Ecuaciones y Sistemas de Ecuaciones Lineales

15
UNIDADES TECNOLÓGICAS DE SANTANDER UNIDAD 5 ECUACIONES Y SISTEMAS DE ECUACIONES ECUACIONES Ecuación: Es una igualdad en la que hay una o varias cantidades desconocidas llamadas incógnitas y que solo se verifica o es verdadera para determinados valores de las incógnitas. Las incógnitas se representan con las últimas letras del alfabeto: x, y, z, u, v. La ecuación no es una identidad. Identidad: Es una igualdad que se verifica para cualquier valor de las letras que se encuentran en ella. Ej.: 2 2 2 ; 2 n n n ab a b a b a ab b Miembros: Se llama primer miembro de una ecuación o de una identidad a la expresión que está a la izquierda del signo de igualdad, y segundo miembro, a la expresión que está a la derecha. Términos: Son cada una de las cantidades que están conectadas con otra por el signo + ó -, o la cantidad que está sola en un miembro. Raíces o Soluciones: Son los valores de las incógnitas que verifican o satisfacen la ecuación, es decir, que sustituidos en el lugar de las incógnitas, convierten la ecuación en una identidad. Las ecuaciones de primer grado tienen una sola raíz. Resolver una ecuación es encontrar su conjunto solución. La transposición de términos: consiste en cambiar los términos de una ecuación de un miembro al otro.

Transcript of Ecuaciones y Sistemas de Ecuaciones Lineales

Page 1: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

UNIDAD 5

ECUACIONES Y SISTEMAS DE ECUACIONES

ECUACIONES

Ecuación: Es una igualdad en la que hay una o varias cantidades desconocidas llamadas

incógnitas y que solo se verifica o es verdadera para determinados valores de las incógnitas. Las

incógnitas se representan con las últimas letras del alfabeto: x, y, z, u, v. La ecuación no es

una identidad.

Identidad: Es una igualdad que se verifica para cualquier valor de las letras que se encuentran en

ella.

Ej.: 2 2 2; 2

n n na b a b a b a ab b

Miembros: Se llama primer miembro de una ecuación o de una identidad a la expresión que está a

la izquierda del signo de igualdad, y segundo miembro, a la expresión que está a la derecha.

Términos: Son cada una de las cantidades que están conectadas con otra por el signo + ó -, o la

cantidad que está sola en un miembro.

Raíces o Soluciones: Son los valores de las incógnitas que verifican o satisfacen la ecuación,

es decir, que sustituidos en el lugar de las incógnitas, convierten la ecuación en una identidad. Las

ecuaciones de primer grado tienen una sola raíz. Resolver una ecuación es encontrar su conjunto

solución.

La transposición de términos: consiste en cambiar los términos de una ecuación de un

miembro al otro.

Page 2: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Verificación: Es la prueba de que el valor obtenido para la incógnita es correcto. La verificación

se realiza sustituyendo la incógnita de la ecuación por el valor obtenido, y si este es correcto, la

expresión se convertirá en una identidad.

TIPOS DE ECUACIONES

Las ecuaciones con una incógnita suelen tener un número finito de soluciones, mientras que en las ecuaciones con varias incógnitas encontramos infinitas soluciones, las que suelen ser estudiadas cuando forman sistemas de ecuaciones.

Podemos encontrar distintos tipos de ecuaciones con una incógnita: polinómicas, racionales, exponenciales, trigonométricas, logarítmicas, entre otras.

Las ecuaciones polinómicas son de la forma ( ) 0P x , donde ( )P x es un polinomio en x, que

al trasponer términos y simplificar adoptan esa expresión.

A continuación estudiaremos las ecuaciones polinómicas de primer y segundo grado.

1. ECUACIONES LINEALES O DE PRIMER GRADO

Cualquier ecuación que se puede escribir en la forma: 0,ax b donde a y b son constantes

reales, con a≠0, y x es una variable, se denomina ecuación lineal o de primer grado con una

variable.

La gráfica de una ecuación lineal es una Línea Recta

Pasos para resolver ecuaciones de primer grado

1. Quitar paréntesis, si los hay.

2. Quitar denominadores, si los hay. (Hallar m.c.m)

3. Pasar los términos que contienen la incógnita a un miembro y los números al otro miembro.

4. Simplificar cada miembro.

5. Despejar la incógnita. Se obtiene, así, la solución.

6. Comprobación: Sustituir la solución en cada miembro de la ecuación inicial para comprobar que

coinciden los resultados.

Page 3: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Ejemplo:

Resolver 3 ( 2)

1 74 6

x x

Se reduce a común denominador, calculando el mínimo común múltiplo de los denominadores

Se suprimen los paréntesis aplicando la propiedad distributiva:

9 12 14 28x x

Se trasponen términos (los términos en x a un miembro y los términos independientes al otro)

9 14 28 12x x

Se reducen términos semejantes:

5 40x

Se despeja la incógnita:

La solución es: 8x

Comprobación: 3(8) (8 2) 42

1 7 6 1 7 74 6 6

2. ECUACIONES CUADRÁTICAS O DE SEGUNDO GRADO Una ecuación cuadrática en la variable x es cualquier ecuación que pueda escribirse en la forma:

2 0,ax bx c donde a y b son constantes reales y a≠0

Ecuaciones completas: Cuando b≠0 y c≠0, se resuelve por factorización o aplicando la

fórmula cuadrática:

La expresión 2 4b ac , se llama discriminante de la ecuación. El número de soluciones depende

del signo de éste.

2 4

2

b b acx

a

Page 4: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Si 2 4 0b ac la raíz es un número real y se obtienen, por tanto, dos raíces reales distintas, x1

x2

Si 2 4 0b ac la raíz es cero, luego, obtenemos dos raíces iguales, es decir, diremos que la raíz

es doble, x1=x2

Si 2 4 0b ac la raíz es un número imaginario o complejo (no real), por lo tanto, se obtienen

dos raíces imaginarias

A las soluciones de una ecuación cuadrática se le llama comúnmente raíces y respecto a las

constantes a, b, y c tienen las siguientes propiedades:

1 2

br r

a

1 2

cr r

a

Ecuaciones incompletas: Si b = 0 ó c = 0. Se pueden resolver de forma sencilla sin utilizar la

fórmula anterior.

Si b = 0, se despeja la variable y tomando raíces cuadradas si es posible

2 0c

ax c xa

Si c = 0, se saca factor común la incógnita

2

0

0 00

x

ax bx x ax b bax b x

a

La gráfica de la ecuación cuadrática es una curva llamada parábola

Reglas para resolver ecuaciones de 2º grado

1. Si la ecuación de segundo grado es completa, aplicar la fórmula o por factorización si es posible. 2. Si la ecuación de segundo grado es incompleta, resolverla sin la fórmula, sacando factor común o

despejando. 3. Si tiene una fisonomía complicada, arréglala: quita denominadores, suprime paréntesis, agrupa

términos y pásalos todos al primer miembro,...Sólo cuando esté simplificada, aplica uno de los métodos anteriores.

4. Comprueba las soluciones. Y si la ecuación proviene de un problema con enunciado, haz la comprobación sobre el enunciado, pues es posible que alguna de las soluciones carezca de sentido real

Ejemplo:

Page 5: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Resolver:

22 1 1 1

2 3 6

x x x

Multiplicamos los dos miembros de la ecuación por el m.c.m = 6

2 23 2 1 2 1 1 6 3 2 2 1x x x x x x

26 2 0x x

Primer método:

Aplicando la formula cuadrática

21 ( 1) 4(6)( 2)

2(6)x

8 2

12 3

6 1

12 2

1 1 48 1 7

12 12x

Las soluciones son: 1 2

2 1

3 2x y x

Segundo método:

Factorizando

2 2 1

6 2 0 6 4 6 3 03 2

x x x x x x

RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES

Plantear una ecuación a partir de un problema es traducir al lenguaje algebraico las condiciones

que ligan lo que se sabe con lo que se desea conocer. Conviene proceder de forma organizada,

por lo que es útil dar estos pasos:

1. Identificar los datos conocidos, lo que deseamos conocer y dar nombre a la incógnita.

2. Relacionar mediante una igualdad (ecuación) lo conocido con lo desconocido.

3. Resolver la ecuación

4. Comprobar e interpretar la solución ajustándola al enunciado.

Page 6: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

En problemas verbales, aparecen un número de declaraciones que incluyen frases tales como

alguna cantidad mayor que o menor que cierto valor multiplicado, digamos, dos veces o por la

mitad de otra cantidad.

A continuación damos unos ejemplos de cómo cambiar tales expresiones a términos algebraicos.

Expresión verbal Expresión algebraica

Dos números cualesquiera… yx,

El doble de un número… x2

La suma del doble de un número con uno… 12 x

Un número más su consecutivo… )1( xx

El triple de la suma de un número con 7… )7(3 x

Un número disminuido en 9… 9x

El cuadrado de la diferencia de un número con 5… 2)5( x

Un número par… x2

Un número impar… 12 x

La suma de tres números impares consecutivos… )52()32()12( xxx

La mitad de un número menos 3… 3

2

x

La semisuma de dos números…

2

yx

Un número más su tercera parte más su quinta parte…

53

xxx

Cuádruple de la diferencia de un número y 2, aumentado en 6… 6)2(4 x

El triple de un número menos su doble… xx 23

Cinco veces la diferencia de un número con 7 es igual a cuatro

veces la suma del mismo número con 3…

)3(4)7(5 xx

Ejemplo: La base de un rectángulo mide el doble que su altura, si su perímetro es 30 cm. ¿cuánto

miden la base y la altura?

Page 7: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Solución

2x

1.

x x

2x

2x

2. 2 2 30x x x x

3. 30

6 30 56

x x x

Luego la altura mide 5 cm. y la base 10 cm.

4. comprobación: 10 + 10 + 5 + 5 = 30

SISTEMAS DE ECUACIONES

Un sistema de ecuaciones consiste en varias ecuaciones dadas conjuntamente con el fin de

determinar la solución o soluciones comunes a todas ellas.

Muchos problemas de la vida real nos obligan a resolver simultáneamente varias ecuaciones lineales para hallar las soluciones comunes a todas ellas. También resultan muy útiles en geometría (las ecuaciones lineales se interpretan como rectas y planos, y resolver un sistema equivale a estudiar la posición relativa de estas figuras geométricas en el plano o en el espacio). Se llama sistema de ecuaciones lineales a un conjunto de igualdades algebraicas en las que aparece una o varias incógnitas elevadas a la potencia uno. Cada una de estas ecuaciones lineales, o de primer grado, tiene la forma ax + by + cz +… = k, donde a, b, c,..., son los coeficientes de la ecuación; x, y, z,..., las incógnitas o variables, y k el término independiente (también un valor constante).

Page 8: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Un sistema se caracteriza por su dimensión. La dimensión de un sistema se determina según el número de ecuaciones y de variables involucradas en el sistema.

Un sistema de dos ecuaciones en dos variables se dice que es de dimensión 2x2. Un sistema de

dos ecuaciones en tres variables se dice que es de dimensión 2x3. Un sistema de tres ecuaciones en tres variables se dice que es de dimensión 3x3.

Los sistemas en los que el número de ecuaciones coincide con el de las incógnitas se denominan cuadrados. Un caso particularmente interesante de sistemas cuadrados es el de dos ecuaciones con dos incógnitas (2x2)

Ejemplo 1

Dimensión 2x2; hay dos ecuaciones y dos variables

Ejemplo 2

Dimensión 2x3; hay dos ecuaciones y tres variables

Ejemplo 3

Dimensión 3x3; hay tres ecuaciones y tres variables

TIPOS DE SISTEMAS LINEALES Atendiendo al número de soluciones de un sistema, estos pueden clasificarse en:

1. Si el sistema tiene solución, y ésta es única, se denomina compatible determinado.

Ejemplo: 2 3 15

1

x y

x y

2. Cuando presenta infinitas soluciones posibles, es compatible indeterminado.

Ejemplo: 2 3 15

4 6 30

x y

x y

8y2x

4yx2

2zy2x

1zyx

1cb2a

10cba

0cba2

Page 9: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

3. Si no tiene solución, es decir, al intentar resolverlo llegamos a una contradicción, se denomina imposible o incompatible.

Ejemplo: 2 3 15

2 3 1

x y

x y

Dos sistemas de ecuaciones lineales que tienen las mismas soluciones son equivalentes. En la

noción de equivalencia se basan las principales técnicas algebraicas de resolución de estos

sistemas, que persiguen convertirlos en otros cuya resolución sea más sencilla y que se estudiarán

a continuación.

MÉTODOS DE SOLUCION El estudio de sistemas de ecuaciones lineales es un problema clásico de las matemáticas. Cuando se trata de sistemas de dos ecuaciones de primer grado con dos incógnitas, se aplican diversos métodos de resolución sencillos de tipo gráfico y algebraico; si el número de ecuaciones es superior, es preferible recurrir al empleo de matrices y determinantes.

1. Método gráfico En este apartado vamos a tratar con ecuaciones con dos incógnitas. Por ejemplo, 2x - 5y = 7 es

una ecuación con dos incógnitas.

El par de valores x = 6, y = 1 es solución de esta ecuación porque 2 · 6 - 5 · 1 = 7.

Llamamos solución de una ecuación con dos incógnitas a todo par de valores ,x y que hacen

cierta la igualdad. Cabe destacar que si sólo tenemos una ecuación con dos incógnitas, tendremos

infinitas soluciones.

Page 10: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Las ecuaciones lineales se representan mediante rectas.

Para obtener las soluciones de las incógnitas se despeja una de ellas y se le dan valores a la otra.

Si representamos las dos ecuaciones que forman un sistema como dos rectas, se puede observar

que el punto donde se cortan dichas rectas (si se cortan) es la solución al sistema (el sistema seria

compatible determinado).

Ejemplo:

72

5

yx

yx

Despejando y de las dos ecuaciones: 72

5

xy

xy

Tabla de la 1ª Ecuación

Tabla de la 2ª Ecuación

Representación gráfica de ambas ecuaciones.

Page 11: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Aquí podemos observar cómo la solución del sistema es x=4 e y=1

Interpretación geométrica de las soluciones

a. Sistema de ecuaciones lineales con dos incógnitas:

Cada una de las ecuaciones del sistema determina una recta.

Si el sistema es compatible determinado, todas las rectas pertenecientes al sistema se

cortan en un único punto.

Si el sistema es compatible indeterminado, las rectas definidas en el sistema coinciden.

Si el sistema es incompatible, las rectas no se cortan en un único punto. O bien son paralelas

o bien, si en el sistema hay más de dos ecuaciones, las rectas se cortan dos a dos en distintos

puntos.

b. Sistema de ecuaciones lineales con tres incógnitas:

Cada una de las ecuaciones del sistema determina un plano.

Si el sistema es compatible determinado, todos los planos pertenecientes al sistema se

cortan en un único punto.

Si el sistema es compatible indeterminado, los planos definidos en el sistema se cortan en

una recta (infinitos puntos).

Si el sistema es incompatible, los planos no se cortan en un único punto. O bien son paralelos

o bien se cortan en rectas distintas formando un prisma o bien, si en el sistema hay más de tres

ecuaciones, los planos se cortan tres a tres en distintos puntos.

Page 12: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

2. Método algebraico

¿Cómo podemos resolver de forma sencilla un sistema de dos ecuaciones con dos incógnitas?

a. Método de igualación Una primera técnica algebraica común para resolver sistemas de dos ecuaciones lineales con dos incógnitas es el método de igualación. Pasos

Se despeja la misma incógnita en ambas ecuaciones. Se igualan las expresiones obtenidas. Se resuelve la ecuación lineal que resulta. Se sustituye la solución obtenida en cualquiera de las expresiones en las que aparecía

despejada la otra incógnita.

Ejemplo:

2 3

3 5

x y

x y

Despejando la misma variable de las dos ecuaciones

3

5

23

xy

xy

Igualándolas 3

523

xx

Resolviendo y despejando la variable x 9 - 6x = -5 + x

-7x = -14

x = 2

Reemplazando el valor de x en cualquiera de las otras dos ecuaciones, se tiene

y = 3 - 2(2) = -1.

La solución es: x = 2, y = -1 b. Método de sustitución La técnica algebraica denominada método de sustitución, para resolver un sistema de dos ecuaciones con dos incógnitas, consta de los siguientes pasos:

Page 13: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Pasos

Se despeja una de las incógnitas en una de las ecuaciones. Se sustituye el valor obtenido en la otra ecuación. Se resuelve la ecuación de primer grado con una incógnita que resulta. Se sustituye la solución obtenida en la expresión en la que estaba despejada la otra

incógnita.

Ejemplo

Sea el mismo sistema anterior de ecuaciones 2 3

3 5

x y

x y

.

Si se despeja y de la primera ecuación 3 2y x , y se sustituye en la segunda

ecuación, se tiene que:

3 3 2 5 9 6 5

7 14

2

x x x x

x

x

Reemplazando este valor en la ecuación despejada, y = 3 - 2(2) = -1

1y

La solución es: x = 2, y = -1

c. Método de eliminación o reducción

La tercera técnica algebraica de resolución de sistemas de ecuaciones lineales, el método de eliminación, consta de los siguientes pasos: Se multiplican o dividen los miembros de las dos ecuaciones por los números

que convengan para que una de las incógnitas tenga el mismo coeficiente en ambas.

Se restan las dos ecuaciones resultantes, con lo que se elimina una incógnita.

Se resuelve la ecuación con una incógnita obtenida, y se sustituye su valor en

cualquiera de las ecuaciones iniciales para calcular la segunda.

Por ejemplo, para el mismo sistema de ecuaciones: 2 3

3 5

x y

x y

Conviene multiplicar la segunda ecuación por 2 y la segunda se deja igual y restar ambas ecuaciones:

2 3

2 6 10

x y

x y

Page 14: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

7 7

1

y

y

Reemplazando el valor de y en cualquiera de las dos ecuaciones, tenemos

2 1 3 2 4 2x x x

La solución es: x = 2, y = -1

Nota 1: los tres métodos, sustitución, reducción e igualación, pueden ser usados para resolver

cualquier sistema de ecuaciones. Sin embargo, dependiendo de las ecuaciones, nos interesará

elegir un método u otro, según cuál nos resulte más sencillo de utilizar.

Nota 2: cuando nos encontremos con que algunos de los coeficientes de las ecuaciones sean

fraccionarios, es conveniente reducir las fracciones a común denominador y eliminar

denominadores antes de empezar a aplicar cualquiera de los tres métodos.

Nota 3: Para resolver sistemas de ecuaciones, lo primero que hay que hacer es transformar las

dos ecuaciones hasta llegar a escribir ambas de la forma ax + by = c

RESOLUCIÓN DE PROBLEMAS Para resolver problemas mediante el planteamiento de un sistema de ecuaciones lineales, se deben seguir varios pasos: 1. Plantear el problema, entendiendo su enunciado y convirtiéndolo en ecuaciones con

coeficientes, constantes y variables o incógnitas. 2. Analizar el tipo de sistema que se obtiene. 3. Elegir un método de resolución (algebraico o gráfico) y aplicarlo. 4. Estudiar si las soluciones obtenidas son pertinentes en el contexto del problema. 5. Comprobar las soluciones en las ecuaciones planteadas.

PROBLEMAS QUE SE RESUELVEN MEDIANTE SISTEMAS DE ECUACIONES

1º Ejemplo: En un bar se venden bocadillos de jamón a 3,5

y de tortilla a 2 . En una mañana se vendieron 52 bocadillos y se recaudaron 149 ¿Cuántos se vendieron de cada clase? Llamamos: x= bocadillos vendidos de jamón. y= bocadillos vendidos de tortilla.

2º Ejemplo: María ha comprado un abrigo que estaba rebajado un 15 %. Marta ha comprado otro abrigo 25 más caro, pero ha conseguido una rebaja del 20%, con lo que sólo ha pagado 8 más que María ¿Cuál era el precio de cada abrigo? Llamamos: x= precio inicial del abrigo de María y= precio inicial del abrigo de Marta.

3º Ejemplo: En una granja hay conejos y gallinas. Contamos en total 50 cabezas y 160 patas ¿Cuántos animales hay de cada clase? Llamamos: x= nº de gallinas. y= nº de conejos

50

2 4 160

x y

x y

Multiplicando por -2 la primera ecuación:

Page 15: Ecuaciones y Sistemas de Ecuaciones Lineales

UNIDADES TECNOLÓGICAS DE SANTANDER

Tenemos el sistema:

52

3.5 2 149

x y

x y

Multiplicando por -2 la primera ecuación:

2 2 104

3.5 2 149

x y

x y

Sumando:

1.5 45

4530

1.5

x

x

Reemplazando x:

52

52 30 22

y x

y y

Es decir, se han vendido 30 bocadillos de jamón y 22 de tortilla. Veamos si la recaudación coincide:

30 3.5 22 2 149

15 208

100 100

25

x yx y

y x

Simplificando y ordenando:

100 15 100 20 800

25

x x y y

x y

85 80 800

25

x y

x y

Multiplicando por 85 la segunda ecuación:

85 80 800

85 85 2125

x y

x y

Sumando:

1325

5 1325 2655

y y

Reemplazando y:

25 265 25 240x y x

Es decir, el abrigo de maría valía 240 y el de Marta 265 . Comprobemos: Si al de María le descontamos el 15 % nos queda:

240 15

240 204100

Y al de Marta le descontamos el 20%

265 20

265 212100

Y, efectivamente Marta ha pagado 8 más.

2 2 100

2 4 160

x y

x y

Sumando:

2 60

6030

2

y

y

Reemplazando y:

50

50 30 20

x y

x x

Es decir, hay 20 gallinas y 30 conejos. Veamos si coinciden las patas:

20 2 30 4 40 120 160