido a la alta velocidad de escape térmico de portadores desde la capa

mojante a la barrera, donde recombinan no-radiativamente, y los pocos que llegan

pueden escapar fácilmente hacia la capa mojante.

Muestra 1.8 ML

En esta muestra tomamos como densidad total de cajas Qtn = 2 ·1010 cm-2. Para la capa

mojante se intentó hacer el ajuste con un solo nivel discreto de energía en 1WLE = 1.46

eV, según el espectro de PL a baja temperatura mostrado en la figura 4.11.

1,10 1,15 1,20 1,25 1,30 1,35 1,40 1,45 1,50

Capa mojante

Espectro de PL a T=37 K

1,42 1,43 1,44 1,45 1,46 1,47 1,48

EWL2

EWL1

I PL(u

nida

des

arb.

)

Energía (eV)

I PL(u

nida

des

arb.

)

Energía (eV) Figura 4.11. Espectro de PL de la muestra de cajas cuánticas 1.8 ML a baja temperatura (37 K) donde

se aprecia la luminiscencia de la capa mojante.

Como los resultados no eran tan buenos como en la muestra anterior, se introdujo otro

nivel para la capa mojante fijando su densidad total de estados a una cuarta parte del

primer nivel: 4nn 12 WLt

WLt = . La energía de este nivel se dejó como parámetro de

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

63

ajuste. En la figura 4.12 se observa que ahora el acuerdo entre los espectros calculados

y los experimentales es tan bueno como en la muestra anterior.

1,10 1,15 1,20 1,25 1,30

T=37 K

Energía (eV)

T=88 K

T=137 K

I PL (u

nida

des

arb.

)

T=172 K

T=217 K

Figura 4.12. Espectros de PL de la muestra 1.8 ML de cajas cuánticas experimentales (círculos) con la

curva calculada con el modelo para los parámetros adecuados superpuesta (línea continua).

CAPÍTULO 4. ANÁLISIS

64

40 80 120 160 200 240

Int.

I PL (u

. a.)

Max

imo PL

(eV)

c

Temperatura (K)

50

60

70

80

b

1,10

1,15

1,20

FW

HM

(meV

)

a

Figura 4.13. Evolución de la energía de pico de la PL (a) de la anchura (b) y de la intensidad integrada

(c) con la temperatura para la muestra 1.8 ML. Los datos experimentales se muestran con cuadrados, el

calculado con el modelo en línea continua y en línea punteada la evolución según la banda prohibida

del InAs (a).

Observamos que la posición de la energía de pico (figura 4.13.a) sigue prácticamente

la variación de la banda prohibida hasta pasados los 150 K, para luego disminuir más

rápido. Esta diferencia con la muestra anterior es porque, al haber depositado más

material en el crecimiento de las cajas cuánticas, éstas son más grandes y la banda de

emisión está centrada a una energía más baja y por lo tanto más alejada de la banda de

la capa mojante. Esto implica que el escape térmico de los estados en la zona central

de la banda sea menos importante y que no se aprecie un desplazamiento al rojo de la

energía de pico tan rápido como en la muestra anterior. En cuanto a la FWHM expe-

rimental (figura 4.13.b) observamos que aumenta hasta unos 160 K, efecto que nues-

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

65

tro modelo no puede reproducir porque la anchura del espectro de fotoluminiscencia

no puede ser mayor que la distribución de estados, es decir la banda de PL a baja tem-

peratura. Esto puede deberse a que la cola de alta energía corresponda a estados exci-

tados de las cajas cuánticas que contribuyen al centro de la banda de PL, y al aumentar

la temperatura hay una densidad apreciable de excitones en los estados excitados

(densidad determinada por la distribución de Maxwell-Boltzmann). Este mecanismo

no está incluido en el modelo, por ser un efecto débil en las nanoestructuras presentes

en estas muestras, así como en los hilos cuánticos, como se verá en la siguiente sec-

ción. Finalmente, el acuerdo entre la intensidad integrada calculada y experimental es

tan bueno como para la muestra anterior, pues este parámetro no es sensible a efectos

como el discutido.

1,00 1,05 1,10 1,15 1,20 1,25 1,30 1,35 1,40 1,45 1,50

1,34 1,36 1,38 1,40 1,42 1,44

EWL4

EWL3

EWL2

EWL1

I PL(u

nida

des

arb.

)

Energía (eV)

Espectro de PL a T=40 K

Capa mojante

I PL(u

nida

des

arb.

)

Energía (eV)

Figura 4.14. Banda de PL de la muestra 2.5 ML de cajas cuánticas a una temperatura de 40 K donde

pueden verse las componentes de la capa mojante.

Muestra 2.5 ML

En esta muestra la densidad de cajas cuánticas es todavía mayor que en las otras: Qtn =

5 ·1010 cm-2. El proceso de ajuste de los resultados experimentales en esta muestra ha

CAPÍTULO 4. ANÁLISIS

66

sido el más laborioso. Hemos tenido que discretizar la capa mojante en cuatro niveles

de energía según señala la figura 4.14, siendo las energías elegidas (después de varios

ensayos):

eV35.1E1WL = eV378.1E

2WL = eV392.1E3WL = eV415.1E

4WL =

La densidad de estados de cada nivel se ha dejado como parámetro de ajuste, por lo

que se han utilizado más parámetros de ajuste que en las otras dos muestras. Algunos

de los espectros resultantes del mejor ajuste se muestran en la figura 4.15, mientras

que la comparación entre las magnitudes características de la banda de luminiscencia

calculadas y experimentales se presentan en la figura 4.16.

1,00 1,05 1,10 1,15 1,20 1,25

T=55 K

Energía (eV)

T=86 K

T=101 K

I PL (u

nida

des

arb.

)

T=134 K

T=167 K

Figura 4.15. Comparación entre los espectros experimentales (círculos) y los obtenidos con el modelo

(línea continua) de la muestra de cajas cuánticas 2.5 ML.

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

67

40 80 120 160 200

Int.

I PL (u

. a.)

Max

imo PL

(eV)

c

Temperatura (K)

80

90

100

b

1,05

1,10

1,15

FW

HM

(meV

)

a

Figura 4.16. Evolución de diferentes características del espectro de PL con la temperatura de la muestra

2.5 ML: (a) posición del máximo, (b) anchura a media altura, (c) intensidad integrada en toda la banda-

da en toda la banda de PL.

Podemos observar nuevamente que existe un buen acuerdo entre la intensidad integra-

da experimental y calculada, que sigue siendo buena, como en las muestras anteriores

(magnitud poco sensible a mecanismos poco influyentes). Sin embargo no podemos

decir lo mismo para la posición del máximo y de la FWHM de la PL. El modelo no

puede reproducir completamente la evolución de ambos parámetros. El modelo no es

capaz de reproducir la evolución de la anchura porque, si observamos los espectros en

la figura 4.15, el hombro que aparece a baja energía se va reduciendo según aumenta

la temperatura. Este efecto no se puede reproducir con el modelo, ya que éste se basa

sólo en el escape térmico de portadores de las cajas cuánticas a la capa mojante, por lo

que se favorece el escape de portadores desde cajas más pequeñas (las que contribu-

CAPÍTULO 4. ANÁLISIS

68

yen a la emisión en la parte de alta energía). El origen de la dinámica de portadores en

la zona de baja energía puede deberse al efecto túnel entre cajas cuánticas asistido por

fonones que en esta muestra es más visible debido a la mayor densidad de cajas, lo

que reduce la distancia media entre ellas. Para introducir esta fenomenología en el

modelo habría que incluir una interacción de cada estado con los del resto de la banda,

lo que supone un esfuerzo numérico grande, fuera del objetivo de este trabajo, sobre-

todo a falta de experimentos que destaquen los efectos reseñados.

Muestra )cm10(

n218

Bt

)GHz(

Bpκ

)cm10(

n214

WLt

1

)GHz(

1WLpκ

)eV(

E2WL †

1.5 ML 2.1 5.3 4.4 88 1.414

1.8 ML 260 8.4 3.4 9.0 1.468

2.5 ML 20 3.1 2.9 5.0 1.378

Muestra )cm10(

n214

WLt

2

)GHz(

2WLpκ

)cm10(

n214

WLt

3

)GHz(

3WLpκ

)cm10(

n214

WLt

4

)GHz(

4WLpκ

1.5 ML 1.2 930 1.2 1.3·10-3

1.8 ML 0.9 1000

2.5 ML 8.7 1.1·104 15 82 8.0 100

Tabla 4.1. Valores de los parámetros tras el ajuste al modelo para las muestras de cajas cuánticas 1.5

ML, 1.8 ML y 2.5 ML. Los valores con fondo gris corresponden a parámetros fijados según se explica

en el texto.

Analizando los valores de los parámetros obtenidos tras el ajuste, observamos que los

tiempos asociados a la recombinación no-radiativa de portadores Bp1 κ obtenidos tras

el ajuste (mostrados en la tabla 4.1) son comparables a los tiempos de decaimiento de

la recombinación de excitones en pozos cuánticos de semiconductor calculados y

medidos en otros trabajos [46][47][48], cuyos valores varían entre 0.5 y 400 ps, ya † Este parámetro que corresponde a la energía del nivel 2 de la capa mojante sólo es ajustado en la muestra 1.8 ML.

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

69

que éstos dependerán de las fluctuaciones de anchura y de composición del pozo y de

la densidad de defectos en la estructura cristalina. Las densidades de estados obtenidas

tienen valores del mismo orden que los obtenidos por Sanguinetti et al. [35]. El valor

de la densidad de estados en la barrera de GaAs es similar al que existe en las tablas

sobre la densidad de estados efectiva en la banda de conducción y banda de valencia

para el GaAs masivo: 4.7·1017 cm-3 y 9·1018 cm-3.

4.2.3 Aplicación a las muestras de hilos cuánticos En el epígrafe anterior hemos comprobado que el modelo y el procedimiento de ajuste

desarrollados en este trabajo dan buena cuenta de la dinámica de recombinación de

portadores predominante en cajas cuánticas InAs/GaAs, la cual viene determinada por

el escape térmico de portadores hacia los estados de la capa mojante. En las muestras

que contienen hilos cuánticos no vamos a considerar una capa mojante (no observa-

mos ninguna traza en los espectros de PL, ni en medidas de absorción [27]). En su

lugar, vamos a considerar niveles de impurezas dadoras en la intercara entre los hilos

cuánticos de InAs y la barrera de InP. En el apartado 4.1 explicamos los efectos que

ocurren en la superficie debido al fenómeno de intercambio de átomos As-P cuando se

recubren los hilos cuánticos. Esto podría dar lugar a la presencia de átomos de As en

posiciones intersticiales entorno a la intercara InAs/InP, introduciendo niveles dadores

cercanos a la banda de conducción del InP, o incluso una aleación InAsxP1-x, con x

<<1. En el modelo podemos sustituir sin más el nivel o niveles de la capa mojante por

este nuevo tipo de nivel o niveles. Los parámetros y variables relacionados con la an-

terior capa mojante aquí son análogos a los del nivel dador, cambiando en la nomen-

clatura WL por D.

La distribución de estados que consideraremos se corresponderá con las compo-

nentes gaussianas de los espectros de PL a baja temperatura que se mostraron en la

figura 4.1. Por otra parte, tenemos hilos cuánticos y no sistemas cero-dimensionales,

por lo que tendremos un ensanchamiento de los estados debido a la interacción con

fonones [4]. Vamos a considerar que la interacción es similar a la que tiene lugar en

un pozo cuántico, es decir, que la anchura de una transición óptica aumenta con la

CAPÍTULO 4. ANÁLISIS

70

temperatura según la expresión (1-13), que recogimos en el primer capítulo. Para ob-

tener los valores de los parámetros del acoplamiento excitón-fonón se ha realizado un

seguimiento de la anchura de las componentes gaussianas de los espectros de PL en

función de la temperatura. Hemos escogido los picos P9 y P3 para las muestras LT y

HT, respectivamente, porque su anchura está menos influenciada por el efecto del

escape térmico, más importante en las componentes de más alta energía. En la figura

4.17 puede verse la evolución de sus anchuras con la temperatura y los respectivos

ajustes a la ecuación (1-13).

0 50 100 150 200 250 300

36

38

40

42

44

46

48

50

52

54

56

P3 muestra HT P9 muestra LT

FWH

M (m

eV)

Temperatura (K) Figura 4.17. Evolución de la anchura de las componentes gaussianas de las muestras LT y HT con la

temperatura (símbolos) y el ajuste a un acoplamiento excitón-fonón (línea continua).

Ajuste Muestra acΓ (meV K-1) LOΓ (meV) LOE (meV)

LT 0.01 22 42 (1)

HT 0.01 24 40

LT 0.02 23 43 (2)

HT 0.01 26 43

Tabla 4.2. Resultado de los ajustes del acoplamiento excitón-fonón en las muestras de hilos, (1) sin fijar

ELO y (2) fijando ELO a la energía del fonón en el InP.

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

71

Los parámetros resultantes del mejor ajuste se han listado en la tabla 4.2. Los valores

obtenidos para el fonón parecen estar de acuerdo con la energía del fonón longitudinal

óptico del InP [49], que vale 43 meV, y no con el del InAs, cuyo valor es de 30 meV.

La interacción entre excitones y fonones ópticos parece existir principalmente en la

intercara entre los hilos cuánticos de InAs y la barrera de InP. Por el contrario, el pa-

rámetro de ensanchamiento LOΓ es menor que para el caso 2D, al igual que ocurre al

pasar del caso 3D a 2D [50]. En el modelo vamos a incluir este ensanchamiento para

las componentes gaussianas de la distribución de estados utilizada, que no variaba con

la temperatura en el caso de las cajas cuánticas.

Para la evolución de la energía de pico de las gausianas no vamos a utilizar la

variación de la banda prohibida del InAs según la ley de Varshni, porque si estudia-

mos la evolución experimental de energías de pico de las componentes de baja energía

no se corresponde exactamente con ésta (ver figura 4.18 ). Es ligeramente diferente a

la variación del InAs y el InP. Esto puede ser debido a la variación en los estados liga-

dos de los hilos causado por la distinta dependencia del nivel de la barrera y del InAs

con la temperatura así como por la distribución del campo de tensiones alrededor del

hilo. Por ello utilizaremos una evolución ligeramente distinta para la distribución de

estados.

0 50 100 150 200 250 300

0.80

0.85

0.90

0.95

1.00

1.05

P3 muestra HT P8 muestra LT

Posi

ción

del

pic

o (e

V)

Temperatura (K) Figura 4.18. Evolución de la posición de los picos P3 y P8 de las muestras HT y LT (símbolos) y la

variación de la banda prohibida del InAs (línea a trazos) y del InP (línea punteada).

CAPÍTULO 4. ANÁLISIS

72

Para la evolución con la temperatura de los niveles de energía de la barrera y del dador

utilizaremos la de la banda prohibida del InP:

327TT109.4

E421.1

)T(E)T(E 24

DD

B

+⋅

=

(4-13)

En los hilos cuánticos no existe una interacción coulombiana entre el electrón y

el hueco tan fuerte como en las cajas cuánticas, aunque de existir una capa mojante el

escape térmico también podría ser de excitones (e-h correlacionados). Sin embargo, si

consideramos la existencia de un nivel dador, éste sólo puede capturar electrones des-

de los hilos cuánticos, por lo que el escape térmico será básicamente unipolar. La pér-

dida de portadores asistida térmicamente vendrá dominada por la energía de localiza-

ción de los electrones, por lo que los términos correspondientes en nuestro modelo

podrán escribirse como,

⋅ξ

∆−κ=κ −−−

TkE

expB

QDQDc

QDte (4-14)

donde ( ) ξ− EED será la verdadera energía de activación térmica, siendo E la energía

total de confinamiento (la de electrones más la de los huecos) y ξ un parámetro de

ajuste que nos dará la fracción de esa energía correspondiente a la localización de los

electrones.

Igual que en las cajas cuánticas aquí fijamos los tiempos de transición entre la

barrera y el nivel dador y entre éste y los hilos:

Qt

19QDc

Dt

19DBc

ns1033.33

ns103.333

−−

−−

⋅=κ

⋅=κ

(4-15)

los tiempos son los mismos porque estos procesos suelen ser del orden de los picose-

gundos, y el dar unos valores ligeramente mayores o menores se traducirá en un ma-

yor o menor valor de las pérdidas no radiativas.

A continuación vamos a ver los resultados extraídos del ajuste al modelo para las

dos muestras de hilos cuánticos, para las que hemos considerado una densidad total de

estados 10Qt 10n = cm-2. Este valor de densidad puede no ser correcto ya que descono-

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

73

cemos cuántos excitones caben en cada hilo cuántico. Este valor será el factor de esca-

la para las otras densidades de estados: la de la barrera y del nivel dador. En el límite

inferior, si sólo hubiese un solo excitón por cada hilo, la densidad total sería de unos 6

·109 cm-2. En el otro extremo, si se considera una red de hilos cuánticos, la densidad

de estados sería parecida a la de un pozo cuántico muy estrecho (que puede ser mayor

que 1012 cm-2). Dado que los hilos cuánticos en nuestras muestras no son perfectos

(longitud finita) y que el periodo lateral es bastante grande como para desacoplar las

funciones de onda excitónicas en el plano, no esperamos que la densidad de estados

total sea próxima al caso de pozo.

Muestra HT

Al aplicar un ajuste con la ecuación (4-9) a la evolución del pico de la figura

4.18 para esta muestra, obtenemos:

237TT107.4E)T(E

24

+⋅

−=−

(4-16)

El mejor ajuste de nuestras ecuaciones a los resultados experimentales de PL nos da

espectros de PL calculados muy similares a los experimentales como observamos en

la figura 4.19. Siendo así podemos esperar una buena coincidencia de los parámetros

espectrales (energía de pico, anchura e intensidad integrada) calculados y experimen-

tales, tal y como se muestra en la figura 4.20. Los parámetros del mejor ajuste se listan

en la tabla 4.3.

CAPÍTULO 4. ANÁLISIS

74

0.90 0.95 1.00 1.05 1.10 1.15

T=39 K

Energía (eV)

T=100 K

T=160 K

I PL (u

nida

des

arb.

)

T=229 K

T=300 K

Figura 4.19. Espectros de PL experimentales (círculos) y los obtenidos con el modelo (línea continua)

para la muestra HT a diferentes temperaturas.

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

75

40 80 120 160 200 240 280

Int.

I PL (u

. a.)

Max

imo PL

(eV)

c

Temperatura (K)

404550556065

b

0.95

1.00

1.05

FW

HM

(meV

)

a

Figura 4.20. Evolución con la temperatura de la posición del máximo (a), anchura a media altura (b) y

la intensidad integrada (c) de la banda de PL de la muestra HT. Se muestran los datos experimentales

con cuadros y en línea continua el resultado obtenido con el modelo.

Muestra LT

En esta muestra la variación de los niveles de los hilos con la temperatura según la

figura 4.18 es:

446TT103.5E)T(E

24

+⋅

−=−

(4-17)

La comparación entre algunos espectros calculados con el resultado del mejor ajuste

del modelo a varias temperaturas y los experimentales se muestra en la figura 4.21.

CAPÍTULO 4. ANÁLISIS

76

0.75 0.80 0.85 0.90 0.95 1.00

T=35 K

Energía (eV)

T=80 K

T=133 K

I PL (u

nida

des

arb.

)

T=203 K

T=280 K

Figura 4.21. Espectros de PL experimentales (círculos) y los obtenidos con el modelo (línea continua)

de la muestra LT a diferentes temperaturas.

La evolución con la temperatura de los parámetros característicos de la banda de foto-

luminiscencia experimentales y calculados con el resultado obtenido del modelo se

presenta en la figura 4.22. Observamos que los parámetros del modelo para el mejor

ajuste, detallados en la tabla 4.3, para ambas muestras tienen valores semejantes. Es

de destacar que el modelo no nos llega a reproducir completamente el aumento de la

anchura de la banda de PL experimental (el modelo nos da un aumento de 5 meV y

experimentalmente observamos un aumento de unos 10 meV), a pesar de que se ha

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

77

introducido un ensanchamiento con la temperatura de las componentes suficiente para

poder reproducirlo. Esto se debe a que el ajuste por mínimos cuadrados da como re-

sultado una dinámica de escape térmico ligeramente mayor a la que debería ser real-

mente, para así reproducir bien la evolución con la temperatura de la intensidad inte-

grada, afectando a la evolución de la anchura de la banda de PL. Este resultado puede

ser debido a otro proceso de escape térmico de portadores. Por otra parte, hay que

destacar que el modelo sí llega a reproducir el escalón que aparece en la evolución de

la anchura (ver figura 4.22.b) al aumentar la temperatura. Este escalón aparece a la

temperatura en la que la reducción de la parte de alta energía de la banda debido al

escape térmico de portadores es mayor, llegando a frenar el aumento de la anchura de

la banda de PL debido a la interacción excitón-fonón.

40 80 120 160 200 240 280

Int.

I PL (u

. a.)

Max

imo PL

(eV)

c

Temperatura (K)

4550556065

b

0.75

0.80

0.85

0.90

FW

HM

(meV

)

a

Figura 4.22. Evolución con la temperatura de la posición del máximo (a), anchura a media altura (b) y

la intensidad integrada (c) de la banda de PL de la muestra LT. Se muestran los datos experimentales

con cuadros y en línea continua el resultado obtenido con el modelo.

CAPÍTULO 4. ANÁLISIS

78

Muestra )cm10(

n210

Bt

)cm10(

n210

Dt

)GHz(

Bpκ

)GHz(

Dpκ

)eV(ED ξ

HT 660 96 150 175 1.405 3.08

LT 980 120 70 62 1.400 3.76

Tabla 4.3. Valores del ajuste al modelo para las muestras de hilos cuánticos InAs/InP.

Más resultados interesantes que se pueden obtener de la resolución del modelo

pueden verse en el Apéndice B. La fenomenología observada y modelizada en hilos

cuánticos es similar a la de las cajas cuánticas. Se observa cómo disminuyen más rá-

pidamente las componentes de alta energía debido al escape térmico de portadores

(aunque en el caso de los hilos sólo escapan electrones). Esto hace que la anchura de

la banda se reduzca en competición con el ensanchamiento de cada componente gaus-

siana asociada debido a la interacción con los fonones del InP. En las figuras 4.20 y

4.22 se observa como la evolución de la anchura total tiene un escalón debido a que en

esa temperatura la reducción producida por el escape térmico de portadores es mayor

que el ensanchamiento por fonones. Este escalón tiene lugar a unos 200 K en la mues-

tra LT (figura 4.22) y en torno a 100 K para la muestra HT (no se observa bien expe-

rimentalmente en la figura 4.20).

La densidad de estados total que se obtiene para la barrera ya no es tan grande

como en el caso de las cajas cuánticas. Esto puede deberse a que el factor de escala de

las densidades de estados, es decir la densidad de estados total de los hilos considera-

da, sea menor que la real. La suposición de un solo estado por cada hilo puede no ser

válida e incluso habría que considerar una densidad total de estados para los hilos has-

ta 2 o 3 órdenes de magnitud mayor. Este resultado estaría de acuerdo con las medidas

en función de la potencia de excitación, ya que en ningún momento se observan efec-

tos de saturación en la emisión de los hilos.

La energía del nivel dador que se obtiene es de unos 1.4 eV a la temperatura de 0

K para ambas muestras. Si calculamos a qué cantidad de Arsénico corresponde una

aleación de InAsxP(1-x) que tuviera una anchura de la banda prohibida de 1.4 eV, te-

4.2 MODELIZACIÓN DE LA FOTOLUMINISCENCIA

79

niendo en cuenta que la del InAs es de 0.415 eV y la del InP de 1.421 eV, obtenemos

un 2%. Esta cantidad efectiva de arsénico en la intercara entre los hilos cuánticos y el

InP puede ser razonable si tenemos en cuenta que en el momento del recubrimiento de

los hilos se cierra la célula de arsénico al mismo tiempo que se deposita el InP, pu-

diendo incorporarse gran cantidad de arsénico del fondo antes de que se bombee.

La energía de activación ( ) ξ− EED la representamos en la figura 4.23 junto a

las energías de localización para el electrón y el hueco en hilos de InAs, calculadas

con el modelo basado en funciones propias de B. Alén et. al [27]. Este resultado pare-

ce conducir a la conclusión de que la disminución de la intensidad de la PL con la

temperatura está dominada por el escape térmico de los electrones, en los cuales el

confinamiento es menor.

0.80 0.85 0.90 0.95 1.00 1.05

50

100

150

200

250

300

350

400

450

HTLT

Muestra HT Muestra LT

electrones

huecos

Ener

gía

de e

scap

e (m

eV)

Energía PL (eV)

Figura 4.23. Representación de la energía de activación obtenida en el modelo de la fotoluminiscencia

junto a las energías de confinamiento para los electrones y los huecos en función de la energía de emi-

sión de la PL. Con flechas se señala la posición de la energía de pico de la banda de fotoluminiscencia

para cada una de las muestras.

CAPÍTULO 4. ANÁLISIS

80

81

Capítulo 5

Conclusiones

En este trabajo hemos estudiado el crecimiento y las propiedades de la fotoluminis-

cencia de muestras de hilos cuánticos InAs/InP. La buena calidad desde el punto de

vista de la morfología de las nanoestructuras se hace evidente en las medidas con el

AFM de la muestra de hilos sin recubrimiento de InP, al compararlas con muestras

típicas de cajas cuánticas, donde se observan fluctuaciones de forma y tamaño muy

grandes. También se observa una buena calidad desde el punto de vista de emisión

óptica de las muestras de hilos cuánticos recubiertos, que llegan a tener una emisión

apreciable a temperatura ambiente.

Hemos obtenido un posible método para sintonizar la longitud de onda de emi-

sión de las muestras compuestas de hilos cuánticos de InAs/InP fácil de controlar en el

proceso de crecimiento de las mismas. Con sólo cambiar la temperatura del substrato

durante el recubrimiento con InP de los hilos de InAs, se puede llegar a modificar el

tamaño de las nanoestructuras, debido a la dependencia con la temperatura de creci-

miento del intercambio entre átomos de arsénico y fósforo en la superficie de la mues-

tra. El cambio de tamaño de los hilos se traduce en un cambio en las energías de con-

finamiento de los portadores y, por tanto, de la energía de emisión. Futuros resultados

basados en la medida de la tensión superficial in situ durante el crecimiento de los

hilos cuánticos servirían para obtener datos cuantitativos del material que interviene

en el proceso del cambio de tamaño de los hilos.

Una característica a destacar sobre la emisión de las muestras de este trabajo es el va-

lor de la longitud de onda de emisión en el máximo de la banda a temperatura ambien

CAPÍTULO 5. CONCLUSIONES

82

te: 1.3 µm y 1.55 µm. Estas longitudes de onda son relevantes para la transmisión con

pocas pérdidas y dispersión en fibras ópticas actuales. Por lo tanto, estas estructuras

son óptimas candidatas para formar parte del medio activo de láseres de diodo. Ac-

tualmente se está realizando el crecimiento de estructuras láser con hilos cuánticos de

InAs como medio activo en el IMM para encontrar las condiciones óptimas de inyec-

ción de portadores y emisión óptica con baja corriente umbral.

Para el desarrollo de tales dispositivos es crucial la comprensión de los meca-

nismos no radiativos de recombinación de portadores a altas temperatura, con objeto

de encontrar estrategias de minimación. Por ello, se ha propuesto un modelo para es-

tudiar la evolución con la temperatura del espectro de emisión de fotoluminiscencia,

que nos ha dado mucha información sobre la dinámica interna de captura y escape de

portadores en las nanoestructuras. Los resultados de la aplicación del modelo a mues-

tras de cajas cuánticas InAs/GaAs son muy correctos y sirven para validar el plantea-

miento del modelo, ya que inicialmente éste se propuso para ese tipo de nanoestructu-

ras. De estos resultados, se concluye que la estructura de niveles de energía de la capa

mojante, y los valores que toman éstos, juegan un papel importante en la dinámica del

escape térmico de portadores desde las cajas hacia la barrera (donde recombinan no

radiativamente) a través de la capa mojante. Por otra parte, los resultados para las

muestras conteniendo mayor densidad de cajas cuánticas nos hacen ver las limitacio-

nes que tiene el modelo para describir algunos efectos más débiles como la transición

de portadores entre estados fundamentales y excitados de las cajas, y la transferencia

de portadores entre cajas cuánticas de diferentes tamaños debido al efecto túnel asisti-

do por fonones.

Para la aplicación del modelo a las medidas de fotoluminiscencia de las muestras

de hilos cuánticos InAs/InP se han tenido que realizar algunos cambios debido al me-

nor confinamiento que producen estas nanoestructuras sobre los portadores. Una mo-

dificación ha sido la inclusión de un ensanchamiento para las diferentes componentes

de tipo gaussiano en la densidad de estados de los hilos debido a la interacción exci-

tón-fonón, que es función de la temperatura. Otra modificación ha sido la considera-

ción de una energía de activación térmica menor que la diferencia entre la energía del

83

nivel de la barrera y la del excitón en el hilo cuántico, que, después del ajuste, parece

coincidir con la energía de escape de electrones. Con estos cambios se consigue un

buen ajuste entre los resultados calculados y experimentales de los espectros de foto-

luminiscencia y sus parámetros característicos. Una conclusión a destacar sobre estos

resultados es la aparente evidencia de que la disminución de la fotoluminiscencia con

la temperatura está dominada por un escape térmico unipolar de electrones desde los

hilos cuánticos a la barrera, a través de un nivel intermedio debido a impurezas dado-

ras (o una aleación InAsxP1-x de bajo contenido en As debido al intercambio As-P) .

Por consiguiente, basándonos en los resultados de este trabajo, se debería encontrar

una forma de disminuir la presencia de tales impurezas (o aleación) en la intercara

entre los hilos de InAs y el InP para así conseguir una mayor luminiscencia a tempera-

tura ambiente y, por lo tanto, la posibilidad de obtener laseres de diodo basados en

estas estructuras con una alta ganancia diferencial a temperatura ambiente.

CAPÍTULO 5. CONCLUSIONES

84

APÉNDICE A. RESOLUCIÓN DEL MODELO

85

Apéndice A

Resolución del modelo de la fotoluminiscencia

Partimos de las ecuaciones del modelo:

)E(n)E(nn)T,E(n)E(ndt

)E(dn

nnn)T(dEn)E(n

dE)E(nn)T,E(nndt

dn

nnnnn)T(Gdt

dn

Qfr

i

Qf

WLei

QWLc

i

WLf

Qe

QWLc

Qf

WLf

WLp

WLf

Bei

WLBc

WLf

Qe

QWLc

Qf

WLei

QWLc

Bf

WLe

WLBc

WLf

Bf

Bp

i

Bf

WLe

WLBc

i

WLf

Bei

WLBc

Bf

iiii

iiiiii

iiiii

iiii

κ−γκ−κ=

κ−βκ−κ−

γκ+κ=

κ−κ−βκ+=

∑∑

∫∫

∑∑

−−

−−

−−

−−

(A-1)

donde ( )( )TkEEexp)T( BWLBi i−−=β y ( )( )TkEEexp)T,E( BWLi i

−−=γ . Y si:

)E(n)E(n)E(n

nnn

nnn

Qe

Qf

Qt

WLe

WLf

WLt

Be

Bf

Bt

iii

+=

+=

+=

(A-2)

sustituimos (A-2) en (A-1):

( ) ( )

( ) ( )( ) ( )( ) ( ) )E(n)E(nnn)T,E(n)E(n)E(n

dt)E(dn

nnnn)T(dEn)E(n)E(n

dE)E(nnn)T,E(nnndt

dn

nnnnnnn)T(Gdt

dn

Qfr

i

Qf

WLf

WLti

QWLc

i

WLf

Qf

Qt

QWLc

Qf

WLf

WLp

WLf

Bf

Bti

WLBc

WLf

Qf

Qt

QWLc

Qf

WLf

WLti

QWLc

Bf

WLf

WLt

WLBc

WLf

Bf

Bp

i

Bf

WLf

WLt

WLBc

i

WLf

Bf

Bti

WLBc

Bf

iiiii

iiiiii

iiiiiii

iiiii

κ−−γκ−−κ=

κ−−βκ−−κ−

−γκ+−κ=

κ−−κ−−βκ+=

∑∑

∑∑

−−

−−

−−

−−

(A-3)

APÉNDICE

86

Dividiendo cada ecuación correspondiente de (A-3) por Btn , iWL

tn y )E(n Qt , y utili-

zando el cambio siguiente de las incógnitas a funciones de ocupación:

)E(f)E(n)E(n

fnn

fnn

QQt

Qf

WLWLt

WLf

BBt

Bf

iii

=

=

=

(A-4)

y utilizando que:

WLt

i

WLt

WLQWLc

QWLc

WLWLBc

WLBc

nn

N...2,1i

N...2,1i

i

i

i

=

=κ=κ

=κ=κ

−−

−−

(A-5)

donde NWL son el número de niveles de capa mojante que tenemos. Entonces susti-

tuimos y agrupamos términos en la ecuación de la barrera del sistema de ecuaciones

(A-3) que nos queda:

( ) ∑∑ βκ++

κ+

+−βκ−= −−

i

WLt

WLi

WLBcB

t

Bp

WLt

ii

WLt

WLWLBc

BB

iiii nf)T(nGn1)T(nff

dtdf

(A-6)

y para la ecuación de la capa mojante utilizando:

γ=

=

=

iWL

iWL

E

0

QQti

i2

E

0

QQt

i1

Qt

Qt

dE)E(f)E(n)T,E(I

dE)E(f)E(nI

dE)E(nn

(A-7)

y reagrupando nos queda:

( )( ) ( )( )2

QWLc

BBt

WLBc

1Qt2

QWLc

BBi

Bt

WLBc

WLWL

Ifn

InIff1)T(nfdt

dfi

i

−−

−−

κ+κ+

−+κ++−βκ−=

(A-8)

En la ecuación de las nanoestructuras lo que hacemos es reagrupar términos:

APÉNDICE A. RESOLUCIÓN DEL MODELO

87

( )( )

∑−

κ+

κ+−γ+κ−=

i

WLWLt

QWLc

ri

WLt

WLi

WLWLt

QWLc

QQ

ii

iiii

fn

nf1)T,E(fn)E(fdt

)E(df

(A-9)

Entonces, al resolver el caso estacionario de las ecuaciones, es decir:

0dt

df B= 0

dtdf iWL

= 0dt

)E(df Q

= (A-10)

podemos expresar Bf , i1I e i

2I en función de iWLf despejando de (A-6) y (A-9):

( )

κ+

+−βκ

βκ+=

Bp

WLt

ii

WLt

WLWLBc

i

WLt

WLi

WLBcB

tB

n1)T(nf

nf)T(nG

fii

ii

(A-11)

( )( )

κ+−γ+κ

κ=

∑−

ri

WLt

WLi

WLWLt

QWLc

i

WLWLt

QWLc

Q

iiii

ii

nf1)T,E(fn

fn)E(f

(A-12)

y sustituyendo (A-12) en las expresiones de i1I e i

2I en (A-7). Entonces la ecuación

(A-8) en el caso estacionario:

))InI()f)f1)(T((n(Ifnf

1Qt2

QWLc

BBi

Bt

WLBc

2QWL

cBB

tWLB

cWLi

−+κ++−βκκ+κ

= −−

−−

(A-13)

Al sustituir Bf , i1I e i

2I nos queda un sistema de NWL ecuaciones que se puede resol-

ver numéricamente. El resultado de iWLf se sustituye en (A-12) y se calcula el espec-

tro de luminiscencia como:

)E(f)E(n)E(I QQtrPL κ∝

(A-14)

APÉNDICE

88

APÉNDICE A. RESOLUCIÓN DEL MODELO

89

Apéndice B

Detalles de los resultados del modelo

Aquí presentamos otros resultados que se pueden extraer del modelo aplicado a las

muestras de hilos cuánticos. En la siguiente figura mostramos la evolución de la ocu-

pación de la barrera con la temperatura:

0 50 100 150 200 250 3001.0x10-7

1.5x10-7

2.0x10-7

2.5x10-7

3.0x10-7

3.5x10-7

4.0x10-7

4.5x10-7

5.0x10-7

5.5x10-7

6.0x10-7

muestra LT

muestra HT

n fB /ntB

Temperatura (K)

2.0x10-6

4.0x10-6

6.0x10-6

8.0x10-6

1.0x10-5

1.2x10-5

1.4x10-5

1.6x10-5

1.8x10-5

2.0x10-5

n fB /ntB

En la siguiente la función de ocupación del nivel dador:

APÉNDICE

90

0 50 100 150 200 250 300

2.0x10-7

4.0x10-7

6.0x10-7

8.0x10-7

1.0x10-6

1.2x10-6

1.4x10-6

1.6x10-6

1.8x10-6

2.0x10-6

2.2x10-6

2.4x10-6

muestra LT

muestra HT

n fD

/ntD

Temperatura (K)

2.0x10-5

4.0x10-5

6.0x10-5

8.0x10-5

1.0x10-4

1.2x10-4

1.4x10-4

1.6x10-4

1.8x10-4

2.0x10-4

n fD/n

tD

También presentamos las funciones de ocupación de los niveles de energía de los

hilos en función de la temperatura:

Muestra HT:

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.0

1.0x10-3

2.0x10-3

3.0x10-3

4.0x10-3

5.0x10-3

6.0x10-3

7.0x10-3

T

n fQ/n

tQ

Energía (eV)

APÉNDICE B. DETALLES DEL MODELO

91

Muestra LT:

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.100.0

1.0x10-1

2.0x10-1

3.0x10-1

4.0x10-1 T

n fQ/n

tQ

Energía (eV)

APÉNDICE

92

BIBLIOGRAFÍA

93

Bibliografía

[1] N. L. D. Bimberg, M. Grundmann, Quantum Dot Heteroestructures (John Wi-ley & Sons, 1998).

[2] M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. 22, 1915

(1986). [3] J. S. W.-Y. Wu, Appl. Phys. Lett. 51, 710 (1987). [4] J. Lee, E. S. Koteles, and M. O. Vassel, Phys. Rev. B 33, 5512 (1986). [5] Asryan, L. V. and R. A. Suris, Semicond. Sci. Technol. 11, 1 (1996). [6] Lampert, M. A. and P. Mark, Current injection in Solids (Academia Press, New

Cork, 1970). [7] S. Farfad, S. Raymond, G. Wand, R. Leon, D. Leonard, S. Charbonneau, J. L.

Merz, and P. M. Petroff, Surf. Sci. 361/362, 778 (1996). [8] L. Brusaferri, S. Sanguinetti, E. Grillo, M. Guzzi, A. Bignazzi, L. Carresi, M.

Colocci, A. Bosachi, P. Frigeri, and S. Franchi, Appl. Phys. Lett. 69, 3354 (1996).

[9] J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. André, O. Vatel, Appl.

Phys. Lett. 64, 196 (1994). [10] F. C. Frank and J. H. V. d. Merwe, Proc. R. Soc. London, Ser. A 198, 205

(1949). [11] M. Volmer, and A. Weber, Z. Physik. Chem. 277 (1926). [12] I. N. Stranski and L. Krastanow, Sitz. Ver. Akad. Wiss., Math.-naturwiss. Kl.

Abt. IIb, 146, 797 (1938).

BIBLIOGRAFÍA

94

[13] D. Vanderbilt, and L. K. Wickham, Proc. Mater. Res. Soc. Symp. 202, 555

(1991). [14] Chu, M. Arzberger, G. Böhm y G. Abstreiter, J. Appl. Phys. 85, 2355-2362

(1999). [15] A. Y. Cho, J. Vac. Sci. Technol. 8, 531 (1971) [16] A. Madhukar, Surf. Sci. 132, 344 (1983) [17] J. R. Arthur, J. Appl. Phys. 39, 4032 (1968) [18] C. T. Foxon, and B. A. Joyce, Surf. Sci. 51, 434 (1975) [19] C. T. Foxon, and B. A. Joyce, Surf. Sci. 64, 293 (1977) [20] L. Chang y K. Ploog, Molecular Beam Epitaxy and Heterostructures (serie

Nato ASI, Matinus Nijhoff Publishers, 1985) [21] H. Neave, B. A. Joyce, P. J. Dobson, and N. Norton, Appl. Phys. A 31, 1

(1993) [22] J.M. Van Hove, C. S. Lent, P. R. Pukite, and P. I. Cohen, J. Vac. Sci. Technol.

B1, 741 (1993) [23] F. Briones, L. González, and A. Ruiz, Appl. Phys. A 49, 729 [24] D. E. Aspnes, J. Vac. Sci. Technol. B3, 1138 (1985)

[25] L. González, J. M. García, R. García, F. Briones, J. Martínez-Pastor, and C.

Ballesteros, Appl. Phys. Lett. 76, 1104 (2000) [26] H. R. Gutiérrez, M. A. Cotta, and M. M. G. de Carvalho, Appl. Phys. Lett. 79,

3854 (2001) [27] B. Alén, J. Martínez-Pastor, A. García-Cristobal, L. González and J. M. Gar-

cía, Appl. Phys. Lett. 78, 4025 (2001). [28] W. Demtröder, Laser Spectroscopy. Springer Verlag. New Cork (1998). [29] A. Rudra, R. Houdré, J. F. Carlin, and M. Ilegems, J. Cryst. Growth 136, 278

(1994). [30] G. A. Baraff and D. Gershoni, Phys. Rev. B 43, 4011 (1991).

BIBLIOGRAFÍA

95

[31] M. Notomi, J. Hammersberg, J. Zeman, H. Weman, M. Potemski, H. Sugiera,

and T. Tamamura, Phys. Rev. Lett. 80, 3125 (1998). [32] M. Notomi, S. Nojima, M. Okamoto, H. Iwamura, and T. Tamamura, Phys.

Rev. B 52, 11073 (1995). [33] M.U. González, J.M. García, L. González, J.P. Silveira, Y. González, J.D.

Gómez, and F. Briones, Appl. Suf. Sci. 188 (2002). [34] H. R. Gutiérrez, M. A. Cotta, J. R. R. Bortoleto, and M. M. G. de Carvalho, J.

Appl. Phys. 92, 7523 (2002). [35] S. Sanguinetti, M. Heinini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S.

Franchi, Phys. Rev. B 60, 8276 (1999). [36] A. L. Efros, V. Karchenko, and M. Rosen, Solid State Común. 93, 281 (1997). [37] M. Vening, D. Dunstan, and K. Homewood, Phys. Rev. B 48, 2412 (1993). [38] J. Lambkin, D. Dunstan, K. Homewood, L. Howard, and M. Emeny, Appl.

Phys. Lett. 57, 1986 (1990). [39] A. Kuther, M. Bayer, A. Forchel, A. Gorbunov, V. Timofeev, F. Schäfer, and

J. Reithmaier, Phys. Rev. B 58, 7508 (1998). [40] G. Bacher, H. Schweizer, J. Kovac, A. Forchel, H. Nickel, W. Schlapp, and R.

Lösch, Phys. Rev. B 43, 9312 (1991). [41] M. Grundmann and D. Bimberg, Phys. Rev. B 55, 9740 (1997). [42] Y. P. Varshni, Physica 34, 149 (1967). [43] B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, Phys.

Rev. B 54, 11532 (1996). [44] C. Rudamas, Ph. D. thesis, Facultad de Física. Universidad de Valencia

(2002). [45] R. Heitz, M. Veit, N. Ledentsov, A. Hoffmann, D. Bimberg, V. Ustinov, P.

Kop’ev, and Z. Alferov, Phys. Rev. B 56, 10435 (1997). [46] L. C. Andreani, F. Tassone, and F. Basan, Solid State Común. 9, 641 (1991).

BIBLIOGRAFÍA

96

[47] E. Hanamura, Phys. Rev. B 38, 1228 (1988). [48] J. Kovac, H. Schweizer, M. H. Pilkuhn and H. Nickel, Phys. Rev. B 54, 13440

(1996). [49] S. Rudin, T. L. Reinecke, and B. Segall, Phys. Rev. B 42, 11218 (1990). [50] H. Qiang, F. H. Pollak, C. Mo. Sotomayor Torres, W. Leitch, A. H. Kean, M.

A. Stroscio, G. J. Iafrate, and K. W. Kim, Appl. Phys. Lett. 61, 1411 (1992).