Diseño de Estructuras de Acero Laminado en Frio (R LaBoube)

download Diseño de Estructuras de Acero Laminado en Frio (R LaBoube)

of 354

Transcript of Diseño de Estructuras de Acero Laminado en Frio (R LaBoube)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    1/354

    ~ ~ ~~ ~ r. ASOCIACION COSTARRICENSE DE~ I ~" S ~ I I .;0(;;-" INGENIERIA ESTRUCTURAL YSISMICAC!t:t ' - , ~~

    Cu rso:

    ~ C i C~ I J J ) c r u ~ o DE N G f N ~V eMlES DE com PJeA

    "Diseno de Estructuras de AceroLaminado en Frio"

    Instructor:Dr. Roger A. LaBoube, Ph.D., P.E ..Universidad de Ciencia y Tecnologfa de

    Missouri, USA

    Auditorio Lanamme-UCRMartes 4 de setiem bre, 201 28:00 am-6:00 pm

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    2/354

    Produced for

    AMERICAN IRON AND STEEL INSTITUT

    DESIGN OF COLD-FORMEDSTEEL STRUCTURES

    1 - 1

    by

    Roger LaBoube

    Curators Teaching Professor EmeritusWei-Wen Yu Center for Cold-Formed Steel Structures

    (Missouri University of Science and Technology)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    3/354

    Wei-Wen Yu

    Center for Cold Formed Steel Structure

    1 - 2

    [email protected], 573-341-4481

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    4/354

    STEEL DESIGN SPECIFICATIONS

    Type of steel SpecificationCold-Formed, Carbon Steel AISI

    1 - 3

    -

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    5/354

    AISI Applicable in North America

    AISI S100-07 with Supplements 1 and 2

    Canada

    Mexico

    1 - 4

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    6/354

    Design Methods

    United States:Allowable Strength Design and Load and

    Resistance Factor Design

    Canada:Limit States Design

    1 - 5

    ex co: owa e trengt es gn an oa anResistance Factor Design

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    7/354

    ORGANIZATION OF THE 2007 SPECIFICATION

    A. General Provisions

    B. Elements

    C. Members

    D. Structural Assemblies and Systems

    1 - 6

    .

    F. Tests for Special Cases

    G. Fatigue

    Appendices for each country

    Appendix 1 for Direct Strength Method

    Appendix 2 for Second-Order Analysis

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    8/354

    KEY CHARACTERISTICS OF COLD-FORMED

    STEEL STRUCTURES

    Shapes are cold-formed from flat sheets or plates Original mechanical properties of steel are changed dueto the cold formin rocess

    1 - 7

    Standardized and customized shapes are available Thin material (in most cases less than 0.10inch)

    Predominant cross-section failure mode is influenced bylocal buckling, followed by postbuckling strength increase

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    9/354

    SOME TYPICAL COLD-FORMED SHAPE

    CROSS SECTIONSStuds or Joists

    1 - 8

    Other Shapes

    In the United States structural HSS sections are typically designedby hot-rolled specification

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    10/354

    SOME TYPICAL COLD-FORMED PANEL

    CROSS SECTIONSRoof Decks

    Long-Span Decks

    1 - 9

    Floor Decks

    Curtain Wall Panels

    Ribbed Panels

    Corrugated Sheets

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    11/354

    STEEL MATERIALS AND PRODUCTS

    (Section A1.1)

    The Specification Covers

    Steel: Carbon and low alloy

    1 - 10

    Steel Products: Sheet, strip, plate, bar

    Members: Cold formed to shape

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    12/354

    Limits of Applicability

    (Section A1.2)

    Nominal strength and stiffness shall be determined by

    Chapters A through G and Appendices A and B.

    As an alternate:

    1 - 11

    and Chapter F

    Determine design strength or stiffness by

    rational analysis. Direct Strength Method (Appendix 1)

    Second Order Analysis (Appendix 2)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    13/354

    TYPICAL APPROVED STEELS

    (Section A2.1)

    16 Approved Steels in Section A2.1.

    ASTM A653Steel Sheet, Zinc Coated (Galvanized) orZinc-Iron Alloy-Coated (Galvannealed) by the Hot-DipProcess

    1 - 12

    Fy = 33 to 50 ksi Fu = 45 to 70 ksiFy = 80 ksi Fu = 82 ksi

    ASTM A792Steel Sheet, 55% Aluminum-Zinc Alloy-Coated by the Hot-Dip ProcessFy = 33 to 50 ksi Fu = 45 to 70 ksiF

    y

    = 80 ksi Fu

    = 82 ksi

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    14/354

    TYPICAL APPROVED STEELS

    (Section A2.1)

    ASTM A1011 Steel Sheet, Hot-Rolled, Carbon,

    Structural, High Strength Low-Alloy with improvedFormability

    1 - 13

    ASTM A1003Steel Sheet, Carbon, Metallic- andNonmetallic-Coated for Cold Formed Framing

    Members

    (Replaced A653 for framing members)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    15/354

    TYPICAL APPROVED STEELS

    (Section A2.1)

    ASTM A500Standard Specification for Cold-FormedWelded and Seamless Carbon Steel Structural Tubing in

    Rounds and ShapesFy = 33 to 50 ksi Fu = 45 to 63 ksi

    1 - 14

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    16/354

    OTHER STRUCTURAL QUALITY STEELS

    (Section A2.2)

    Published Material Specification with Specified

    Mechanical and Chemical Properties

    1 - 15

    Minimum Ductility Requirements of Section A2.3

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    17/354

    REQUIRED DUCTILITY

    (Section A2.3.1)

    Fu/Fy1.08

    1 - 16

    Elongation 10% (two-inch gage length)

    7% (eight-inch gage length)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    18/354

    LOW DUCTILITY STEELS(Section A2.3.2)

    ASTM A653, A792, A875 and A1008, Grade 80 material

    May be used for deck and panel profiles

    1 - 17

    Limits on Fy and Fu

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    19/354

    GOVERNING MATERIAL THICKNESS

    Design Thickness Bare steel flat productthickness, t (exclusive ofcoating)

    1 - 18

    Delivered Minimum Thickness Minimum thickness is0.95t, when measured onactual product (Section A2.4)

    Design Formulas Account for corner andtolerance effects

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    20/354

    PROPERTIES OF STEELS

    Key Measures of Strength and Deformability

    Yield Stress Fy

    1 - 19

    u

    Ratio of Tensile to Yield Fu/Fy

    Elongation at Fracture u

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    21/354

    EFFECTS OF COLD-FORMING ON

    MATERIAL PROPERTIES

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    22/354

    DESIGN YIELD STRESS(Section A7)

    Use Virgin Steel Yield Stress, Fy

    orAverage Yield Stress for Cross Section, Fya

    1 - 21

    e erm ne verage e ress rom er o eFollowing:

    Full cross section tension test

    Stub column test

    Computation of average yield stress:

    Fya = CFyc + (1 - C)Fyf Fuv

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    23/354

    MAJOR COLD-FORMED STEEL DESIGN CONCEPT

    Effective Design Width

    1 - 22

    Partially Stiffened Element Unstiffened Elements

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    24/354

    STIFFENED AND UNSTIFFENED ELEMENTS:

    EXAMPLES

    Stiffened

    1 - 23

    Unstiffened

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    25/354

    ASDSTRENGTH REQUIREMENTS

    (Section A4.1.1)

    RRn/

    1 - 24

    = equ re s reng

    Rn = Nominal strength

    = Safety Factor

    Rn/ = Design strength (allowable strength)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    26/354

    LRFDSTRENGTH REQUIREMENTS

    (Section A5.1.1)

    Ru Rn

    1 - 25

    u= equ re s reng

    Rn = Nominal strength

    = Resistance factor

    Rn = Design strength (factored resistance)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    27/354

    Wei-Wen Yu

    Center for Cold Formed Steel Structure

    1 - 26

    [email protected], 573-341-4481

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    28/354

    QUESTIONS?

    1 - 27

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    29/354

    DESIGN OF COLD-FORMED STEEL STRUCTURES

    USING THE 2007 NORTH AMERICAN SPECIFICATION

    COMPRESSION ELEMENTS LOCAL BUCKLING

    2 - 1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    30/354

    THIN PLATE ELEMENTS IN COMPRESSION(Section B)

    LOCAL BUCKLING CONSIDERATIONS

    Elastic Critical Buckling

    Post-Buckling

    TYPES OF COMPRESSION ELEMENTS

    2 - 2

    Stiffened Partially Stiffened

    Unstiffened

    STRESS CONDITION

    Uniform

    Gradient

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    31/354

    STIFFENED PLATE ELEMENTS

    (Section B)

    2 - 3

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    32/354

    UNSTIFFENED PLATE ELEMENTS

    (Section B)

    2 - 4

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    33/354

    ELASTIC CRITICAL BUCKLING OF STIFFENED PLATE

    2 - 5

    cr

    2

    2 2f = kE

    12(1- )(w/t)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    34/354

    FREQUENTLY USED k VALUES

    2 - 6

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    35/354

    POST-BUCKLING OF STIFFENED PLATE ELEMENT

    2 - 7

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    36/354

    POST-BUCKLING STRESS DISTRIBUTION

    2 - 8

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    37/354

    EFFECTIVE WIDTH CONCEPT

    2 - 9

    o

    w

    fdx = bf max

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    38/354

    CLASSIC EFFECTIVE WIDTH EXPRESSION

    1

    2

    cr y

    2

    2 2f = F =4 E

    12(1- )(b/t)

    b = 1.9t E/Fy

    2 - 10

    3

    4f

    kE)

    w

    t(0.208-1

    f

    kE0.95t=b

    maxmax

    also, b = 1.9t E/fmax

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    39/354

    BASIC EFFECTIVE WIDTH EXPRESSION

    (Section B2.1)

    Eq.B2.1-1

    Eq.B2.1-2

    b = w when 0.673

    0.673>w when=b

    2 - 11

    Eq.B2.1-3

    Eq.B2.1-4

    Eq.B2.1-5

    Used in all cases of effective width considerations

    f/F= cr

    /

    .

    -1=

    ))(w/t-12(1

    Ek=F 222

    cr

    BASIC EFFECTIVE WIDTH RELATIONSHIP

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    40/354

    BASIC EFFECTIVE WIDTH RELATIONSHIP

    (Section B2.1)

    2 - 12

    Reduction factor, , vs. slenderness factor,

    EFFECT OF LOCAL BUCKLING ON

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    41/354

    EFFECT OF LOCAL BUCKLING ONCOLUMN SECTION

    ult

    Ineffecitve

    2 - 13

    f = Fy

    Aeff

    Effective Section

    reas

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    42/354

    IMPORTANT DEFINITIONS

    2 - 14

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    43/354

    MAXIMUM FLANGE FLAT-WIDTH-TO-THICKNESS RATIOS

    (Section B1.1)

    (a) Maximum Flat-Width-to-Thickness Ratios

    (1) Stiffened Compression Elements (Edge Stiffeners)

    Simple lip (w/t 60) Section B1.1(a)(1)

    2 - 15

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    44/354

    MAXIMUM FLANGE FLAT-WIDTH-TO-THICKNESS RATIOS

    (Section B1.1)

    Any other kind of stiffeners

    i) when Is < Ia (w/t 60) Section B1.1(a)(1)i)

    ii) when Is Ia (w/t 90) Section B1.1(a)(1)ii)

    2 - 16

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    45/354

    (2) Stiffened Compression Elements (w/t 500)

    Section B1.1(a)(2)

    MAXIMUM FLANGE FLAT-WIDTH-TO-THICKNESS RATIOS

    (Section B1.1)

    2 - 17

    MAXIMUM FLANGE FLAT WIDTH TO THICKNESS RATIOS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    46/354

    MAXIMUM FLANGE FLAT-WIDTH-TO-THICKNESS RATIOS

    (Section B1.1)

    (3) Unstiffened Compression Elements (w/t 60)

    Section B1.1(a)(3)

    2 - 18

    MAXIMUM WEB DEPTH TO THICKNESS RATIOS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    47/354

    MAXIMUM WEB DEPTH-TO-THICKNESS RATIOS

    (Section B1.2)

    Section Depths

    a) Unreinforced webs(h/t)max 200 Section B1.2(a)

    b) Reinforced webs, satisfying Section C3.7.1

    2 - 19

    1) with bearing stiffeners(h/t)max 260 Section B1.2(b)(1)

    2) with bearing and intermediate stiffeners

    (h/t)max 300 Section B1.2(b)(2)

    UNIFORMLY COMPRESSED STIFFENED ELEMENTS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    48/354

    UNIFORMLY COMPRESSED STIFFENED ELEMENTS

    (Section B2.1)

    2 - 20

    Figure B2.1-1

    Use basic effective width expression with k = 4.0

    EXAMPLE 2 1 BEAM SECTION

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    49/354

    Given: (s.c.e.)

    Fy = 33 ksi; t = 0.105 in.; R = 2t

    Determine:

    1) Effective width of

    EXAMPLE 2.1 BEAM SECTION

    2 - 21

    for strength determinationw = 8.0 6(0.105) = 7.37 in.

    W = w/t = 7.37/0.105 = 70.2 < 500 OK

    [B1.1(a)(2)]

    Eq.B2.1-5ksi21.6)2.70()-12(1

    E4=F 22

    2

    cr =

    EXAMPLE 2 1 (C ti d)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    50/354

    EXAMPLE 2.1 (Continued)

    Eq.B2.1-4

    Since > 0.673 Eq.B2.1-2

    351.2=6.21

    33=f/F= cr

    /0.22-1=wb

    =

    2 - 22

    Eq.B2.1-3

    .in90.4=)37.7(650.6=b

    0.665235.1/235.1

    0.22-1= =

    EXAMPLE 2 1 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    51/354

    EXAMPLE 2.1 (Continued)

    2) Effective width for serviceability

    Assume f = 0.6Fy = 19.8 ksi

    Eq.B2.1-4570.9=

    6.21

    8.19=f/F= cr

    2 - 23

    Since > 0.673 Eq.B2.1-2

    Eq.B2.1-3

    in.5.93=)0.805(7.37=b

    /0.22-1=;wb

    =

    805.0957.0/957.0

    0.22-1= =

    EXAMPLE 2 2 COLUMN SECTION

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    52/354

    Given: (s.c.e.)

    Fy = 50 ksi; t = 0.075 in.; R = 2t

    Determine:

    Effective widths for

    EXAMPLE 2.2 COLUMN SECTION

    2 - 24

    strength determination1) For w1 = 9.0 - 6 (0.075) = 8.55 in.

    w1/t = 8.55/0.075 = 114 < 500 OK B1.1(a)(2)

    Eq.B2.1-5ksi21.8)114()-12(1

    E4=F 22

    2

    cr =

    EXAMPLE 2 2 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    53/354

    Eq.B2.1-4

    Since > 0.673 Eq.B2.1-2

    EXAMPLE 2.2 (Continued)

    47.2=21.8

    50=f/F= cr

    /0.22-1=;wb

    = 369.047.2/0.22-1= =

    2 - 25

    Eq.B2.1-3

    2) For w2 = 5.0 - 6(0.075) = 4.55 in.

    w2/t = 4.55/0.075 = 60.7 < 500 OK

    .in15.3=)55.8(90.36=w=b 11

    .

    EXAMPLE 2 2 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    54/354

    EXAMPLE 2.2 (Continued)

    Eq.B2.1-5

    Eq.B2.1-4

    ksi9.28)7.60()-12(1

    E4=F 22

    2

    cr =

    f/F= cr 31.1=9.28

    50=

    2 - 26

    Since > 0.673 Eq.B2.1-2

    Eq.B2.1-3

    .in89.2=)55.4(350.6=w=b 22

    /0.22-1=;wb

    = 0.63531.1/

    31.1

    0.22-1= =

    UNIFORMLY COMPRESSED UNSTIFFENED ELEMENTS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    55/354

    UNIFORMLY COMPRESSED UNSTIFFENED ELEMENTS

    (Section B3.1)

    2 - 27

    UNIFORMLY COMPRESSED UNSTIFFENED ELEMENTS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    56/354

    U O CO SS U S S

    (Section B3.1)

    2 - 28

    Figure B3.1-1

    Use basic effective width expression with k = 0.43

    EXAMPLE 2 3 BEAM SECTION

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    57/354

    Given: (u.c.e.)

    Fy = 50 ksi; t = 0.105 in.; R = 2t

    Determine:

    Effective width of compression

    EXAMPLE 2.3 BEAM SECTION

    2 - 29

    flange for strength determinationw = 3.5 - 3t = 3.185 in.

    w/t = 3.185/0.105 = 30.3 < 60 OK

    Eq.B2.1-5

    ksi5.12)3.30()-12(1

    E43.0=F 22

    2

    cr =

    EXAMPLE 2 3 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    58/354

    EXAMPLE 2.3 (Continued)

    Eq.B2.1-4

    Since > 0.673

    0.2=5.12

    50=f/F= cr

    0.22

    0.22

    2 - 30

    Eq.B2.1-3

    Compression flange is only 44.5 % effective.

    in..421=)185.3(450.4=w=b

    -

    ..

    0.2

    -

    UNIFORMLY COMPRESSED STIFFENED ELEMENTS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    59/354

    UNIFORMLY COMPRESSED STIFFENED ELEMENTS

    WITH CIRCULAR OR NON-CIRCULAR HOLES(Section B2.2)

    2 - 31

    UNIFORMLY COMPRESSED STIFFENED ELEMENTS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    60/354

    WITH CIRCULAR OR NON-CIRCULAR HOLES

    (Section B2.2)

    NON-CIRCULAR HOLES:

    i) Based on Section B2.1(a) at a stress FnAssume the web to consist of

    unstiffened elements c , one on

    2 - 32

    each side of the perforation (k = 0.43)

    Consider local buckling in edgestiffeners and flange elements, as

    discussed before

    ii) Or by conducting stub-column tests

    based on AISI S902

    UNSTIFFENED ELEMENTS AND EDGE STIFFENERSWITH STRESS GRADIENT (S i B3 2)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    61/354

    WITH STRESS GRADIENT (Section B3.2)

    i) If the stress decreasestoward the freeedge [Fig. B3.2-1(a)]

    Eq.B3.2-234.0

    578.0k+

    =

    2 - 33

    = Abs[f2/ f1] Eq.B3.2-1

    Figure B3.2-1(a)

    UNSTIFFENED ELEMENTS AND EDGE STIFFENERSWITH STRESS GRADIENT (S ti B3 2)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    62/354

    WITH STRESS GRADIENT (Section B3.2)

    ii) If the stress increasestoward the freeedge [Fig. B3.2-1(b)]

    k = 0.57 - 0.21+ 0.072 Eq.B3.2-3

    2 - 34

    Figure B3.2-1(b)

    SECTION PROPERTIES

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    63/354

    use

    SIMPLIFIED MIDLINE LINEAR METHOD

    WITH

    2 - 35

    DUE CONSIDERATION TO LOCAL BUCKLINGIN ACCORDANCE WITH SECTION B

    EXAMPLE 2.4 BEAM SECTION

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    64/354

    Given: (s.c.e.)

    Fy = 50 ksi

    2 - 36

    Determine:

    Effective moment of inertia for strength determination, Ixe.

    Assume webs are fully effective

    EXAMPLE 2.4 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    65/354

    Properties of 90corners

    r = R + t/2 = 0.094 + 0.060/2 = 0.124 in.

    u = 1.57r = 1.57(0.124) = 0.195 in.

    2 - 37

    c1

    = 0.637r = 0.637(0.124) = 0.0790 in.

    Dashed line is centerline

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    66/354

    EXAMPLE 2.4 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    67/354

    ELEM. L y Ly Ly2 I1

    1 1.192 3.548 4.229 15.005 0.035

    2 0.780 3.925 3.062 12.016

    3 5.384 3.970 21.375 84.857

    2 - 39

    4 7.384 2.000 14.768 29.536 8.3885 2.573 0.030 0.077 0.002

    6 0.390 0.075 0.029 0.002

    17.703 43.540 141.418 8.423

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    68/354

    UNIFORMLY COMPRESSED ELEMENTSWITH SIMPLE LIP EDGE STIFFENERS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    69/354

    WITH SIMPLE LIP EDGE STIFFENERS(Section B4)

    1) Simple lip type

    2 - 41

    For Both Beam & Column Type Sections

    ELEMENTS WITH SIMPLE LIP EDGE STIFFENERS(Section B4 Figure B4-1)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    70/354

    (Section B4 Figure B4 1)

    2 - 42

    Use basic effective width expression with k varying between 0.43 & 4.0

    COMPRESSION ELEMENTS WITH

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    71/354

    SIMPLE LIP EDGE STIFFENERS(Section B4)

    For w/t 0.328S Eq.B4-7

    Ia = 0 (no edge stiffener required)

    -

    ( )f/E28.1=S

    2 - 43

    .

    b1 = b2 = w/2 Eq.B4-2

    ds = ds Eq.B4-3

    COMPRESSION ELEMENTS WITH

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    72/354

    SIMPLE LIP EDGE STIFFENERS(Section B4)

    For w/t > 0.328S

    b1 = b/2(RI) Eq.B4-4

    b2 = b b1 Eq.B4-5

    2 - 44

    ds = ds(RI) Eq.B4-6Eq.B4-7

    Ia = 399t4[W/S 0.328]3 t4[115W/S + 5] Eq.B4-8

    RI = Is/Ia 1 Eq.B4-9

    W = w/t

    ( )f/E28.1=S

    PLATE BUCKLING COEFFICIENTS k

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    73/354

    (Section B4 Table B4.1)

    Simple Lip Edge Stiffener (140 40)

    D/w 0.25 0.25 < D/w 0.8

    n D5 n

    2 - 45

    where

    n = 1/3 Eq.B4-11

    S4

    t/w

    582.0

    .. I= .

    w

    . I

    =

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    74/354

    STIFFENED ELEMENTS UNDER STRESS GRADIENT(Section B2.3)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    75/354

    Dimensions

    2 - 47

    Figure B2.3-2

    STIFFENED WEBS UNDER STRESS GRADIENT(Section B2.3(a)(i))

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    76/354

    (a) Strength Determination

    (i) Where f1 is in compression and f2 is in tension

    = lf2/f1I (absolute value)Eq.B2.3-1

    k = 4 + 2(1 + )3 + 2(1 + ) Eq.B2.3-2

    2 - 48

    b1 = be/(3 + ) Eq.B2.3-3b2 = be/2 when > 0.236 Eq.B2.3-4

    b2 = be b1 when 0.236 Eq.B2.3-5

    For ho/bo> 4

    b1 = be/(3 + ) Eq.B2.3-6

    b2 = be/(1 + ) b1 Eq.B2.3-7

    EXAMPLE 2.6 BEAM SECTION

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    77/354

    Given:

    Fy = 50 ksi; t = 0.090 in.; R = 2t

    Determine:

    Effective moment of inertia

    2 - 49

    or s reng e erm na on

    Basic properties

    r = 0.18 + 0.090/2 = 0.225 in.

    u = 1.57r = 0.353 in.

    c1 = 0.637r = 0.143 in.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    78/354

    EXAMPLE 2.6 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    79/354

    RI = Is/Ia = 0.00706/0.0110 = 0.642

    D/w = 1.25/3.96 = 0.316

    ( )3/1=n3/1Since

    /0.

    22

    -1=;wb

    = 7

    48

    0.=0

    6.1/

    0

    6

    .1

    0.

    22

    -1=

    EXAMPLE 2.6 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    80/354

    b1 = b/2(RI) = 2.96/2(0.642) = 0.950 in.

    b2 = b b1 = 2.96 0.950 = 2.10 in.

    Edge stiffener (u.c.e.) (B3.2)

    .in96.2=)96.3(7480.=w=b

    2 - 52

    . . .

    f1 = 50(7.23/7.5) = 48.2 ksi; = Abs[f2/f1]

    f2 = 50(7.5 1.25)/7.5 = 41.7 ksi; = 41.7/48.2

    = 0.865; k = 0.578/(0.865 + 0.34) = 0.480

    ksi108=)9.10()-12(1

    E480.0=F 22

    2

    cr

    EXAMPLE 2.6 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    81/354

    Since < 0.673and lip is fully effective.in980.0=d=d

    '

    s

    f/F= cr 668.0=108

    2.48=

    2 - 53

    .in290.6=80(0.642)0.9=dR=d1.0

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    82/354

    24.0=)12(1+)12(1+4=k

    1f/f=ksi48.2=f=fAssume

    OK200 0.673

    ksi7.24=)161()-12(1

    E24=F 22

    2

    cr

    40.1=48.2/24.7=f/F= cr

    602.040.1/40.1

    0.22-1/

    0.22-1=;wbe =

    =

    =

    EXAMPLE 2.6 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    83/354

    be = 0.602(14.46) = 8.71 in.

    ho/bo = 15/4.5 = 3.33

    For ho/bo 4

    b1 = be/(3 + ) = 8.71/(3 + 1) = 2.18 in. (Eq. B2.3-3)

    2 - 55

    Since > 0.236

    b2 = be/2 = 8.71/2 = 4.36 in. (Eq. B2.3-4)

    (b1 + b2) = 2.18 + 4.36 = 6.54 in.

    The compressed portion of web = [7.5 3(0.090)] = 7.23 in.

    Since (b1 + b2) < 7.23 in., the web is subject to local buckling.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    84/354

    EXAMPLE 2.6 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    85/354

    From a computer program - CFS

    ycg = 8.29 in.

    Ixe = 66.6 in.4

    Sxe = 8.04 in.3

    2 - 57

    CONCLUSIONS

    % Effective

    Edge stiffener 64.2%

    Compression flange 74.7%

    Web 90.5%

    ELEMENT WITH ONE INTERMEDIATE STIFFENER(Section B5.1)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    86/354

    2 - 58

    UNIFORMLY COMPRESSED STIFFENED ELEMENTS WITHSINGLE OR MULTIPLE INTERMEDIATE STIFFENERS

    (S i B5 1)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    87/354

    (Section B5.1)

    2 - 59

    C-SECTION WEBS WITH HOLES UNDER STRESS GRADIENT(Section B2.4)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    88/354

    Provisions

    (a) Strength Determination

    2 - 60

    When do/h < 0.38, the effective widths, b

    1and b

    2shall be

    determined by Section B2.3(a) assuming no hole exists in the

    web.

    When do

    /h 0.38, the effective width shall be determined by

    Section B3.1(a) assuming the compression portion of the web

    consists of an unstiffened element adjacent to the hole with

    f = f1

    as shown in Figure B2.3-1.

    C-SECTION WEBS WITH HOLES UNDER STRESS GRADIENT(Section B2.4)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    89/354

    (b) Serviceability Determination

    The effective widths shall be determined by Section B2.3(b)assuming no hole exists in the web.

    d = De th of web hole

    2 - 61

    b = Length of web holeb1, b2 = Effective widths defined in Figure B2.3-1

    h = Depth of flat portion of the web measured along the

    plane of the web

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    90/354

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    91/354

    QUESTIONS?

    2 - 63

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    92/354

    FLEXURAL MEMBERS(Section C3)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    93/354

    DESIGN CONSIDERATIONS

    STRENGTH SERVICEABILITY1.) Flexure 1.) Deflection

    4 - 2

    . ear

    3.) Web Crippling4.) Combined 1.) & 2.)

    5.) Combined 1.) & 3.)

    FLEXURAL MEMBERS(Section C3.1.1)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    94/354

    Laterally Supported Members

    Nominal Section Strength (Section C3.1.1)

    4 - 3

    a) Procedure I- Based on Initiation of Yielding

    Mn = SeFy = My Eq.C3.1.1-1

    b) Procedure II- Based on Inelastic Reserve Capacity(applicable for thicker HSS sections)

    FLEXURAL MEMBERS(Section C3.1.1)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    95/354

    b) Procedure II- Based on Inelastic Reserve Capacity

    Conditions :

    1. Laterally supported

    2. Cold work of formin does not l

    4 - 4

    3. Compressive web portion to thickness ratio 1,4. Shear yielding governs the web (change)

    5. 30

    Nominal moment

    Mn 1.25My ESe [Cyey]

    FLEXURAL MEMBERS(Section C3.1.2)

    Laterally Unsupported Members

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    96/354

    Laterally Unsupported Members

    Section C3.1.2.1 - Lateral-Torsional Buckling forOpen Cross Section Members

    4 - 5

    . . . - -Closed Box Members

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    97/354

    OPEN CROSS SECTION FLEXURAL MEMBERS(Section C3.1.2.1)

    Lateral Buckling Strength

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    98/354

    Lateral Buckling Strength

    Elastic Lateral-Torsional Buckling

    1

    4 - 7

    or

    2

    where

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    99/354

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    100/354

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    101/354

    OPEN CROSS SECTION FLEXURAL MEMBERS(Section C3.1.2.1)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    102/354

    4 - 11

    Maximum Unsupported Length, Lu

    OPEN CROSS SECTION FLEXURAL MEMBERS(Commentary Section C3.1.2.1)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    103/354

    pp gfor Singly-, Doubly-, and Point Symmetric Sections

    4 - 12

    or ng y-, an ou y- ymme r c ec ons

    For Point-Symmetric Sections

    OPEN CROSS SECTION FLEXURAL MEMBERS(Section C3.1.2.1)

    Bending About Centroidal Axis

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    104/354

    Bending About Centroidal Axis

    Perpendicular to Symmetry Axis forSingly-Symmetric Sections Only

    4 - 13

    where

    and

    EXAMPLE 4.1 BEAM SECTION

    Given:

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    105/354

    Information of Ex. 2.6 of Lecture 2

    Determine:1.) Nominal moment strength

    4 - 14

    initiation of yielding(Procedure I)

    Sxe = 66.5/8.30 = 8.01 in.3

    Mn = Sxe Fy

    Mn = 8.01 (50) = 401 in.-k = 33.4 ft-k

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    106/354

    EXAMPLE 4.1 (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    107/354

    4 - 16

    0.56Fy = 28 ksi ; 2.78Fy = 139 ksi

    EXAMPLE 4.1 (Continued)

    Since 2.78Fy > Fe > 0.56Fy

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    108/354

    y e y

    4 - 17

    Now, use f = fc

    = 46.0 ksi and calculate the effective sectionmodulus. From a computer program -- Sc = 8.33 in.

    3

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    109/354

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    110/354

    DISTORTIONAL BUCKLING STRENGTHSection C3.1.4

    For

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    111/354

    For

    Mn= My (Eq. C3.1.4-1)

    For d > 0.673

    4 - 20

    (Eq. C3.1.4-2)

    My = SfyFySfy = Elastic section modulus of full unreduced section

    Mcrd = SfFd

    (Eq. C3.1.4-3)

    DISTORTIONAL BUCKLING STRENGTHSection C3.1.4

    General distortional buckling stress equation:

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    112/354

    General distortional buckling stress equation:

    4 - 21

    q. . . -

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    113/354

    CYLINDRICAL TUBULAR MEMBERS IN BENDING(Section C3.1.3)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    114/354

    4 - 23

    0.0714 0.318 0.441

    SHEAR STRENGTH(Section C3.2)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    115/354

    Section C3.2.1 Shear Strength of Webs Without Holes

    Section C3.2.2 Shear Strength of C-Section Webs With Holes

    4 - 24

    SHEAR STRENGTH(Section C3.2.1)

    SHEAR OF SOLID WEBS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    116/354

    The Shear Strength Depends on:

    The web slenderness ratio, h/t

    4 - 25

    The material properties

    Use of transverse stiffeners

    SHEAR STRENGTH(Section C3.2.1)

    1) Unreinforced Webs

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    117/354

    1) Elastic shear buckling2) Inelastic shear buckling

    Elastic shear buckling

    4 - 26

    For simply supported

    edges along member

    kv = 5.34

    SHEAR STRENGTH(Section C3.2.1)

    Inelastic Shear Buckling

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    118/354

    4 - 27

    Specification uses 0.6

    SHEAR STRENGTH(Section C3.2.1)

    Nominal Shear Strength, VnV = A F Eq C3 2 1 1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    119/354

    Vn = AwFv Eq.C3.2.1-1

    (a) For

    Eq.C3.2.1-2

    4 - 28

    Eq.C3.2.1-3

    (c) For

    Eq.C3.2.1-4

    SHEAR STRENGTH(Section C3.2.1)

    2) Reinforced Webs (Transverse Stiffeners)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    120/354

    when a/h 1.0

    4 - 29

    when a/h > 1.0

    SHEAR STRENGTH(Section C3.2.1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    121/354

    4 - 30Shear Strength with Transverse Stiffeners

    EXAMPLE 4.2 SHEAR OF SOLID WEBS

    Given: Information of Ex. 2.6 of Lecture 2Determine:

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    122/354

    Determine:

    1) The nominal shear strength of the unreinforced web

    h = 14.46 in.; t = 0.090 in.; kv = 5.34

    2

    4 - 31

    w . . . .

    Since h/t > 84.7

    Vn = AwFv = 1.30(5.49) = 7.14 kips

    EXAMPLE 4.2 (Continued)

    2) The nominal shear strength of the reinforced web satisfyingthe requirements of Section C3.6.1.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    123/354

    a = 16 in.; a/h = 1.11

    4 - 32

    Since h/t > 108

    Vn = AwFv = 1.30(8.86) = 11.5 kips61%increase in Vnwith stiffeners

    SHEAR STRENGTH OF C-SECTION WEBS WITH HOLES(Section C3.2.2)

    The nominal shear strength, Vn, determined from Section C3.2.1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    124/354

    shall be multiplied by qs:

    When c/t 54qs = 1.0 Eq.C3.2.2-1

    4 - 33

    When 5 c/t < 54

    qs = c/(54t) Eq.C3.2.2-2

    where

    c = h/2 - do/2.83 for circular holes Eq.C3.2.2-3c = h/2 - do/2 for non-circular holes Eq.C3.2.2-4

    SHEAR STRENGTH OF C-SECTION WEBS WITH HOLES(Section C3.2.2)

    Provision Limits

    (1) d /h 0 7

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    125/354

    (1) do/h < 0.7

    (2) h/t 200

    (3) Holes centered at mid-depth of web

    4 - 34

    ear stance etween o es n. mm

    (5) Non-circular holes, corner radii 2t(6) Non-circular holes, do 2.5 in. (64 mm) and b 4.5 in. (114 mm)

    (7) Circular hole diameters 6 in. (152 mm)

    (8) do > 9/16 in. (14 mm)

    FLEXURAL MEMBERS(Section C3.3)

    COMBINED BENDING AND SHEAR

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    126/354

    4 - 35

    High bending and shear simultaneously

    STRENGTH FOR COMBINED BENDING AND SHEAR(Section C3.3.1 - ASD Method)

    1) Unreinforced Webs

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    127/354

    2) Reinforced Webs

    4 - 36

    STRENGTH FOR COMBINED BENDING AND SHEAR(Section C3.3.2 - LRFD Method)

    1) Unreinforced Webs

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    128/354

    2) Reinforced Webs

    4 - 37

    FLEXURAL MEMBERS(Section C3.3)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    129/354

    4 - 38

    WEB CRIPPLING(Section C3.4)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    130/354

    4 - 39

    WEB CRIPPLING(Section C3.4)

    LOAD CASES:

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    131/354

    1. EOF -- End One Flange

    2. IOF -- Interior One Flange

    4 - 40

    3. ETF -- End Two Flange

    4. ITF -- Interior Two Flange

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    132/354

    WEB CRIPPLING(Section C3.4)

    Basic Web Crippling Equation

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    133/354

    Eq.C3.4.1-1

    4 - 42

    Web crippling coefficients C, CR, CN, and Ch are given in the

    appropriate tables for fastenedorunfastenedto the support.

    R/t = inside bend radius ratioN/t = bearing length ratio

    h/t = web slenderness ratio

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    134/354

    WEB CRIPPLING(Section C3.4)

    SECTION TYPES (Fastened or unfastened to support)

    Single Hat Sections(Table C3.4.1-4)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    135/354

    g ( )

    Limitations:h/t 200; N/t 200; N/h 2.0 and = 90;

    limiting R/t values and resistance factors, & , given in table

    - -

    4 - 44

    Limitations:h/t 200; N/t 210; N/h 3.0; 45 90

    limiting R/t values and resistance factors, & , given in table

    WEB CRIPPLING(Section C3.4)

    Alternatively, for end-one-flange loading condition on a C- or Z-section,

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    136/354

    Pnc = Pn Eq. C3.4.1-2

    is a function of the overhang length, purlin depth, and purlin thickness.

    4 - 45

    WEB CRIPPLING OF C-SECTION WEBS WITH HOLES(Section C3.4.2)

    When a web hole is within the bearing length, a bearing stiffenershall be used.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    137/354

    For C-sections with holes, multiply Eq.C3.4.1-1 by the reductionfactor, Rc.

    4 - 46

    . . . - . . -when any portion of a web hole is NOTwithin the bearing length:

    Rc = 1.01 0.325do/h + 0.083x/h 1.0 Eq.C3.4.2-1N 1 in. (25 mm)

    For IOF reaction (Eq.C3.4.1-1 with Table C3.4.1-2)

    when any portion of a web hole is NOTwithin the bearing length:Rc = 0.90 0.047do/h + 0.053x/h 1.0 Eq.C3.4.2-2N 3 in. (76 mm)

    WEB CRIPPLING OF C-SECTION WEBS WITH HOLES

    (Section C3.4.2)

    Provision Limits

    (1) do/h < 0.7

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    138/354

    (2) h/t 200

    (3) Holes centered at mid-depth of web

    4 - 47

    .

    (5) Distance between end of member and edge of hole d(6) Non-circular holes, corner radii 2t

    (7) Non-circular holes, do 2.5 in. (64 mm) and b 4.5 in. (114 mm)

    (8) Circular hole diameters 6 in. (152 mm)

    (9) do > 9/16 in. (14 mm)

    COMBINED BENDING AND WEB CRIPPLING(Section C3.5.1 - ASD Method)

    a) Shapes having single unreinforced webs

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    139/354

    Eq.C3.5.1-1

    4 - 48

    b) Shapes such as I-sections (high degree of restraint)

    Eq.C3.5.1-2

    COMBINED BENDING AND WEB CRIPPLING(Section C3.5.1 - ASD Method)

    c) At Support Point of Two Nested Z-Sections

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    140/354

    4 - 49

    Eq.C3.5.1-3

    COMBINED BENDING AND WEB CRIPPLING(Section C3.5.2 LRFD Method)

    a) Shapes having single unreinforced webs

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    141/354

    Eq.C3.5.2-1

    4 - 50

    b) Shapes such as I-sections (high degree of restraint)

    Eq.C3.5.2-2

    COMBINED BENDING AND WEB CRIPPLING(Section C3.5.2 - LRFD Method)

    c) At Support Point of Two Nested Z-Sections

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    142/354

    4 - 51

    Eq.C3.5.2-3

    Provision limitsh/t 150N/t 140

    R/t 5.5Fy 70 ksi

    COMBINED BENDING AND TORSIONAL LOADING(Section C3.6)

    For laterally unrestrained flexural members

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    143/354

    For laterally unrestrained flexural members

    subject to both bending and torsional loading,Mn computed in accordance with Section

    4 - 52

    C3.1.1(a) shall be reduced by a reduction

    factor.

    R =

    STIFFENERS

    (Section C3.7)

    Bearing Stiffeners (Section C3.7.1)

    Attached to beam webs at points of concentrated load or

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    144/354

    Attached to beam webs at points of concentrated load orreaction, shall be designed as compression members.

    Th n min l n n r l r r i n r n h P h ll

    4 - 53

    be the smaller of (a) or (b) as follows:

    (a) Pn = AcFwy Eq.C3.7.1-1

    (b) Pn = AeFn Eq.C4.1-1

    with Ae replaced by Ab

    c = 2.00 & c = 0.85

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    145/354

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    146/354

    DESIGN OF COLD-FORMED STEEL STRUCTURESUSING THE 2007 NORTH AMERICAN SPECIFICATION

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    147/354

    MEMBERS IN COMPRESSION

    5 - 1

    CONCENTRICALLY LOADED COMPRESSIONMEMBERS

    Types of Compression Members

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    148/354

    Types of Compression Members

    a) Doubly-symmetric

    5 - 2

    b) Singly-symmetric

    c) Point-symmetric

    d) Non-symmetric

    ACTUAL FAILED STUD SPECIMEN

    600S162-43

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    149/354

    5 - 3

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    150/354

    DESIGN CONSIDERATIONS

    a) Member behavior

    i) Yielding (short & compact)

    ii) O ll b kli

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    151/354

    ii) Overall buckling

    ~ Flexural (bending about one of the principal axes)

    5 - 5

    ~

    ~ Torsional-flexural (simultaneous bending & twisting)

    b) Element behavior

    Local buckling of individual elements

    NOMINAL AXIAL STRENGTH, Pn

    a) For locally stable compression members

    Pn = AgFnNo local buckling will occur before the nominal compressive

    stress reaches the column buckling stress or the yield stress

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    152/354

    stress reaches the column buckling stress or the yield stress.

    Hence, the gross area of the section is used.

    5 - 6

    Pn = AeFn Eq.C4.1-1

    Local buckling will occur and the effective cross sectional areais used and is calculated at the nominal compressive bucklingstress.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    153/354

    ELASTIC BUCKLING STRESS, Fe

    Flexural Buckling (possible failure mode)The elastic flexural buckling stress is computed

    by using the following expression:P

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    154/354

    y g g p

    E2

    5 - 8

    (Eq.C4.1.1-1)( )KL r

    e = 2/

    P

    KL=Le

    ELASTIC BUCKLING STRESS, Fe

    Torsional Buckling (possible failure mode)The elastic torsional buckling stress is computed

    using the following expression:

    P

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    155/354

    g g p

    ECw

    1 2

    5 - 9

    (Eq.C3.1.2.1-9)( )Ar K L

    e

    o t t t 2 2

    P

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    156/354

    EFFECTIVE LENGTH FACTOR, K(Table C-C4.1-1 of Commentary)

    (a) (b) (c) (d) (e) (f)

    Buckled shape of column is

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    157/354

    Buckled shape of column is

    shown by dashed line.

    5 - 11

    Theoretical K value

    Recommended K valuewhen ideal conditions areapproximated

    End condition code

    Rotation fixed, Translation fixed

    Rotation free, Translation fixed

    Rotation fixed, Translation free

    Rotation free, Translation free

    0.5 0.7 1.0 1.0 2.0 2.0

    0.65 0.80 1.2 1.0 2.1 2.0

    LATERALLY UNBRACED STRUCTURES(Section C4.1 of Commentary)

    When no lateral bracing against sidesway is present, such asin portal frames, the structure depends on its own bendingstiffness for lateral stability.

    5

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    158/354

    4

    5

    5 - 12

    Fig. C-C4.1-6 Fig. C-C4.1-5

    PKL

    L

    P(I/L)beam

    (I/L)column

    K

    1 2 3 4

    0

    1

    2

    3HingedBase

    FixedBase

    NONSYMMETRIC SECTIONS(Section C4.1.4)

    For open shapes that have no symmetry, either about an axisor about a point, Fe shall be determined by a rational analysis

    or from testing in accordance with Chapter F of the Standard.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    159/354

    Analytically, tedious cubic equations have to be solved todetermine the torsional-flexural bucklin stress, as well, the

    5 - 13

    torsional warping constant, Cw, becomes quite complex to

    solve. See Section 3 of part V (Supplementary Information) ofthe AISI Cold-Formed Steel Design Manual.

    EXAMPLE 5.1 - CONCENTRICALLY LOADEDCOMPRESSION MEMBER

    Given: The doubly-symmetric I-sectionmade up of 2 - 5.5CU1.25x045

    channel sections. L = 4.5 ft, Fy = 33 ksi

    R=0.1875

    1.25 1.25

    x

    y

    x

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    160/354

    Basic gross section properties (computer)

    0.045 (in.)

    5 - 14

    g = 0.696 n. , w = 0.826 n. , = 0.000 0 n.

    ry = 0.411 in., rx = 1.98 in., ro = 2.03 in.

    Determine: The nominal compressive

    strength, Pn

    wPn

    Pn

    KL=Le

    EXAMPLE 5.1 - (Continued)

    1) Determine elastic buckling stress, Fe

    a) Flexural buckling (Ky = 1.0)

    K L/r = 4.5(12)/0.411 = 131 < 200 OK (Commentary)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    161/354

    Ky

    L/ry

    4.5(12)/0.411 131 < 200 OK (Commentary)

    Fe = 2E/(KyL/ry)

    2 = 2 29500/(131)2 = 17.0 ksi Eq.C4.1.1-1

    5 - 15

    b) Torsional buckling (Kt = 1.0)

    Fe = t = 1/(Aro2)[GJ + 2ECw/(KtLt)2] Eq.C3.1.2.1-9

    Fe = 1/0.696/(2.03)2{11300(0.000470) +

    2(29500)0.826/(54)2} = 30.6 ksi

    Fe = 17.0 ksi, and flexural buckling controls.

    EXAMPLE 5.1 - (Continued)

    2) Determine nominal buckling stress, Fn

    c = [Fy/Fe]1/2 = [33/17.0] 1/2 = 1.39 Eq.C4.1-4

    Since c < 1.5

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    162/354

    Fn = (0.658 )Fy = [(0.658)(1.39x1.39)]33 = 14.7 ksi Eq.C4.1-2

    c2

    5 - 16

    3) Determine effective area, Ae, at f = 14.7 ksi

    Flange(u.c.e) --- w = 1.25 - (0.1875 + 0.045) = 1.018 in.W = w/t = 1.018/0.045 = 22.6 < 60 OK B.1.1(a)(3)

    ; Eq.B2.1-4&5crF/f= 22

    2

    cr W)1(12

    E

    kF -

    =

    ;ksi4.22=)6.22(92.10

    E43.0=F 2

    2

    cr809.0=4.22/7.14=

    EXAMPLE 5.1 - (Continued)

    Since > 0.673, b = w Eq.B2.1-2

    = (1 - 0.22/ )/ = (1 - 0.22/0.809)/0.809 = 0.900 Eq.B2.1-3

    b = 0.900(1.018) = 0.916 in.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    163/354

    ( )

    Web(s.c.e) --- w = 5.5 - 2(0.1875 + 0.045) = 5.035 in.

    5 - 17

    W = w/t = 5.035/0.045 = 112 < 500 OK B.1.1(a)(2)

    Eq.B2.1-4&5;F/f= cr 22

    2

    cr W)1(12Ek=F

    ;ksi50.8=)112(92.10

    E4=F 2

    2

    cr

    32.1=50.8/7.14=

    EXAMPLE 5.1 - (Continued)

    Since > 0.673, b = w Eq.B2.1-2

    = (1 - 0.22/ )/ = (1 - 0.22/1.32)/1.32 = 0.631 Eq.B2.1-3

    b = 0.631(5.035) = 3.18 in.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    164/354

    ( )

    r = R + t/2 = 0.1875 + 0.045/2 = 0.210 in.

    5 - 18

    u = 1.57r = 1.57(0.210) = 0.330 in.

    Ae = 0.045[4(0.916 + 0.330) + 2(3.18)] = 0.510 in.2

    4) Determine nominal compressive strength, Pn

    Pn = AeFn = 0.510(14.7) = 7.50 kips Eq.C4.1-1

    EXAMPLE 5.2 - CONCENTRICALLY LOADEDCOMPRESSION MEMBER

    Given: The point-symmetric Z-section4ZU1.25x060L = 3.0 ft (36 in.), Fy = 50 ksi.

    0.060R=0.1875

    1.25

    x

    y

    x

    x2

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    165/354

    Basic gross section properties (computer)

    (in.)

    5 - 19

    so, see a e - o anua

    Ag = 0.372 in.2

    , Cw = 0.201 in.6

    , J = 0.000446 in.4

    rmin = 0.300 in., ro = 1.56 in.

    Determine: The nominal compressivestrength, Pn

    Pn

    Pn

    KL=Le

    EXAMPLE 5.2 - (Continued)

    1) Determine elastic buckling stress, Fe

    a) Flexural buckling (K = 1.0)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    166/354

    KL/rmin = 36/0.300 = 120 < 200 OK (Commentary)Fe =

    2E/(KL/rmin)2 = 229500/(120)2 = 20.2 ksi Eq.C4.1.1-1

    5 - 20

    b) Torsional buckling (Kt = 1.0)

    Fe = t = 1/(Aro2)[GJ + 2ECw/(KtLt)

    2] Eq.C3.1.2.1-9

    Fe = 1/0.372/(1.56)2{11300(0.000446) +

    2(29500)(0.201)/(36)2} = 55.4 ksi

    Fe = 20.2 ksi and flexural buckling controls

    EXAMPLE 5.2 - (Continued)

    2) Determine nominal buckling stress, Fn

    Eq.C4.1-4

    Since c > 1.5

    2 2

    57.12.20/50F/F eyc ===

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    167/354

    Fn = (0.877/c )Fy= [0.877/(1.57) ]50 = 17.8 ksi Eq.C4.1-3

    3 Determine effective re A t f = 17.8 ksi

    5 - 21

    Flange (u.c.e) --- w = 1.25 - (0.1875 + 0.060) = 1.00 in.W = w/t = 1.00/0.060 = 16.7 < 60 OK B.1.1(a)(3)

    Eq.B2.1-5ksi1.41

    )7.16(92.10

    E43.0

    W)1(12

    EkF

    2

    2

    22

    2

    cr ===

    -

    658.01.41/8.17F/f cr ===

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    168/354

    EXAMPLE 5.2 - (Continued)

    = (1 - 0.22/ )/= (1 - 0.22/0.755)/0.755 = 0.939 Eq. B2.1-3

    b = 0.939(3.505) = 3.29 in.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    169/354

    r = R + t/2 = 0.1875 + 0.060/2 = 0.218 in.

    5 - 23

    u = . r = . . = . n.

    Ae = 0.060[3.29 + 2(0.341 + 1.00)] = 0.358 in.2

    4) Determine nominal compressive strength, Pn

    Pn = AeFn = 0.358(17.8) = 6.38 kips Eq.C4.1-1

    EXAMPLE 5.3 - CONCENTRICALLY LOADEDCOMPRESSION MEMBER

    Given: The singly-symmetric C-section3CS3x060L = 3.5 ft (42 in.), Fy = 50 ksi.

    y

    x

    0.060

    R=0.1875

    x

    0.75

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    170/354

    Basic gross section properties (computer)= 2 = 6 = 4

    (in.)

    5 - 24

    ry = 1.12 in., rx = 1.27 in., ro = 3.33 in., xo = 2.87 in.

    Determine: The nominal compressivestrength, P

    n

    Pn

    Pn

    KL=Le

    .

    EXAMPLE 5.3 - (Continued)

    1) Determine elastic buckling stress, Fe

    a) Flexural buckling (Ky = 1.0)

    KyL/ry = 42/1.12 = 37.5 < 200 OK (Commentary)

    F2

    E/(K L/ )2

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    171/354

    Fe = E/(KyL/ry)= 2 29500/(37.5)2 = 207 ksi Eq.C4.1.1-1

    5 - 25

    b) Torsional-flexural buckling (Kt = Kx = 1.0)

    t = Eq.C3.1.2.1-9

    t = 1/0.593/(3.33)2{11300(0.000712) +

    2(29500)(2.09)/(42)2}

    t = 53.6 ksi

    ( )

    12

    2

    2Ar

    GJEC

    K Lo

    w

    t t

    +

    EXAMPLE 5.3 - (Continued)

    Fe = 1/(2){(ex + t) - [(ex + t)2 - 4ext]1/2} Eq.C4.1.2-1

    KxL/rx = 42/1.27 = 33.1 < 200 OK (Commentary)

    ex = 2E/(KxL/rx)

    2 = 2 29500/(33.1)2 = 266 ksi Eq.C3.1.2.1-11

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    172/354

    = 1 - (xo/ro)2 = 1 - (2.87/3.33)2 = 0.257 Eq.C4.1.2-3

    5 - 26

    t = 53.6 ksi from before

    Fe = 1/2/0.257{(266 + 53.6) - [(266 + 53.6)2 -

    4(0.257)(266)(53.6)]1/2} Eq.C4.1.2-1

    Fe = 46.3 ksi, and torsional-flexural buckling controls.

    EXAMPLE 5.3 - (Continued)

    2) Determine nominal buckling stress, Fn

    c = [Fy/Fe]1/2 = [50/46.3]1/2 = 1.04 Eq.C4.1-4

    Since c 1.5

    (

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    173/354

    Fn = = [(0.658)(1.04x1.04)]50 = 31.8 ksi Eq.C4.1-2(0 658

    2

    . c Fy

    5 - 27

    3) Determine effective area, Ae , at f = 31.8 ksi

    Flange (s.c.e) --- w = 3.00 - 2(0.1875 + 0.060) = 2.505 in.W = w/t = 2.505/0.060 = 41.8 < 60 OK B.1.1(a)(3)

    Eq.B4-712.80.328S;0.398.31/E28.1S ===

    EXAMPLE 5.3 - (Continued)

    Since W > 0.328S, B4(a)

    43

    3s in.000636.0

    12

    )503.0(060.012/tdI ===

    3841

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    174/354

    43

    41a in.00213.0328.0

    8.41)060.0(399I =

    =

    5 - 28

    q. -

    Eq.B4-9

    ( )444

    2a .in00166.0539

    8.41

    115060.05S

    t/w

    115tI =

    +=

    +=

    ( ) 42a1aa .in00166.0I,IMinI ==

    ;383.0I/IR asI == 299.0505.2/75.0w/D ==

    EXAMPLE 5.3 - (Continued)

    Table B4.1

    ( ) 3/1=n3/1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    175/354

    =505.2

    5 - 29

    Since > 0.673, b = w Eq.B2.1-2

    = (1 - 0.22/ )/ = (1 - 0.22/0.855)/0.855 = 0.869 Eq.B2.1-3b = 0.869(2.505) = 2.18 in.

    43.5ksi)8.41()-12(1

    E85.2=

    F 22

    2

    cr

    =

    550.8=

    5.43

    8.13=

    EXAMPLE 5.3 - (Continued)

    Edge stiffener (u.c.e.)

    Eq.B2.1-5

    ksi8.31f;38.8=60/0.0503.0=d/t =

    ksi631)388()12(1

    E

    430F 22

    2

    cr

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    176/354

    ksi631)38.8()-12(143.0=F 22cr =

    5 - 30

    Eq.B2.1-4

    Since 0.673, edge stiffener is fully effective Eq.B2.1-1

    ds' = d = 0.503 in.

    ds = RI ds' = 0.383(0.503) = 0.193 in.

    4420.=

    163

    8.31=

    Web (s.c.e) --- w = 3.0 - 2(0.1875 + 0.060) = 2.505 in.W = w/t = 2.505/0.060 = 41.8 < 500 OK B.1.1(a)(2)

    Eq.B2.1-5

    EXAMPLE 5.3 - (Continued)

    ksi0.61

    )841(9210

    E4

    W)1(12

    EkF

    2

    2

    22

    2

    cr ===

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    177/354

    )8.41(92.10W)1(12 -

    5 - 31

    Eq.B2.1-4

    Since > 0.673, b = w Eq.B2.1-2

    = (1 - 0.22/ )/= (1 - 0.22/0.722)/0.722 = 0.963 Eq.B2.1-3

    b = 0.963(2.505) = 2.41 in.

    722.061/8.31F/f cr ===

    EXAMPLE 5.3 - (Continued)

    r = R + t/2 = 0.1875 + 0.060/2 = 0.218 in.

    u = 1.57r = 1.57(0.218) = 0.341 in.

    Ae = 0.060[2.41 + 4(0.341) + 2(0.193 + 2.18)] = 0.511 in.2

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    178/354

    4) Determine nominal compressive strength, Pn

    5 - 32

    Pn = AeFn = 0.511(31.8) = 16.3 kips Eq.C4.1-1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    179/354

    Flexural buckling stress:

    Fe is determined according to Section C4.1.1 and the nominal

    buckling strength Pn is then calculated from Section C4 1

    CLOSED CYLINDRICAL TUBULAR MEMBERS INCOMPRESSION (Section C4.1.5)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    180/354

    buckling strength, Pn, is then calculated from Section C4.1.

    5 - 34

    Ae = Ao + R( A - Ao) Eq.C4.1.5-1

    Ao = Eq.C4.1.5-2

    R = Fy/(2Fe) 1.0 Eq.C4.1.5-3

    ( ) ( ) yy FE

    441.0t

    DforAA667.0

    tE/DF

    037.0

    +

    QUESTIONS?

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    181/354

    5 - 35

    DESIGN OF COLD-FORMED STEEL STRUCTURESUSING THE 2007 NORTH AMERICAN SPECIFICATION

    COMBINED BENDING AND COMPRESSION

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    182/354

    COMBINED BENDING AND COMPRESSION

    6 - 1

    b x b y tM M T+ 10

    COMBINED TENSILE AXIAL LOAD AND BENDING(Section C5.1)

    ASD (C5.1.1)i) yielding of Eq. C5.1.1-1

    tension flange

    ii) failure of E C5 1 1 2

    b x

    nxt

    b y

    nyt

    t

    n

    M

    M

    M

    M

    T

    T+ + 10.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    183/354

    b x y tM M T+ 10.ii) failure of Eq. C5.1.1-2

    6 - 2

    nx ny ncompress on ange

    LRFD (C5.1.2)

    i) yielding of Eq. C5.1.2-1tension flange

    ii) failure of Eq. C5.1.2-2compression flange

    M

    M

    M

    M

    T

    Tux

    b nxt

    uy

    b nyt

    u

    t n + + 10.

    MM

    MM

    TT

    ux

    b nx

    uy

    b ny

    u

    t n + 10.

    COMBINED COMPRESSIVE AXIAL LOAD AND BENDING(Section C5.2)

    C5.2.1 ASDThe required strengths, P, Mx, and My shall satisfy thefollowing interaction equations:

    i) Stability C5 2 1 1 c b mx x b my yP C M C M 10

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    184/354

    i) Stability C5.2.1-1 c b mx x b my yP C M C M+ + 10.

    6 - 3

    ii) Strength C5.2.1-2

    When cP/Pn 0.15, the following equation may be used in

    lieu of the above equations:

    C5.2.1-3

    n nx x ny y

    c

    no

    b x

    nx

    b y

    ny

    PP

    MM

    M

    M+ + 10.

    c

    n

    b x

    nx

    b y

    ny

    P

    P

    M

    M

    M

    M+ + 10.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    185/354

    SECOND ORDER EFFECTS

    ASD

    > 0 Eq. C5.2.1-4

    > 0 Eq C5 2 1-5 cP= 1

    xc

    Ex

    P

    P= 1

    P

    Mx

    Mmax =Mx

    x

    Pu

    Mux

    Mmax =Mux

    x

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    186/354

    > 0 Eq. C5.2.1-5y = 1

    6 - 5

    LRFD

    > 0 Eq. C5.2.2-4

    > 0 Eq. C5.2.2-5

    Eq.C5.2.1-6, Eq.C5.2.1-7

    Ey

    Ex

    u

    x PP1= -

    Ey

    u

    y P

    P

    1=-

    PEI

    K L

    EI

    K LEx

    x

    x x

    Ey

    y

    y y

    = = 2

    2

    2

    2( );

    ( )P

    P

    Mx

    Pu

    Mux

    ASD LRFD

    If end moments are as shown on the previous slide, no additional

    modification is necessary.

    For unequal end moments M1 and M2 and compression membersin frames, the following modifications shall apply:

    (a) For compression members in frames subject to jointt l ti ( id )

    EFFECT OF MOMENTS (Cmx, Cmy)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    187/354

    ( ) p j jtranslation (sidesway)

    6 - 6

    Cm = 0.85

    (b) For compression members in frames braced againstjoint translation and no transverse loading betweensupports

    Cm = 0.6 + 0.4(M1/M2) (single curvature)Eq.C5.2.2-8

    Cm = 0.6 - 0.4(M1/M2) (double curvature) Eq.C5.2.2-8

    EFFECT OF MOMENTS (Cmx, Cmy)

    (c) For compression members in frames braced against jointtranslation with transverse loading between supports

    Cm may be determined by rational analysis, or in lieu of(1) for members with restrained ends C = 0 85

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    188/354

    (1) for members with restrained ends, Cm = 0.85,

    6 - 7

    (2) for members with unrestrained ends, Cm = 1.0.

    Given:The closed box section8 x 8 x 0.105 as shownL = 12.0 ft (144 in.), Fy = 50 ksi.

    Applied loads:i) Axial load PD = 4.00 kips, PL = 16.0 kips

    EXAMPLE 6.1 - COMBINED AXIAL LOADAND BENDING

    y

    x

    (in.)

    t=0.105

    R=0.1875

    w

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    189/354

    i) Axial load PD 4.00 kips, PL 16.0 kips

    8.0

    6 - 8

    n momen s D = . - ps, L = . - ps

    Basic gross section properties (computer)

    Ag = 3.27 in.2, Ix = Iy = 33.8 in.

    4, rx = ry = 3.21 in.,

    Sf = 8.44 in.3, r = R + t/2 = 0.24 in.,

    u = 1.57r = 0.377 in., c = 0.637r = 0.153 in.Determine: The adequacy of the tubular

    member using LRFDP

    12 ft

    M

    M

    EXAMPLE 6.1 - (Continued)

    1) Check Interaction Equation C5.2.2-1

    (Muy = 0)

    Compute nominal axial strength, Pn,

    0.1M

    MC+

    M

    MC+

    P

    P

    ynyb

    uymy

    xnxb

    uxmx

    nc

    u

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    190/354

    6 - 9

    Flexural buckling (K = 1.0)

    Fn = = 43.2 ksi Eq.C4.1-2

    Ae = 2.01 in.2

    Pn = AeFn = 2.01(43.2) = 86.8 kips Eq.C4.1-1

    ( )0 6582

    . c Fy

    Compute nominal flexural strength, Mnx,based on lateral-torsional buckling C3.1.2.1Mnx = ScFc Eq.C3.1.2.1-1

    ~ Compression flange (1)

    EXAMPLE 6.1 - (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    191/354

    6 - 10

    , = . .

    ~ Webs (3) (w/t = 70.6) C

    ycg

    22

    4

    3

    4

    3

    1

    5 T

    f1

    f2

    ycg = 4.46 in. (Effective Section)Mnx = 313 in.-kips = 26.1 ft-kips Eq.C3.1.2.1-1

    Compute x term (Cmx = 1.0)

    x = 1 - Pu/PEx = 0.936 Eq.C5.2.2-4

    EXAMPLE 6.1 - (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    192/354

    6 - 11

    Compute required strengths, Pu and MuxPu = 1.20PD + 1.60PL = 30.4 kips

    Mux = 1.20MD + 1.60ML = 11.4 ft-kips

    Check interaction equation C5.2.2-1Eq.C5.2.2-1

    OK

    0.1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    193/354

    Com ute nominal axial stren th P

    6 - 12

    based on f = Fn = Fy C5.2

    w = 7.415 in. (s.c.e.), w/t = 70.6 < 500 OK B1.1(a)(2) = 1.53 Eq.B2.1-4

    Since > 0.673, b = w Eq.B2.1-2

    = (1 - 0.22/ )/ = 0.560 Eq.B2.1-3

    b = 0.560(7.415) = 4.15 in.

    Ae = 4(0.105)[0.377 + 4.15] = 1.90 in.2

    Pno = AeFn = 1.90(50) = 95.0 kips

    Compute nominal flexural strength, Mnx

    [From Part 1) above]C3.1.2.1

    EXAMPLE 6.1 - (Continued)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    194/354

    = - = - -

    6 - 13

    Check interaction equation C5.2.2-2

    OK

    0.1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    195/354

    DESIGN OF COLD-FORMED STEEL STRUCTURESUSING THE 2007 NORTH AMERICAN SPECIFICATION

    MEMBER BRACING

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    196/354

    7 - 1

    STRAPPING

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    197/354

    7 - 2

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    198/354

    TYPES OF BRACING

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    199/354

    7 - 4

    STEEL BUILDING SYSTEMS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    200/354

    7 - 5

    TYPES OF BRACING

    Member (beam or column)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    201/354

    7 - 6

    System (roof or wall)

    MEMBER BRACING(Section D3)

    Design Requirements:

    Prevent lateral bending

    Prevent twisting

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    202/354

    7 - 7

    Prevent local crippling at attachments

    MEMBER BRACING(Section D3.1)

    SYMMETRIC SHAPES

    Design considerations:

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    203/354

    7 - 8

    Strength

    Stiffness

    MEMBER BRACING(Section D3.3)

    BRACING OF AXIALLY LOADED COMPRESSION MEMBERS

    Design considerations:

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    204/354

    7 - 9

    Strength,

    Stiffness,

    BRACING OF C & Z SECTION BEAMS(Section D3.2)

    Applications:

    Top Flange Restrained by Deck or Sheathing

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    205/354

    7 - 10

    MEMBER BRACING

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    206/354

    7 - 11

    C-SECTION BRACING FORCES

    F

    P

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    207/354

    7 - 12

    For a uniform loadper unit length, P:

    PL = 1.5KaP

    MEMBER BRACING

    d

    Pm=F

    =

    P

    F

    P

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    208/354

    7 - 13

    P

    F

    MEMBER BRACING

    x

    xy

    I2

    IP=F PK=

    P

    F

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    209/354

    7 - 14

    F

    MEMBER BRACING(Section D3.2.1)

    Neither Flange Restrained and the load acts through

    the plane of the web:

    Design brace force P :

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    210/354

    7 - 15

    Design brace force, PL:

    Uniform load, PL = 1.5 K'W Concentrated load, PL = 1.0 K'P + 1.4K'P(1- l/a)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    211/354

    7 - 16

    MEMBER BRACING(Section D3.2.2)

    Neither Flange Restrained and the load does not act

    through the plane of the web:

    Design brace force, PL:

    Uniform load

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    212/354

    7 - 17

    Uniform load,

    Concentrated load,

    DIAPHRAGM BRACING

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    213/354

    7 - 18

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    214/354

    DIAPHRAGM BRACING(Section D5)

    Strength Consideration- LRFD

    P d Sn

    Where,

    P = Factored loads on the diaphragm=

    by calculation or test

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    215/354

    7 - 20

    by calculation or test

    Strength Consideration- ASD

    P Sn/d

    Where,P = Service loads on the diaphragm

    D6 Metal Roof and Wall Systems

    The provisions of Sections D6.1 through D6.3 shall apply tometal roof and wall systems that include cold-formed steel

    purlins, girts, through-fastened roof systems and standing

    seam roof panels.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    216/354

    7 - 21

    SYSTEM BRACING AND ANCHORAGE(Section D6.3)

    Design brace force for typical roof systems is afunction of

    Gravity load

    C- or Z- purlins

    Top flange attached to sheathing

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    217/354

    7 - 22

    Top flange attached to sheathing(through fastened or standing seam panels)

    Simple or continuous spans

    For bracing arrangements not covered, test per Section F1

    SYSTEM BRACING

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    218/354

    7 - 23

    SYSTEM BRACING AND ANCHORAGE(Section D6.3.1)

    =

    =

    p

    i

    j

    N

    1i total

    j,ieffiLK

    KPP

    New Anchorage Device Equation:

    Each anchorage device must resist PL

    ++= sin4Ccos

    d

    t)b25.0m(3C

    dI

    LI

    1000

    2CW1CP

    2

    xypi i

    when every purlin is anchored

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    219/354

    7 - 24

    ddI1000 x

    ( ) sysN1j

    j,iefftotal KKKa

    i+=

    =

    2

    2

    psysd

    ELtN

    1000

    5CK =

    1

    p

    p

    aeff ELA6C

    d

    K

    1K

    j,i

    ji,

    +=

    Effective lateral stiffness of all elements resisting Pi

    Lateral stiffness of roof system, neglecting anchorage

    device (purlin to rafter & panel to purlin connections)Effective lateral stiffness of anchorage device

    when every purlin is anchored

    by a rigid anchor

    SYSTEM BRACING AND ANCHORAGE(Section D6.3.1)

    References:

    Sears and Murray, Proceedings of the Annual Stability

    Conference, Structural Stability Research Council, April 2007

    AISI design guideears ., ee , , an urray, . . , es gn u e or

    C ld F d St l R f F i S t AISI D111

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    220/354

    7 - 25

    Cold-Formed Steel Roof Framing Systems, AISI D111,

    American Iron and Steel Institute, Washington, D.C.

    MEMBER BRACING(Section D6.1.1)

    Member flexural strength is a functionof:

    C- or Z- purlins Roof and wall systems

    Wind uplift or suction load

    Simple or continuous span

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    221/354

    7 - 26

    Simple or continuous span M

    n= RS

    eF

    y For structural systems not

    covered, test per Section F1

    MEMBER BRACING(Section D6.1.1)

    R = 0.60 for continuous span C-sections.R = 0.70 for continuous span Z-sections.

    If adjacent spans vary by more than 20%R shall be taken from Table D6.1.1-1

    TABLE D6.1.1-1Si l S C Z S ti R V l

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    222/354

    7 - 27

    Simple Span C- or Z-Section R Values

    Depth Range, in. (mm) Profile R

    d 6.5 (165) C or Z 0.70

    6.5 (165) < d 8.5 (216) C or Z 0.65

    8.5 (216) < d 11.5 (292) Z 0.50

    8.5 (216) < d 11.5 (292) C 0.40

    MEMBER BRACING(Section D6.1.2)

    Member Flexural Strength

    C- or Z- Purlins

    Gravity Load and Uplift Load

    Top Flange Supporting Standing Seam Roof Panel

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    223/354

    7 - 28

    Mn = RSeFy

    MEMBER BRACING(Section D6.1.3)

    Member Axial Strength

    C- and Z- Sections Concentric Axial Load n Fl n A h D k r h hin

    Attachment with Through Fasteners

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    224/354

    7 - 29

    Attachment with Through Fasteners

    Pn = C1C2C3 AE/29500 Eq.D6.1.3-1

    C1C

    2C

    3reflect influence of fastener location, material thickness

    and cross-section geometry.

    QUESTIONS?

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    225/354

    7 - 30

    DESIGN OF COLD-FORMED STEEL STRUCTURESUSING THE 2007 NORTH AMERICAN SPECIFICATION

    CONNECTIONS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    226/354

    8 - 1

    TYPES OF CONNECTORS

    Welds Bolts

    Screws Other

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    227/354

    8 - 2

    CONNECTIONS AND JOINTS(Section E)

    Thickness Limits:Welds: Sheet thickness 3/16 in., Section E2

    Bolts:

    Sheet thickness 3/16 in., Section E3

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    228/354

    8 - 3

    Screws: No explicit thickness limitations

    WELDED CONNECTIONS(Section E2)

    Arc Welds

    Groove Welds

    Arc Spot Welds

    Fillet Welds

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    229/354

    8 - 4

    Fillet Welds

    Flare Groove Welds

    Resistance Welds

    (a) Tension or compression normal to weldPn = L te Fy Eq. E2.1-1

    where,

    Fy = Yield stress of lowest strength of base steel

    DESIGN STRENGTH OF GROOVE WELDS IN BUTT JOINTS(Section E2.1)

    e

    L = Length of weld

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    230/354

    8 - 5

    = 0.90

    = 1.70

    (b) Shear on effective weld area

    Pn = L te (0.6Fxx) or Pn =

    = 0.80, = 1.90 = 0.90, = 1.90

    where,

    DESIGN STRENGTH OF GROOVE WELDS IN BUTT JOINTS(Section E2.1)

    ( )L t Fe y/ 3

    Fy = Yield stress of lowest strength of base steel

    F = Tensile strength of electrode

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    231/354

    8 - 6

    Fxx = Tensile strength of electrode

    te = effective throat dimensionL = Length of weld

    DESIGN STRENGTH OF ARC SPOT WELDS(Section E2.2)

    Limitations

    Maximum thickness of single sheet or combination of sheetsis 0.15 in.

    Weld washers required for sheets less than 0.028 in. Minimum effective diameter, de = 3/8 in.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    232/354

    8 - 7

    DESIGN STRENGTH OF ARC SPOT WELDS(Section E2.2)

    Definitions

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    233/354

    8 - 8

    DESIGN SHEAR STRENGTH OF ARC SPOT WELDS(Section E2.2.1.1)

    Minimum Edge Distance

    emin = P/(Fut) for ASD

    e i = P /(F t) for LRFD

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    234/354

    8 - 9

    emin = Pu/(Fut) for LRFD

    and vary with the Fu/Fy of the sheet

    DESIGN SHEAR STRENGTH OF ARC SPOT WELDS(Section E2.2.1.2)

    Shear Strength - Sheets Welded to Thicker Member:

    Shear strength of weld

    Tearing of connected partxx

    2

    e

    nF75.0

    4

    dP

    =

    uan Ftd)C(=P

    where the coefficient, C, varies from 1.40 to 2.20 depending on

    the ratio (d /t)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    235/354

    8 - 10

    the ratio (da/t)

    DESIGN SHEAR STRENGTH OF ARC SPOT WELDS(Section E2.2.1.3)

    Shear Strength - Sheet-to-Sheet Connections:

    Pn = 1.65 tdaFu

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    236/354

    8 - 11

    = 2.20

    = 0.70

    DESIGN STRENGTH OF ARC SPOT WELDS(Section E2.2.2)

    Tension

    Tensile strength of weld:

    Tearing of connected part:

    xx

    2e

    n F4

    dP

    =

    ua2

    yun Ftd)F/F(8.0P =

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    237/354

    8 - 12

    DESIGN STRENGTH OF ARC SEAM WELDS(Section E2.3)

    Limit States

    (a) Shear strength of weld: Pn = (de2/4 + Lde) 0.75Fxx

    (b) Strength of connected part: Pn = 2.5tFu(0.25L + 0.96da)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    238/354

    8 - 13

    DESIGN STRENGTH OF FILLET WELDS(Section E2.4)

    (a) Shear strength of weld

    (b) T i f t d t

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    239/354

    8 - 14

    (b) Tearing of connected part

    1. Longitudinal Loading

    2. Transverse Loading

    DESIGN STRENGTH OF FLARE-BEVEL GROOVE WELDS(Section E2.5)

    Transverse loading

    Pn = 0.833tLFu

    = 0.60

    = .

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    240/354

    8 - 15

    DESIGN STRENGTH OF FLARE GROOVE WELDS(Section E2.5)

    Longitudinal loading

    Tensile strength of weld (t > 0.10):

    Pn = 0.75twLFxx = 0.60

    = 2.55

    Tearing of connected part:

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    241/354

    8 - 16

    Pn = 0.75tLFu , for t tw < 2tPn = 1.50tLFu , for tw 2t = 0.55 = 2.80

    RESISTANCE WELDS(Section E2.6)

    Nominal Shear Strength of a Spot Weld

    (a) For 0.01 in. t < 0.12 in.Pn = 144 t

    1.47

    b For 0.14 in. t 0.18 in.

    Pn = 43.4 t + 1.93

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    242/354

    8 - 17

    = 0.65 = 2.35

    BOLTED CONNECTIONS(Section E3)

    A307

    A325

    A354

    A449

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    243/354

    8 - 18

    A490

    TYPES OF FAILURE OF BOLTED CONNECTIONS

    (a) Longitudinal shear failure of sheet

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    244/354

    8 - 19

    (b) Bearing failure of sheet

    TYPES OF FAILURE OF BOLTED CONNECTIONS

    (c) Tensile failure of sheet

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    245/354

    8 - 20

    (d) Shear failure of bolt

    SPACING AND EDGE DISTANCE REQUIREMENTS(Section E3.1)

    Minimum center-to-center distance: 3d

    Minimum distance from bolt center to edge or end: 1.5d

    Stren th of connection:

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    246/354

    8 - 21

    Pn = t e Fu

    When Fu/Fy 1.08, = 2.0; = 0.70

    When Fu/F

    y< 1.08, = 2.22; = 0.60

    DESIGN BEARING STRENGTH OF CONNECTED PART(Section E3.3)

    When deformation around the bolt holes is not a designconsideration:

    Pn = mfCdtFu Eq.E3.3.1-1

    mf = modification factor for type of bearing connection

    = 0.60, = 2.50; Table E3.3.1-1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    247/354

    8 - 22

    Thickness, t d/t C

    0.024 t < 0.1875d/t < 10 3.0

    10 d/t 22 4 0.1(d/t)

    d/t > 22 1.8

    BEARING MODIFICATION FACTOR, mf(Table E3.3.1-2)

    Type of Bearing Connection mf

    Single shear and outside sheets ofdouble shear connection with washers

    under both bolt head and nut

    1.00

    Single shear and outside sheets ofdouble shear connection without 0.75

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    248/354

    8 - 23

    washers under both bolt head and nut,or only one washer

    Inside sheet of double shearconnection with or without washers 1.33

    BOLTED CONNECTIONS IN BEARINGWithout Washer With Washer

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    249/354

    8 - 24

    DESIGN BEARING STRENGTH OF CONNECTED PART(Section E3.3.2)

    When deformation around the bolt holesisa designconsideration

    Pn = (4.64t +1.53)dtFu Eq.E3.3.2-1 = un t convers on actor

    = 1 for imperial units

    = 0.0394 for metric units

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    250/354

    8 - 25

    = 0.65 = 2.22

    DESIGN TENSILE AND SHEAR STRENGTH OF BOLTS(Section E3.4)

    Pn = Ab(Fnt or Fnv given in Table E3.4-1)

    Type of Bolts Tensile Strength Shear Strength

    Fnt

    Fnv

    , . . . . . . .( in. d < in.)

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    251/354

    8 - 26

    A307 Bolts, Gr. A 0.75 2.25 45.0 0.65 2.40 27.0(d in.)

    A325-N Bolts 0.75 2.0 90.0 0.65 2.40 54.0

    A325-X Bolts 0.75 2.0 90.0 0.65 2.40 72.0

    BOLTS SUBJECTED TO COMBINED SHEAR AND TENSION(Section E3.4)

    Pn = AbFnt

    Where the nominal tensile strength of a bolt subjected to a

    combination of tension and shear is:nt = . v Table E3.4-2 (ASD)

    fv = Computed shear stress in bolt

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    252/354

    8 - 27

    Ab = Cross sectional area of bolt and are given in the specification

    EXAMPLE 8.2 BOLTED CONNECTION

    Given:

    ASTM A307 bolts w/o washersd = 1/2 in.ASTM A653 Gr. 33; Fy = 33 ksi; Fu = 45 ksi

    Determine:

    The design capacity of the angle and bolt connecting element.

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    253/354

    8 - 28

    EXAMPLE 8.2 (Continued)

    1) Angle - Yielding of gross section

    Tn = AgFy; Ag = (6 0.068)0.068 = 0.40 in.2 Eq.C2-1= (0.40)33 = 13.2 kips

    Ta = Tn/ = 13.2/1.67 = 7.90 kips

    2) Angle Fracture at connection

    Pn = AeFu Eq.E3.2-8

    Pa = Pn/ ; = 2.22

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    254/354

    8 - 29

    Ae = UAn

    U = 1.0 - 1.2 /L < 0.9, but shall not be less than 0.4 Eq.E3.2-9

    U = 1.0 1.2(0.783/3) = 0.687 > 0.4 OK

    An = Ag nAh = 0.40 1(0.5625)0.068 = 0.362 in.2

    _

    x

    EXAMPLE 8.2 (Continued)

    Ae = 0.687(0.362) = 0.249 in.2

    Ta = 0.249(45)/2.22 = 5.04 kips3) Angle Block shear rupture E5.3

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    255/354

    8 - 30

    Ant = [1 (0.5625)]0.068 = 0.0489 in.2

    Anv = [4.5 - 1(0.5625)]0.068 = 0.249 in.2

    Agt = 1(0.068) = 0.068 in.2

    Agv = 4.5(0.068) = 0.306 in.2

    EXAMPLE 8.2 (Continued)

    FuAnt = 0.0489(45) = 2.20 kips

    Rn = 0.6FyAgv + FuAnt = 0.6(33)(0.306)+2.20=8.26 kips -governs

    Rn = 0.6FuAnv + FuAnt = 0.6(45)(0.249)+2.20=8.92 kips

    n = . . = .

    Angle controlled by block shear.

    4) B lt ShE3.4

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    256/354

    8 - 31

    4) Bolts ShearPn = AbF; Ab = d

    2/4 = (1/2)2/4 = 0.196 in.2 Eq.E3.4-1

    F = Fnv = 27 ksi Table E3.4-1

    Pn

    = 0.196(27) = 5.29 kips/bolt

    Pn/ = 5.29/2.4 = 2.20 kips/bolt

    EXAMPLE 8.2 (Continued)

    Connection strength = 2(2.20) = 4.40 kips

    5) Bolts Bearing E3.3

    Pn = mf C Fudt

    d/t = (1/2)/0.068 = 7.4, C = 3.0 Table E3.3.1-1

    mf = 0.75 Table E3.3.1-2

    Pn = 0.75 (3)(45)(1/2)(0.068) = 3.44 kips/bolt

    Pn/ = 3.44/2.50 = 1.38 kips/bolt

    Connection strength = 2(1.38) = 2.75 kips

    6) Sh d di t i l t t i l E3 1

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    257/354

    8 - 32

    6) Shear end distance in plate material E3.1Pn = teFu = 0.068(1.5)45 = 4.59 kips/bolt Eq.E3.1-1

    Pn/ = 4.59/2.0 = 2.30 kips/bolt

    Connection strength = 2(2.30) = 4.60 kips

    Connection strength controlled by bearing = 2.75 kips

    SCREW CONNECTIONS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    258/354

    8 - 33

    SCREW CONNECTIONS

    Limitations

    0.08 in. screw diameter 0.25 in. Thread forming or thread cutting With or without a self-drilling point

    Diaphragm applications, Section D5

    Spacing Minimum center-to-center distance: 3d

    Minimum distance from screw center to edge or end: 1 5d

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    259/354

    8 - 34

    Minimum distance from screw center to edge or end: 1.5d

    ENDLAP SPLICE AND INTERMEDIATE FASTENING

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    260/354

    8 - 35

    LIGHT WEIGHT STEEL FRAMING

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    261/354

    8 - 36

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    262/354

    SELF-DRILLING SCREWS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    263/354

    8 - 38

    SCREW SIZES AND THICKNESS LIMITS

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    264/354

    8 - 39

    LIMIT STATES OF SCREW CONNECTIONS

    1. Longitudinal shear of sheet

    2. Bearing failure of the sheet

    3. Tilting of screw and subsequent tearing of sheet

    4. Shear failure of screw

    5. Tension pull-out of screw

    6. Tension pull-over of sheet

    f f

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    265/354

    8 - 40

    7. Tension failure of screw

    CONNECTION SHEAR LIMITED BY END DISTANCE(Section E4.3.2)

    Pns = t e Fu Eq.E4.3.2-1

    = 3.0

    = 0 50

  • 7/30/2019 Diseo de Estructuras de Acero Laminado en Frio (R LaBoube)

    266/354

    8 - 41

    = 0.50

    CONNECTION SHEAR LIMITED BY TILTING AND BEARING(Section E4.3.1)

    Tilting:

    Pns = 4.2(t23d)1/2Fu2

    Bearing:

    P = 2.7 F

    If t2/t1 2.5, bearingfailure alone governs