Diseño de CAPTACION

14
Qmax. = 3.720 m 3 /seg Donde: Qmin. = 0.0110 m 3 /seg Qmax.: Caudal maximo de la quebrada (ver calculo de caudal). Q. = 0.0090 m 3 /seg Qmin.: Caudal minimo de la quebrada (ver calculo de caudal). Co = 3650.00 m.s.n.m. Q. : Caudal a conducir por el canal (ver calculo de caudal). b = 5.00 m. Co : : Cota del lecho de la quebrada aguas arriba del barraje b : Ancho del cause que sera igual al barraje + canal de limpia (ver hoja de cálculo del canal). y = 0.55 m. Donde: y: Tirante del canal de conduccón P: Altura del barraje P = 1.65 m. Ingresar: Asumimos: P = 1.65 m. DISEÑO HIDRAULICO DE LA PRESA DERIVADORA O BARRAJE Ingresar los Datos Basicos para el Diseño: DESCRIPCIÓN : Es una estructura cuya funcion es levantar el nivel de agua del rio y facilitar el ingreso a travez de la ventana de captacion de nuestro proyecto.La utilidad del barraje de derivación o azud se acentua en epocas de estiaje. Con la finalidad de mejorar su estabilidad tiene una sección trapezoidal y para reducir a una presion casi nula en todos los puntos del azud se adopta el perfil tipo Greager. 2.- CALCULO DE LA ELEVACION DEL BARRAJE: Según el Ing° TSUGUO NOSAKI , una vez establecido un apropiado tirante "y" de agua en el canal de conducción, se ubicará el vertedero del barraje a una elevación sobre el fondo del rio igual a: 3y Cuando el caudal sea muy pequeño Q < 1.0 m 3 /seg 2.5y Cuando el caudal sea igual a Q = 1.0 m 3 /seg 2.0y Cuando el caudal sea mayor a Q > 10.0 m 3 /seg En nuestro caso el caudal de ingreso o entrada es de 0.5 m3/seg., lo cual nos da un tirante de y =0.55m por ser el Q<1m 3 /seg. el barraje tendra una elevación de 3h. resultando: 1.- Consideraciones de la longitud del barraje "b": Se debe procurar que la longitud del barraje conserve las mismas condiciones naturales del cauce, con el objeto de no causar modificaciones en su regimen. Asi una longitud mas angosta puede ocacionar una carga de agua alta e inundar las margenes, en cambio una longitud de barraje mas amplia pueda ocacionar azolves aguas ariba originando pequeños causes que dificultan la captación en la toma. y P * 3

Transcript of Diseño de CAPTACION

Page 1: Diseño de CAPTACION

Qmax. = 3.720 m3/seg Donde:

Qmin. = 0.0110 m3/seg Qmax.: Caudal maximo de la quebrada (ver calculo de caudal).

Q. = 0.0090 m3/seg Qmin.: Caudal minimo de la quebrada (ver calculo de caudal).

Co = 3650.00 m.s.n.m. Q. : Caudal a conducir por el canal (ver calculo de caudal).

b = 5.00 m. Co : : Cota del lecho de la quebrada aguas arriba del barraje

b : Ancho del cause que sera igual al barraje + canal de limpia

(ver hoja de cálculo del canal).

y = 0.55 m.

Donde:

y: Tirante del canal de conduccón

P: Altura del barraje

P = 1.65 m.

Ingresar:

Asumimos: P = 1.65 m.

DISEÑO HIDRAULICO DE LA PRESA DERIVADORA O BARRAJE

Ingresar los Datos Basicos para el Diseño:

DESCRIPCIÓN : Es una estructura cuya funcion es levantar el nivel de agua del rio y facilitar el ingreso a travez de la ventana de captacion de nuestro proyecto.La utilidad del barraje de derivación o azud se acentua en epocas de estiaje. Con la finalidad de mejorar su estabilidad tiene una sección trapezoidal y para reducir a una presion casi nula en todos los puntos del azud se adopta el perfil tipo Greager.

2.- CALCULO DE LA ELEVACION DEL BARRAJE: Según el Ing° TSUGUO NOSAKI , una vez establecido un apropiado tirante "y" de agua en el canal de conducción, se ubicará el vertedero del barraje a una elevación sobre el fondo del rio igual a: 3y Cuando el caudal sea muy pequeño Q < 1.0 m3/seg 2.5y Cuando el caudal sea igual a Q = 1.0 m3/seg 2.0y Cuando el caudal sea mayor a Q > 10.0 m3/seg En nuestro caso el caudal de ingreso o entrada es de 0.5 m3/seg., lo cual nos da un tirante de y =0.55m por ser el Q<1m3/seg. el barraje tendra una elevación de 3h. resultando:

1.- Consideraciones de la longitud del barraje "b": Se debe procurar que la longitud del barraje conserve las mismas condiciones naturales del cauce, con el objeto de no causar modificaciones en su regimen. Asi una longitud mas angosta puede ocacionar una carga de agua alta e inundar las margenes, en cambio una longitud de barraje mas amplia pueda ocacionar azolves aguas ariba originando pequeños causes que dificultan la captación en la toma.

yP *3

Page 2: Diseño de CAPTACION

Ingresar:

M = 2.21 Coef.

b = 5.00 m.

Q = 3.72 m3/seg.

Resulta:

H = 0.48 m.

Según el ITDG- PERU, la formula general del vertedero se expresa como:

a.- Calculo de la altura de carga H:

Ingresar:

u = 0.75 Coef.

V = 1.54 m/seg.

Resultado:

H = 0.402 m.

b.- calculo de la velocidad del agua sobre el azud: Donde:

V : Velocidad sobre la cresta m/seg.

A : Area de agua sobre la cresta (H*b) m2.

Q : Caudal de maxima avenida m3/seg.

Resulta:

V = 1.85 m/seg.

b.- Calculo de la carga energetica he y calculo de las coordenadas del Azud, multiplicando las coordenadas

del perfil Creager por he.

he : carga neta Sobre la cresta

h : Altura de la carga de agua sobre la cresta

g : Gravedad (9.8m/seg2.)

V : Velocidad sobre la cresta m/seg.

Resulta:

he = 0.58 m

2.- CALCULO DE LA CARGA TOTAL DE AGUA SOBRE LA CORONACIÓN DEL AZUD: Según el Ing° SVIATOLAV KROCHIN, la formula general del vertedero se expresa como:

Donde: M : Coeficiente que depende de la forma de la cresta del vertedero y/o barraje donde este valor será = 2.21,debido a que la descarga es libre. b : Ancho del vertedero en nuestro caso será igual a 15.00 m Q : Caudal de maxima avenida presentada en un periodo de retorno de 500 años igual a 88.60 m3/seg. H : Carga total de agua sobre la coronación del azud.

2

3

.. HbMQ

Donde:

u : Coeficiente del vertedero segun la forma de la cresta(para el caso del perfil creager u=0.75) b : Ancho del vertedero. Q : Caudal de maxima avenida presentada en un periodo de retorno de 100 años igual a 15.97m3/seg. H : Carga total de agua sobre la coronación del azud. V : Velocidad de acercamiento del rio. g : Gravedad (9.8m/seg2.)

Generalmente el tirante del agua t es mayor que la altura M azud, y el parámetro o perfil de este corresponde a la trayectoria seguido por la lámina vertiente (perfil Creager). Se obtiene mediante la tabla de la derecha, cuyo uso aplicaremos.

))2

()2

)((2..(3

2 2

32

2

32

g

V

g

VHgbuQ

g

Vhh e

2

2

AVQ .

Page 3: Diseño de CAPTACION

X Y

Coordenadas a utilizar: 0.00 m 0.126 m

0.10 m 0.036 m

X Y 0.30 m 0.000 m

0.000 m 0.073 m 0.40 m 0.007 m

0.058 m 0.021 m 0.60 m 0.060 m

0.173 m 0.000 m 0.80 m 0.142 m

0.231 m 0.004 m 1.00 m 0.257 m

0.346 m 0.035 m 1.40 m 0.565 m

0.461 m 0.082 m 2.00 m 1.220 m

0.577 m 0.148 m 2.50 m 1.960 m

0.807 m 0.326 m 3.00 m 2.820 m

1.154 m 0.704 m

1.442 m 1.130 m

1.730 m 1.627 m

Asumiendo: Por criterio de diseño

he = 0.30 m

Coordenadas a utilizar:

X Y

0.000 m 0.038 m Como el caudal de maxima avenida es minima reajustamos0.030 m 0.011 m

0.090 m 0.000 m

0.120 m 0.002 m

0.180 m 0.018 m

0.240 m 0.043 m

0.300 m 0.077 m

0.420 m 0.170 m

0.600 m 0.366 m

0.750 m 0.588 m

0.900 m 0.846 m

A.- Altura del Barraje

Anterior P = 1.65 m

Resulta: Según el tirante del canal aderivar.

Cc = 3651.65 msnm.

Por comparar.

Donde:

Co : Cota del lecho del rio dato topografico (msnm).

P : Altura del barraje TSUGUO NOSAKI

Cc : Cota en la cima del barraje (msnm).

3.- COTA DE CORONACION DEL CIMACIO:

En maxima avenida la carga de agua H sobre la coronación del barraje de derivación es 0.16 m. considerando un borde libre de 0.30xHa = 0.30+0.16 = 0.46m, los muros de encausamiento por condicion de señal en las taludes del cause de la quebrada se considerarán de 1.00m superior a la cota del cimacio (Paramento superior del perfil Greager) de 2781.00msnm.

oc CPC

Page 4: Diseño de CAPTACION

Hallando por condición de la ventana de captación

( metros)

Ingresar :

ho = 0.60 m.

L = 1.00 m.

C = 1.84 Coef.

Donde:

ho

h

Cc : Nivel de la cresta del barraje

L : Longitud de la ventana de captación por lo general

Mediante la formula del vertedor para la ventana de captacion: es entre 3 a 4m.

C : coeficiente de vertedero. En este caso es 1.84

Ajustando: Ingresar:

≥0.20 = 0.20 m.

Resulta: Entonces compare

h = 0.03 m P - ho- ≥0.20 = 0.85 m

Anterior P = 1.65 m

Despues de evaluar se asumirá h :

h = 0.50 m

Entonces:

Cc = 3651.30 msnm. Cc; cota de la cresta del barraje con la cual se trabajará

E.- Tirantes en el Barraje y colchón de Disipación

a.- Calculo del tirante al pie del Barraje

Donde:

Co: Cota de la cresta del vertedero

C1: Cota del colchon disipador

h : Tirante sobre la cresta

d1 : Tirante al pie del talud

Vo: Velocidad en la cresta del barraje

V1: Velocidad al pie del talud

Pc: Perdida de carga

: Altura del umbral del vertedero de captacion. Se

recomienda que sea mayor de 0.60 m.

: Altura de la ventana de captacion, asumiendo que

trabaja como vertedero

Iniciando la aplicación de la fórmula de Bernoulli

entre la cresta y el primer punto del cimacio

separado a un metro y asi sucesivamente hasta

llegar al nivel de la poza amortiguadora.

Generalmente el tirante dol agua t es mayor que la altura M azud, y el parámetro

ct

co Pg

VdC

g

VdC

2

111

2

20.0 hhCC ooc

2

3

** hLCQ 2.0 hhP o

Page 5: Diseño de CAPTACION

b.- Calculo del tirante conjugado

c.- Cálculo del tirante normal: Al final del colchòn disipador el flujo debe recuperar el tirante normal de acuerdo

a la sección y pendiente del cause.

Diseño del resalto o colchón amortiguador:

Por la formula aproximado :

Donde:

d1: Espesor de la lamina vertiente al pie del azud (m).

d2: Espesor de la lamina aguas abajo (m).

Q : Caudal de agua sobre el Azud, por metro lineal = m3/seg/m.

La velocidad de caida será: Ht : Diferencia de altura desde el nivel de agua encima de la cresta al

fondo del colchon disipador; aproximado para el tanteo.

V1 : Velocidad de caida (m/seg).

g : Gravedad (9.8m/seg)

Caudal en m3/seg./m

La altura total del agua He sobre el lecho del rio aguas arriba es:

Anterior:

V = 1.85 m Velocidad en la cresta del barraje

P = 1.65 m

H = 0.40 m.

he = 0.58 m. Altura de energia en la cresta

He = 2.23 m. Resultado de la formula.

La profundidad de la cuenca o colchón sera: He - Ht - d1 = Profun. Por H canales se halla:

dn = 0.551 m.

Tirante de agua del rio en la salida

del colchón disipador.

Tanteo Formula

d1 V1 Q Ht He Profun. d´2 d2 d2 - d'20.108 6.86 0.744 2.40 2.23 -0.28 0.83 1.02 0.18

0.111 6.71 0.744 2.30 2.23 -0.18 0.73 1.01 0.27

0.113 6.57 0.744 2.20 2.23 -0.09 0.64 0.99 0.36

0.116 6.42 0.744 2.10 2.23 0.01 0.56 0.98 0.42

Según la formula de la momenta el tirante conjugado en

función del tirante obtenido al nivel de la poza.

Dado que (Cn - C1), debe ser aproximadamente de 0.50

a 1.00 metro, se tantea el nivel del piso de la poza de

tranquilización hasta que se cumpla la ecuacion.

Para este calculo efectuamos tanteos suponiendo un Ht

g

dxV

ddd

2221

2 .222

.22

22

221 cn

nnn P

g

VdC

g

VdC

id

Qd *45.02

tHgV **21

1

1V

Qd VhVAQ ).1*(. 1

g

VaguatazudPH e

2)()( 2

)(

)/( 3

mb

segmQQ

Page 6: Diseño de CAPTACION

Cosiderando por seguridad:

d1 = 0.108 m.

Cosiderando por seguridad:

d2 = 0.983 m.

Tenemos:

V1 = 6.42 m/seg.

V2 = 0.76

Resulta:

F1 = 6.22 m.

F2 = 0.24 m.

por lo tanto: EL FLUJO ES SUBCRITICO

con una superficie muy

irregular aguas abajo

a.- Cálculo de la longitud del colchón disipador

Schoklitsch

Resulta:

L = 4.37 m.

Safranez

Resulta:

L = 4.05 m.

U.S. Bureau of Reclamation

Resulta:

L = 3.93 m.

La dimención del colchón disipador para construir sera:

Por lo tanto:

L = 6.00 m.

La necesidad de una poza de disipación y la forma de resalto está íntimamente relacionada al numero

de Froude que se expresa:

SOLADO O COLCHÓN DISIPADOR

dg

VF

*

)12(*)65( ddaL

1*16 FdL

24 dL

Page 7: Diseño de CAPTACION

b.- Control de la infiltración

Donde:

Lw: Longitud del camino de percolación

Anterior: Cota h:

Cc = 3651.30 msnm.

C1 = 3649.2 msnm. c: Coeficiente de Lane.

hc-1 = 2.10 m.

Ingresa:

h = 2.10 m.

c = 3.0 coef.

Lw = 6.30 m.

c.- Espesor del solado.

Donde:

e: Espesor en metros

h: Diferencia de altura desde el inicio de la percolación

SGs ó B: Peso especifico del solado Ton/m3.

Como:

Donde:

h: Carga hidrostatica en m.

B: Peso especifico del material del solado

ø: Peso especifico del agua

Donde:

h = 2.10 m de agua.

B = 2.30 ton/m3.

ø = 1.00 ton/m3.

h = h - hf

Perdida. Sp: Camino de percolación parcial

St: Camino de percolación total

Sp = 6.30 m.

St = 8.88 m.

h = 1.49 m.

Diferencia de carga hidrostatica entre la cresta del barraje

y la uña terminal de la poza de disipación.

hf = h.(Sp/St)

El agua que se desplaza debajo de la presa por efecto de la percolación causa el arrastre de los materiales finos

creando fenomeno llamado de la tubificación

hcL w *

))1/((*3

4 SGshe

)*''*(* XLhhhbCpwSp XLh * 3* hLLvL X hL* 3*hXXvX )*''*(* XLhhhbCpwSp

BhH .

Page 8: Diseño de CAPTACION

H = 1.40 m.

Resulta:

e = 0.63 m. Por recomendación por algunos autores nos recomienda:

e>= 0.90m.

e = 0.90 m. espesor a considerar

d.- Enrocado de protección o Escollera

Ingresar: Donde:

C = 9.0 Coef. Lt: Longitud total escollera

Db = 2.10 m C: coeficiente de Bligh.

q = 0.744 m3/seg/m. Anterior Db: Altura comprendida entre la cota de la cresta del barraje

Lc = 6.00 m Anterior y la cota del extremo aguas abajo.

q: Caudal por metro lineal de vertedero.

Lc: Longitud del colchón

Lt = 2.18 m.

Arena fina y limo 18

Arena fina 15

Arena gruesa 12

Grava y arena 9

Bolones y arena 4 - 6

Arcilla 6 - 7

a.- Velocidad de arrastre

Donde:

Vc: Velocidad requerida para iniciar el arrastre

c:

Ingresar:

C = 3.2 Coeficiente. d: Diametro del grano mayor

d = 0.1 m. Vs: Velocidad de arrastre

Resulta:

Vc = 1.52 m/seg.

Vs = 1.01 m/seg.

b.- Ancho del canal de Limpia

Donde:

B: Ancho del canal de limpia en metros

Q: Caudal que discurre en el canal de Limpia en m3/seg.

q: Caudad por unidad de ancho m3/seg./m

Ingresar: Vc: Velocidad de arrastre en m/seg.

Q= 0.50 m3/seg. g: Aceleración de la gravedad en m/seg.2

g= 9.80 m/seg.2

Vc= 1.52 m/seg.

q= 0.36 m3/seg./m

Resulta:

B = 1.40 m.

Para el diseño:

B = 1.50 m.

Coef. Blighmaterial del lecho del

cauce

Su trazo generalmente es perpendicular al eje del barraje pero puede tener un angulo entre 12º a 45º y el fluyo de la quebrada puede

fomar angulos entre 60º y 90º con el eje de captación. Un bocal esviajado facilita el ingreso de agua en el bocal de toma paro aumenta

la sedimentacion frente a la misma; Para separar el canal de limpia del barraje fijo se construye un muro guia que permite encauzar

mejor las aguas hacia el canal de limpia

Coef. Que es función del tipo de material

Arena grava redondeada 3.2

grava rectangular 3.9

arena y grava 3.5 a 4.5

DISEÑO DEL CANAL DE LIMPIA

Al final del colchón disipador es necesario colocar una escollera o enrocado con el

fin de reducir la erosión y contrarestar el arrastre del material fino por acción de la

filtración.

Coeficiente de Bligh.

cbt LqDCL )(67.0

sc VcdV 5.15.1 2

1

q

QB

g

Vq c

3

Page 9: Diseño de CAPTACION

c.- Pendiente del canal de Limpia

Donde:

Sc: Pendiente del canal de Limpia

n: Coeficiente de rugosidad de Manning.

g: Aceleración de la gravedad en m/seg.2

q: Descarga por unidad de ancho en m/seg./ml.

Ingresar:

n= 0.04 Coef. Manning.

g= 9.80 m/seg.2

q= 0.36 m/seg./ml.

Resulta:

Sc = 0.0254 m.

Para el diseño:

Sc = 2.54 %. Sc = 0.50 % minimo

TOMA O CAPTACIÓN

Ingresar:

T= 0.750 Pulg. Donde:

V= 3.28 Pies/seg. he: pérdida de carga, en pulgadas

A= 70 º T: espesor de la platina (rejilla), en pulgadas

B= 60 º V: velocidad de Ingreso atravez de la rejilla, en pies/seg.

D= 4 Pulg. (se recomienda V = 1 m/s = 3.28 pies/seg.)

A: ángulo de rejilla con la horizontal

he = 1.72 Pulg. B: ángulo de aproximación

D: separación entre ejes de cada platina, en pulgadas

he = 0.04 m

La mayor parte de las tomas se han hecho en ángulo recto con el barraje pero el boca¡ con el río puede quedar con un ángulo entre 20' y 30'. La capacidad de la toma se determina de acuerdo a las demandas de la cédula de cultivos en el caso de un proyecto agrícola, o de acuerdo a las capacidades de la central hidroeléctrica o del proyecto de abastecimiento de agua potable considerando adicionalmente las pérdidas necesarias para eliminar los sedimentos que pudieran ingresar. La velocidad de entrada del agua por los vanos del bocal de captación debe quedar comprendida entre 0.80 y 1.20 m/seg. El bocal de toma se ubica por lo general aguas arriba del barraje vertedero, procurando que el ingreso de sedimentos sea el mínimo. La toma generalmente es de forma abocinada, en la parte anterior se instalan los orificios de captación separados por muros, y los flujos de cada compuerta se amortiguan en una poza de tranquilización que termina en el punto inicial del canal de derivación. Con el fin de proteger la toma se levanta una pantalla frontal donde se abren las ventanas de captación, puede adicionarse en la parte anterior un canal de fuerte pendiente para eliminar gravas, llamado canal desgravador (Diseño Peruano). Los caudales de captación se calculan como vertederos: Q = c . L . h 3/2 En el caso de que trabajen como orificios, el caudal viene dado por la fórmula : Q = c.A.(2gh) 1/2 La longitud de las ventanas por lo general varía de 2.0 a 4.0 m dependiendo de las dimensiones de la compuerta standard.

Estructuras principales de la Toma 1.- Rejillas (Trash Racks) Su objetivo básico es impedir que los materiales de arrastre y suspensión ingresen al canal de derivación, los cuales causan obstrucción y desbordes aguas abajo de la captación. Las rejillas platinas unidas mediante soldadura a formando paneles. La separación entre rejillas se recomienda tomarla de eje a eje; y dependiendo del tipo de material que se quiere impedir su ingreso la separación variará entre 1 " y 4" (material fino) y de 4" a 8" (material grueso), recomendándose que las rejillas de menor separación en la parte superior. La colocación de la rejilla puede ser vertical o con una pequeña inclinación de 1:1/4 para facilitar su limpieza. Esta limpieza se recomienda que se haga mediante acción mecánica ya que cuando es manual en épocas de avenidas es casi imposible ejecutar con la frecuencia debida. La principal objeción de colocar rejillas es que causa pérdidas, las cuales deben ser consideradas durante el dimensionamientode la altura del vertedero y en el cálculo del tirante en el canal de derivación. La pérdida de carga que ocasiona una rejilla se puede calcular por la fórmula:

9/2

9/102 .

q

gnS c

)).(sec.().

(.32.1 8/152 BsenAD

VThe

Page 10: Diseño de CAPTACION

ANCHO DE LA VENTANA DE CAPTACIÓN

NUMERO DE REJILLAS

El numero de rejillas esta dado por:

Donde:

NR= Numero de rejillas Ln = 1.00 m.

Ln=Ancho total de las ventanas(m.)

D=Espaciamiento entre rejillas.

NR= 8.84 Rejillas NR= 9.00 Rejillas

En la determinacion de la correccion del ancho de las ventanas , se contemplan dos casos:

** Si el angulo de desviacion frontal es de 0°:

b=Ln

** Si el angulo de desviacion frontal es diferente de 0°:

Donde:

ø = 90 - B = 30 º.

Donde:

L = Ancho corregido de ventanas (m.)

Ln=longitud neta de ventanas(m.)

B=Angulo de desviacion frontal.

T=Ancho ó diametro de rejillas (m.)

NR=Numero de rejillas.

L = 1.32 m.

L = 1.40 m.

El ancho propuesto para la ventana de captacion (Ln) es corregido por el coseno del angulo de desviacion de la

frontal (teta) por el numero de rejillas de las ventanas.

ANCHO CORREGIDO DE LAS VENTANAS

2.- Ventana de Captación: Las ventanas de captación son las entradas de agua de la toma que en ciertos casos están instaladas en un paramento de concreto totalmente protegido, detrás del vertedero de toma u orificio se colocan los mecanismos de cierre de emergencia y luego las compuertas de control. Los mecanismos de izaje deben ser ubicados en una elevación superior a las máximas avenidas.

Estructuras de la toma

2

3

.. hLcQ

rDesripiado

Transición

Limpia

Compuerta

gulacion

Compuerta

Re

1D

LnN R

RNTLn

L *))cos(

(

Page 11: Diseño de CAPTACION

Donde:

Q: Caudal a derivar mas caudal necesario para operación del sistema de purga.

c: Coef. De vertedero, en este caso 1.84

Ingresar: L: Longitud de ventana que por lo general se asume ntre 3 a 4 m

c = 1.84 coef. h: Altura de la ventana de captación ;

ho: Altura para evitar material de arrastre se recomienda 0.60m minimo ó ho>H/3

Q = 0.500 m3/seg.

Resulta:

h = 0.34 m.

he = 0.04 m. Anterior.

La altura total de las ventanas esta dado por:

h= 0.40 m.

Se considerará por seguridad.

h = 0.40 m.

Caudal que se podra captar:

Q = 0.652 m3/seg.

Considerando las dimenciones para el canal

desripiador, la cual tendra una compuerta

de 0.40x.40cm

B = 0.40 m.

H = 0.40 m.

Z = 1.00

h=h1+he

3.- Camará de decantación o Desripiador Entre el vertedero de captación y los orificios de toma o después de los orificios de toma se proyecta un canal transversa l al flujo con el propósito de decantar los materiales sólidos que pudieran haber ingresado en el bocal de toma. Este canal debe tener f uerte pendiente para eliminar las gravas aguas abajo del barraje. En nuestra opinión, es preferible diseñar en función de generar una velocidad que permita un arrastre del material que pu diera ser decantado, para lo cual es necesario dar una fuerte pendiente paralela al flujo en el río; pero esto está limiltada por la co ta de salida que le permite al río, sobre todo en épocas de avenidas. Se recomienda una pendiente mayor de 2%. Asimismo es conveniente que la compuerta de limpia tenga una abertura capaz de descargar el caudal de derivación en el mejo r de los casos, pero es práctica común darle un ancho de 1.50 m. a la compuerta.

4.- Compuerta de Regulación: Son aquellas compuertas que regulan el ingreso del caudal de derivación hacia el canal principal. Por lo general se recomienda que el área total de las compuertas sea igual al área del canal conducto aguas abajo. Asimismo se recomienda que la velocidad de diseño sea de 2.0 a 2.5 m/s. El caudal que pasa por cada compuerta se calcula mediante la siguiente fórmula: En la ecuación, conociendo V (del valor de diseño recomendado), se determina h (por lo general se estima entre 0. 15 a 0.30 m) y luego se halla el valor de A. Cuando se tiene una luz grande es conveniente dividir la luz en varios tramos iguales para disponer de compuertas más fáciles de operar.

B

H Z

Page 12: Diseño de CAPTACION

DISEÑO DE LA COMPUERTA DE ADMISION DEL CANAL

Este diseño se hara empleando el grafico adjunto y la utilizacion de la siguiente formula:

Donde:

Q=Caudal de descarga en m3/seg.

a=Alto de la compuerta en metros.

b=Ancho de la compuerta en metros.

H=Carga del agua al fondo del orificio en metros.

mu=Coeficiente que se obtiene del grafico.

Datos:

Q= 0.5 m3./seg.

b= 0.85 (una compuerta)

Hmin= 0.30 m.

Hmax= 1.00 m.

El diseño se hara para el caso de carga minima:

Para un primer intento tomamos como valor de "a" igual a la altura de la ventana de captacion.

Considerando Hmin.

H= 0.30 m.

a= 0.40 m.

g= 9.80 m/seg.2

Para un H/a= 0.75 0.5 Ingrese el valor del grafico

a= 0.50 m. por proceso constructivo

Tomamos la compuerta de :

0.85x 0.40m.

HgbaQ **2***

Hgb

Qa

**2**

Page 13: Diseño de CAPTACION

CALCULO DEL CAUDAL MAXIMO QUE PASA POR LAS COMPUERTAS

Hmax= 1.00

a= 0.50

2

0.6 ingrese el valor del grafico

Q= 1.129 m3/seg. Se regulara con el aliviadero

Ingresar:

b1 = 0.8 m.

b2 = 0.4 m.

Resulta:

L = 0.90 m.

Por tratarse de un caudal a derivar pequeño de: Q = 0.5 m3/seg.

No consideraremos dicha estructura.

Ingresar:

L = 2.00 m.

h = 0.20 m.

C = 0.50 coef.

g = 9.80 m/s2

Resulta:

Q = 0.167 m.

La Longitud del aliviadero se volvera a calcular con la hoja de calculo

Correspondiente.

Para un H/a=

5.- Transición: De acuerdo al criterio del diseñador, algunas veces se suele unir las zonas de las compuertas con el canal mediante una transición, que a la vez permite reducir las pérdidas de carga. Para determinar la longitud requerida se aplica el siguiente criterio:

6.- Estructuras de Disipación

Como producto de la carga de posición ganada por colocación de la cresta del vertedero de derivación a una altura sobre el lecho del río, se genera una diferencia entre el canal antiguo y la zona del bocal, que es necesario controlar mediante la construcción de una estructura de disipación . Esta estructura por lo general tiene un colchón o poza disipadora, que permite disipar dentro de la longitud de la poza de energía cinética adquirida del flujo y así salir hacia el canal de derivación un flujo más tranquilo.

Donde: b1 : ancho de la zona de compuertas b2 : ancho del canal de derivación

7.- Aliviaderos En algunos casos por mala operación de las compuertas de regulación ingresan caudales mayores a su capacidad en el canal de derivación, lo cual obliga instalar aliviaderos para eliminar las excedencias inmediatamente después del inicio del canal de derivación. El caudal por eliminar viene dado por la ecuación:

Donde: Q: caudal evacuado aliviadero en m3/s L: Iongitud del aliviadero en m. h: diferencia de niveles en el aliviadero en m. C: coeficiente de descarga aprox. 0.50

'30º122

)21(

tg

bbL

2

1

)2.(..15

4ghChLQ

HgbaQ **2***

Page 14: Diseño de CAPTACION

8.- Muros de Encauzamiento Son estructuras que permiten encauzar el flujo del río entre determinados límites con el fin de formar las condiciones de diseño pre-establecidas (ancho, tirante, remanso, etc.). Estas estructuras pueden ser de concreto simple o de concreto armado. Su dimensionamiento esta basado en controlar el posible desborde del máximo nivel del agua y evitar también que la socavación afecte las estructuras de captación y derivación. En lo referente a la altura de coronación que estas estructuras deben tener, se recomienda que su cota superior esté por lo menos 0.50 m por encima del nivel máximo de agua. Con respecto a su cota de cimentación, se recomienda que ésta debe estar por debajo o igual a la posible profundidad de socavación (ver diques de encauzamiento). Con la altura definida se puede dimensionar los espesores necesarios para soportar los esfuerzos que transmiten el relleno y altura de agua; es práctica común diseñar al volteo, deslizamiento y asentamiento.