Ejercicios de Los 5 Ultimos Casos de Factorizacion

25
Ejercicios de los 5 ultimos casos de factorizacion  15:05 Publicado por Andres Aguilar Etiquetas: binomios , casos de factorizacion ,  factorizar , numeros , terminos , 2 comentarios  Caso VI Trinomio de la forma x^2 + bx + c.  Trinomios de la forma x^2 + bx + c son trinomios como: X^2 + 5x + 6 m^2 + 5m ± 14 a^2 ± 2a ± 15 Para que estos términos a la que hemos puesto como ejemplos sean trinomios de la forma x^2 + bx + c deben cumplir con las siguientes condiciones: 1) El coeficiente del primer término es 1. 2) El primer término es una letra cualquiera elevada al cuadrado. 3) El segundo término tiene la misma letra que el primero termino 1 y su coeficiente es una cantidad cualquiera, positiva o negativa. 4) El tercer término es independiente de la letra que aparece en el 1er y 2do términos y es una cantidad cualquiera, positiva o negativa. Regla para factorar un trinomio de la forma x^2 + bx + c  1) Lo primero que debemos hacer es sacar la raíz cuadrada del primer término del trinomio es decir raíz cuadrada de x^2 es x. 2) Luego de eso debemos de separar en dos grupos de binomios, cada grupo va constar de la raíz cuadrada que le sacamos al comienzo x^2 es decir x. Ejemplo x^2 + 5x + 6 = (x ) (x )  

Transcript of Ejercicios de Los 5 Ultimos Casos de Factorizacion

Page 1: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 1/25

 

Ejercicios de los 5 ultimos casos de factorizacion 15:05 Publicado por Andres Aguilar 

 

Etiquetas: binomios , casos de factorizacion , factorizar , numeros , terminos , 2 comentarios 

Caso VI 

Trinomio de la forma x^2 + bx + c. 

Trinomios de la forma x^2 + bx + c son trinomios como:

 

X^2 + 5x + 6

m^2 + 5m ± 14

a^2 ± 2a ± 15

Para que estos términos a la que hemos puesto como ejemplos sean trinomios de la forma x^2 + bx +

c deben cumplir con las siguientes condiciones:

1) El coeficiente del primer término es 1.

2) El primer término es una letra cualquiera elevada al cuadrado.

3) El segundo término tiene la misma letra que el primero termino 1 y su coeficiente es una cantidad

cualquiera, positiva o negativa.

4) El tercer término es independiente de la letra que aparece en el 1er y 2do términos y es una

cantidad cualquiera, positiva o negativa.

Regla para factorar un trinomio de la forma x^2 + bx + c 

1) Lo primero que debemos hacer es sacar la raíz cuadrada del primer término del trinomio es decir 

raíz cuadrada de x^2 es x.

2) Luego de eso debemos de separar en dos grupos de binomios, cada grupo va constar de la raíz

cuadrada que le sacamos al comienzo x^2 es decir x. Ejemplo

x^2 + 5x + 6 = (x ) (x ) 

Page 2: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 2/25

 

3) Una vez realizado el paso 2 debemos identificar los signos por el cual va ir precedido el segundo

término en ambos grupos para una mejor explicación le muestro el siguiente ejemplo:

x^2 + 5x + 6 = (x + ) (x )

En este caso los signos de ambos grupos de binomio es + esto lo identificamos observando el

trinomio original, observamos el segundo término que va precedido del signo + al ver que tiene el

signo mas colocamos el signo en el primer grupo de binomio es decir:

 

x^2 + 5x + 6 = (x + ) (x )

nos damos cuenta como colocamos el signo y para saber el signo del segundo grupo lo que hacemos

es una simple ley de signos, es decir el signo que va precedido del segundo término por el signo que

va precedido del tercer término del trinomio original ejemplo:

x^2 + 5x + 6

En este caso nos fijamos en los signos resaltados de rojo, al hacer la ley de los signos + * + = + nos

va a dar el resultado de + que va ser el signo del segundo grupo ejemplo.

x^2 + 5x + 6 = (x + ) (x+ )

4) Una vez descubierto los signos de ambos grupo pasamos a descubrir los números que van a ir 

tanto de un grupo como del otro grupo.

Esto lo hacemos sacando máximo comun divisor del último término del trinomio original. Ejemplo.

x^2 + 5x + 6 

Es decir al 6 le sacamos el máximo comun divisor 

6 = 2 y 3 vendría a ser el máximo comun de 6, porque 6 dividido para 2 nos da 3 y para ser al tres 1

lo dividimos para 3.

x^2 + 5x + 6 = (x + 3) (x + 2)

Page 3: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 3/25

 

Estos son los números que van a ir tanto en un grupo como en el otro también lo podemos averiguar 

 porque 3 al multiplicarlo por 2 nos va a dar 6 del trinomio original, y 3 sumando 2 nos va a dar 5 del

segundo termino del trinomio original estas son las dos formas para comprobar si los números que

colocamos son los correctos.

Ejemplos descriptivo de los casos de factorizacion VI.

Factorizar a^2 ± 13a + 40

Observamos que sacamos la raíz cuadrada de a^2 que va ser a. y eso lo colocamos en ambos grupos.

a^2 ± 13a + 40 = (a ) (a )

En el primer binomio después de a se pone signo ± porque el segundo termino del trinomio

  ± 13atiene signo - . En el segundo binomio, después de a, se escribe el signo que resulta de

multiplicar el signo de ±  13 a por el signo de + 40 y se tiene que ± por + da ± es decir:

a^2 ± 13a + 40 = (a ± 8 ) (a ± 5 )

Sacamos el máximo comun de 40 que nos da 2, 2, 2 y 5 debemos buscar dos números cuya suma sea

  ± 13 y cuyo producto sea +40.

En este caso va ser ± 8 y ± 5.

Factorizar: x^2 + 6x ± 216 

En el primer binomio se pone + porque +6x tiene signo + .

En el segundo binomio se pone ± porque multiplicando el signo + 6x por el

signo de ± 216 se tiene que + por ± da ± .

  Necesitamos dos números cuya diferencia sea 6 y cuyo producto sea 216.

Estos números no se ven fácilmente. Para hallarlos, descomponemos en sus factores primos el tercer 

término.

216= 2, 2, 2, 3, 3, 3

Page 4: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 4/25

 

Ahora, formamos con estos factores primos dos productos.

Por tanteo, variando los factores de cada producto, obtendremos los dos números que buscamos. Asi:

2 * 2 * 2 = 8 3 * 3 * 3 = 27

2 * 2 * 2 * 3 = 24 3 * 3 = 9

2 * 2 * 3 = 12 2 * 3 * 3 = 18

27 ± 8 = 19, no nos sirven

24 ± 9 = 15, no nos sirven

18 ± 12 = 6, sirven

18 y 12 son los números que buscamos porque su diferencia es 6 y su producto necesariamente es

216 ya que para obtener estos números hemos empleado todos los factores que obtuvimos en la

descomposición de 216.Por tanto:

x^2 + 6x ± 216 = (x + 18) (x ± 12).

Ejercicios de los casos de factorizacion VI.

Trinomio de la forma x^2 + bx + c

Factorizar o descomponer en dos factores.

y^2 ± 9y + 20

Descomponiendo en factores tenemos:

20 = 2, 2, 5

(y ± 5) (y ± 4)

Factorizar: x^2 + x ± 132 

Descomponer en factores el 132.

132 = 2, 2, 3, 11

2 * 2 * 3 = 12

Page 5: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 5/25

 

11

El 12 y 11 serian los números indicado debido a que la diferencia 12 ± 11 = 1, da como resultado +1

y el producto nos da ± 132.

(x + 12) (x ± 11)

Factorizar: m^2 ± 2m ± 168 

Descomponer en factores el 168.

168 = 2, 2, 3, 7

2 * 2 * 3 = 12

2 * 7 = 14

El 12 y 14 serian los números indicados debido a que la diferencia

  ± 14 + 12 = - 2, da como resultado ± 2 y el producto nos da ± 168

(m ± 14) (m + 12)

Caso Especial del trinomio de la forma x^2 + bx + c

Ejemplos descriptivos: 

Factorizar: x^4 + 5x^2 ± 50

El primer termino de cada factor binomio será la raíz cuadrada de x^4 o sea x^2.

x^4 ± 5x^2 ± 5a = (x^2 - ) (x^2 + )

Descomponemos en factores el 50.

50 = 2, 5, 5

2 * 5 = 10

5

El 10 y 5 son los números indicados, porque la diferencia ± 10 + 5 = ± 5

nos da ± 5 que es del segundo término y el producto ± 10 * 5= - 50, nos da

Page 6: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 6/25

 

 ± 50 en resumen en el caso que explicamos anteriormente son los mismos pasos que se aplica en el

caso especial.

(x^2 ± 10) (x^2 + 5)

Factorizar: (5x)^2 ± 9(5x) + 8.

El primer término de cada binomio será la raíz cuadrada (5x)^2 o sea 5x.

(5x)^2 ± 9(5x) + 8 = (5x - ) (5x - )

Dos números cuya suma sea 9 y cuyo producto es 8 son 8 y 1, Tendremos:

(5x)^2 ± 9(5x) + 8 = (5x ± 8) (5x ± 1)

Factorizar: (a + b)^2 ± 12(a + b) + 20.

El primer término de cada binomio será la raíz cuadrada de (a + b)^2 que es

(a + b).

(a + b)^2 ± 12(a + b) + 20.

[(a + b) ± ] [(a + b) - ]

Buscamos dos números cuya suma suma sea 12 y cuyo producto sea 20. Esos números son 10 y 2.

Tendremos:

(a + b)^2 ± 12(a + b) + 20 = [(a + b) ± 10] [(a + b) ± 2]

= (a + b ± 10) (a + b ± 2)

Factorizar: 28 + 3x ± x^2. 

Ordenando en orden descendente respecto de x tenemos:

 

  ± (x^2 ± 3x ±

Page 7: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 7/25

 

Factorando: x^2 ± 3x ± 28 = (x ± 7) (x + 4), pero como el trinomio esta precedido de ± su

descomposición también debe ir precedido de ± y tendremos:

  ±(x ± 7) (x +

Para que desaparezca el signo ± del producto ±(x ± 7) (x + 4) o sea, para convertirlo en + basta

cambiarle el signo a un factor, por ejemplo (x ± 7) y quedara.

28 + 3x ± x^2 = (7 ± x) (x + 4).

Ejercicio de los caso especiales VI.

Factorizar = x^4 + 5x^2 + 4

x^4 + 5x^2 + 4= (x^2 + 4) (x^2 + 1).

Factorizar= (x ± y)^2 + 2(x ± y) ± 24.

(x ± y)^2 + 2(x ± y) ± 24 = [(x ± y) + 6] [(x ± y) ± 4]

= (x ± y + 6) (x ± y ± 4)

24 = 2, 2, 2, 3

2 * 3 = 6 6 ± 4 = 2

2 * 2= 4

El 6 y 4 van a ser los números que van a ir en los grupos de binomios.

Factorizar = 48 + 2x^2 ± x^4

  ± x^4 + 2x^2 +

  ± (x^4 ± 2x^2 ± 4

Factorizando x^4 ± 2x^2 ± 48 nos da (x^2 ± 8) (x^2 + 6)

48 = 2, 2, 2, 2, 3.

2 * 2 * 2 = 8

2 * 3 = 6

Page 8: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 8/25

 

El 8 y 6 van a ser los números que van a ir en los grupos de binomios.

P

ara obtener el caso de factorizacion VII hacer clic aqui 

Caso VIII

Cubo perfecto de binomios. 

Regla para factorizar un cubo perfecto de binomios.

Factorizar: a^3 + 3a^2 + 3a + 1

1) P

 

rimero identificar que el ejercicio tenga cuatro términos en este caso observamos que nuestro

ejercicio consta de cuatro términos

2) Sacar la raíz cúbica al primer término y al último término Ejemplo.

La raíz cúbica de a^3 es a.

La raíz cúbica de 1 es 1.

3) Vemos si cumples las condiciones realizando la siguiente prueba. Ejemplo:

a^3 + 3a^2 + 3a + 1

1) 3 (a)^2 (1) = 3a^2

2) 3 (a) (1)^2 = 3a

1) Como observamos que una vez que le sacamos la raíz cuadrada al primer y ultimo término, con

ellos realizamos la prueba, multiplicando primeramente al 3 por el cuadrado de la raíz cúbica del

 primer término por la raíz cúbica del ultimo término, en expresión 3 (a)^2 (1) = 3a^2 dándonos el

resultado del segundo término de nuestro ejercicio inicial. Ejemplo:

a^3 + 3a^2 + 3a + 1

2) Luego multiplicamos al 3 por la raíz cúbica del primer término por el cuadrado de la raíz cúbica

del último término, en expresión 3 (a) (1)^2 = 3ª dándonos el resultado del tercer término de nuestro

ejercicio inicial. Ejemplo:

Page 9: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 9/25

 

 

a^3 + 3a^2 + 3a + 1

4) Y por ultimo ya realizado la prueba y comprobar que se trata de un cubo perfecto de binomios

resolvemos el ejercicio:

a^3 + 3a^2 + 3a + 1 = (a + 1)^3

Quedándonos el binomio a + 1 elevándolo al cubo.

Nota: Para saber que signo va dentro del binomio tenemos que tomar en cuenta lo siguiente:

Es signo + cuando los signos de los 4 términos es +

 

Es signo ± cuando los signos de los términos es alternado es decir ± y + .

No es cubo perfecto cuando:

1) Cuando al realizar la prueba no nos da el resultado ni del segundo ni tercer término

2) Cuando los signos son alternados de esta forma. Ejemplo:

a^3 + 3a^2 ± 3a ± 1

a^3 ± 3a^2 + 3a + 1

a^3 + 3a^2 ± 3a + 1

a^3 ± 3a^2 ± 3a + 1

solo cuando es alternado de esta forma a^3 ± 3a^2 + 3a ± 1 es un cubo perfecto.

Ejercicios descriptivos de los casos de factorizacion VIII

1) 27 ± 27x + 9x^2 ± x^3 = (3 ± x)^3

3 (3)^2 (x) = 27x

3 (3) (x)^2 = 9x^2

Page 10: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 10/25

 

2) 125x^3 + 1 + 75x^2 + 15x

Ordenando: 125x^3 + 75x^2 + 15x + 1 = (5x + 1)^3

 

3 (5x)^2 (1) = 75x^2

3 (5x) (1)^2 = 15x

3) x^3 ± 3x^2 + 3x + 1

No es cubo perfecto porque los signos no son alternados de esta manera 

  ± * + * ± *

4) a^6 + 3a^4 b^3 + 3a^2 b^6 + b^9 = (a^2 + b^3)^3

3 (a^2)^2 (b^3) = 3a^4 b^3

3 (a^2) (b^3)^2 = 3a^2 b^6

Caso IX

Suma o diferencia de cubos perfectos.

Regla para resolver una suma o diferencia de cubos perfectos.

Regla 1

La suma de dos cubos perfectos se descompone en dos factores:

1) La suma de sus raíces cúbicas.

2) El cuadrado de la primera raíz, menos el producto de las dos raíces, mas el cuadrado de la

segunda raíz.

Regla 2

La diferencia de dos cubos perfectos se descompone en dos factores:

1) La diferencia de sus raíces cúbicas.

Page 11: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 11/25

 

 

2) El cuadrado de la primera raíz, mas el producto de las dos raíces, mas el cuadrado de la segunda

raíz.

Ejemplos descriptivos de los casos de factorizacion IX.

1) Factorizacion: x^3 + 1

La raíz cúbica de x^3 es x; la raíz cúbica de 1 es 1.

x^3 + 1 = (x + 1) [x^2 ± x(1) + 1^2] = (x + 1) (x^2 ± x + 1)

Respuesta: (x + 1) (x^2 ± x + 1)

A  plicando la regla 1 vemos que trata de una suma de dos cubos perfectos.

Entonces al sacarle la raíz a x^3 = x y 1 = 1, el primer factor va ser una suma de (x + 1), luego

aplicamos la regla del segundo factor cuando suma; el cuadrado de la primera raíz, menos el

  producto de las dos raíces, más el cuadrado de la segunda raíz quedándonos:

[x^2 ± x(1) + 1^2] = x^2 ± x + 1

Al juntar los 2 factores nuestra respuesta será:

(x + 1) (x^2 ± x + 1)

2) Factorizar: 8x^3 ± 125

La raíz cúbica de 8x^3 es 2x; la raíz cúbica de 125 es 5

A  plicando la regla 2 vemos que trata de una diferencia de dos cubos perfectos.

8x^3 ± 125 = (2x ± 5) [(2x)^2 + 2x(5) + (5)^2]

(2x ± 5) (4x^2 + 10x + 25)

Al sacarle la raíz a 8x^3 = 2x y a 125 = 5, el primer factor va ser una resta

(2x ± 5), luego aplicamos la regla del segundo factor cuando es resta; el cuadrado de la primera raíz,

mas el producto de las dos raíces, mas el cuadrado de la segunda raíz. Quedándonos:

[(2x)^2 + 5(2x) + 5^2] = 4x^2 + 10x + 25

Al juntar los dos factores nuestra respuesta será:

Page 12: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 12/25

 

 

(2x ± 5) (4x^2 + 10x + 25)

Ejercicios de los casos de factorizacion IX.

Suma o diferencia de cubos perfectos.

1) a^3 + 27 = (a + 3) [a^2 ± 3(a) + (3)^2]

(a + 3) (a^2 ± 3a + 9)

2) a^3 b^3 ± x^6 = (ab ± x^2) [(ab)^2 + abx^2 + (x^2)^2]

(ab ± x^2) (a^2 b^2 + abx^2 + x^4)

3) 27m^3 + 64n^9 = (3m + 4n^3) [(3m)^2 ± 3m(4n^3) + (4n^3)^2]

(3m + 4n^3) (9m^2 ± 12mn^3 + 16n^6)

4) 8x^9 ± 125y^3 z^6

(2x^3 ± 5yz^2) [(2x^3)^2 ± (2x^3)(5yz^2) + (5yz^2)^2]

(2x^3 ± 5yz^2) (4x^6 + 2x^3 y z^2 + 25y^2 z^4)

Ejercicios de los 5 primeros casos de

factorización martes 7 de octubre de 2008 15:37 Publicado por Andres Aguilar 

 

Etiquetas: algebra , de factorizacion , factorizacion , 1 comentarios 

Page 13: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 13/25

 

Caso I

Este es el primer caso y se emplea para factorizar una expresión en la cual todos los términos tienen

algo en común (puede ser un número, una letra, o la combinación de los dos).

Sacar el factor común es extraer la literal común de un polinomio, binomio o trinomio, con el menor 

exponente y el divisor común de sus coeficientes. Ejemplo:

x^8 + x^2 y^2 - 2xy = xy(x + xy - 2)

a) Factor común monomio

Ejemplos descritos de factorizacion:

1. Descomponer en factores a^2 + 2a.

a^2 / a = a y 2a / a= 2, y tendremos a^2 + 2a = a(a+2)

2. Descomponer en factores 10b ± 30 a b^2 .

Los coeficientes 10 y 30 tienen factores comunes 2, 5 y 10. Tomamos 10 porque siempre se saca el

mayor factor común. De las letras, el único factor común es b porque esta en los 2 términos de la

expresión dada y la tomamos con su menor exponente b.

El factor común es 10b. Lo escribimos como coeficiente de un paréntesis y dentro ponemos loscocientes de dividir 10b / 10b = 1 y -30ab^2 /10b = -3ab

y tendremos:

10b ± 30a b^2 = 10b(1 ± 3ab).

Ejercicios:

Factorar o descomponer en dos factores:

1) 3a^3 ± a^2 = a^2 (3a-1)

2) 15c^3 d^2 + 60 c^2 d^3 = 15c^2 d^2 (c + 4d)

Page 14: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 14/25

 

 

3) 34ax^2 + 51a^2 y ± 68 a y^2 = 17a(2x^2 + 3ay - 4y^2 ).

En este ejemplo vemos que el factor común del coeficiente numérico es el 17, como sabemos que es

el 17 dividiendo:

34 / 17 = 2 ; 51 / 17= 3 ; 68 / 17= 4, es decir tenemos que buscar un numero que sea divisible para

todos los coeficientes numéricos.

Y en cuanto al coeficiente Literal el factor comun es a debido a que es el menor exponente de dicho

coeficiente Literal.

4) x ± x^2 + x^3 ± x^4 = x(1 ± x + x^2 ± x^3 )

5) 3a^2 b + 6ab ± 5a^3 b^2 + 8a^2 bx +4ab^2 m = a( ab + 6b ± 5a^2 b^2 + 8abx + 4b^2m)

El factor comun polinomio lo tenemos en un archivo pdf para obtenerlo hacer clic aqui 

Caso II

Factor comun por agrupación de terminos

 

Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos

características las que se repiten. Se identifica porque es un número par de términos. Para resolverlo,

se agrupan cada una de las características, y se le aplica el primer caso, es decir:

ab + ac + bd + dc = (ab + ac) (bd + dc)

= a(b + c) + d(b + c)

= (a + d) (b + c)

Pasos para realizar el caso II (Factor comun por agrupación de terminos)

Los pasos para realizar este caso que es el factor comun por agrupacion de terminos es:

Page 15: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 15/25

 

1) Observar detenidamente el ejercicio en este caso vamos a poner como ejemplo el ejercicio

anterior es decir: ab + ac + bd + dc.

2) Agrupar los terminos de una manera que al realizar el ejercicio nos de cómo resultado un factor 

comun le voy a demostrar con ejemplos:

ab + ac + bd + dc

agrupando los términos: (ab + ac) + (bd + dc)

aplicando lo del caso I a(b + c) + d(b + c) observemos en la parte sombreada con azul que se repite

el mismo factor comun (b + c)

es decir el ejercicio si se lo puede realizar es el caso II, si al agrupar los términos no se repiten los

factores comunes no es el caso II y por ende no se puede realizar el ejercicio.

3) Una vez identificado que se trata de un factor comun por agrupación de términos procedemos acolocar primero el coeficiente literal es decir las letras que están fuera de los factores comunes.

son las que están sombreada con rojo. a (b + c) + d (b+c) 

  por ultimo colocamos los factores comunes

dándonos como resultado (a+d) (b+c)

Agrupación de términos: Aquí se intenta agrupar los diferentes términos de una expresión parafactorizar utilizando los diferentes métodos vistos. Para utilizar este método se debe tener en cuenta

que la expresión debe tener un número de términos que al agruparlos deben quedar todos con la

misma cantidad de términos. Ejemplo:

Resolviendo nos queda:

2ab + 2a - b - 2ac + c - 1

(2ab - 2ac + 2a) - (b - c + 1)

2a(b - c + 1) - (b - c + 1)

(b - c + 1) (2a - 1)

Ejemplos Descritos de factorizacion:

Page 16: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 16/25

 

Descomponer : ax + bx + ay + by:

Los dos primeros términos tienen el factor comun x y los dos últimos el factor comun y. Agrupamos

los dos primeros términos en un paréntesis y los dos últimos en otro precedido del signo + porque el

tercer término tiene el signo + y tendremos:

ax + bx + ay + by = (ax + bx) + (ay + by)

= x(a + b) + y(a + b)

La agrupación puede hacerse generalmente de más de un modo con tal que los dos términos que se

agrupan tengan algún factor comun, y siempre que las cantidades que quedan dentro de los

 paréntesis después de sacar el factor comun en cada grupo, sean exactamente iguales. Si esto no es

  posible lograrlo la expresión dada no se puede descomponer por este método.

Así en el ejemplo anterior podemos agrupar el 1er y 3er. términos que tienen el factor comun a y el

2do y 4to que tienen el factor comun b y tendremos:

ax + bx + ay + by = (ax + ay) + (bx + by)

= a(x + y) + b (x + y)

= (a + b) (x + y)

Ejercicios:

1) a^2 x^2 ± 3bx^2 + a^2 y^2 ± 3by^2

(a^2 x^2 ± 3bx^2 ) + (a^2 y^2 ± 3by^2 )

x^2 (a^2 ± 3b) + y^2 (x^2 + y^2 )

(a^2 ± 3b) (x^2 + y^2 )

2) x^2 ± a^2 + x ± a^2 x

(x^2 + x) ± (a^2 + a^2 x)

Page 17: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 17/25

 

 

x(x + 1) ± a^2 (1 + x)

(x + 1) (x ± a^2 )

3) 4a^3 x ± 4a^2 b + 3bm ± 3amx

(4a^3 x ± 3amx) ± (4a^2 b ± 3bm)

ax(4a^2 ± 3m) ± b (4a^2 ± 3m)

(4a^2 ± 3m ) (ax ± b)

4) 2am ± 2an + 2a ± m + n ± 1

(2am ± 2an + 2a) ± (m ± n + 1)

2a(m ± n + 1) ± (m ± n + 1)

(m ± n + 1) (2a ± 1)

5) 3x^3 + 2axy + 2ay^2 ± 3xy^2 ± 2ax^2 ± 3x^2 y

(3x^3 ± 3x^2 y ± 3xy^2 ) ± (2ax^2 ± 2axy ± 2ay^2 )

3x(x^2 ± xy ± y^2 ) ± 2a(x^2 ± xy ± y ^2)

(x^2 ± xy ± y^2 ) (3x ± 2a)

En este ejercicio vemos la forma en que podamos agrupar los términos, ya que una vez al agrupar los

Page 18: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 18/25

 

dos términos deben dar el

mismo factor comun es decir en este ejercicio el factor comun es (x^2 ± xy ± y^2 ).

En este caso como vemos, agrupamos los términos correspondiente y nos da como respuesta

 

(x^2 ± xy ± y^2 ) (3x ± 2a).

La clave para resolver este caso es observar el ejercicio darse cuenta la manera en que podamos

agrupar los términos para que nos pueda dar el mismo factor comun y así se pueda realizar el

ejercicio.

Caso III

Trinomio cuadrado perfecto

Regla para factorar un trinomio cuadrado perfecto.

Se extrae la raíz cuadrada al primero y tercer termino del trinomio y se separan estas raíces por el

signo del segundo término. El binomio así formado, que es la raíz cuadrada del trinomio, se

multiplica por si mismo o se eleva al cuadrado

Ejemplos descritos:

Factoraizar: m^2 + 2m + 1

m^2 + 2m + 1 = (m + 1) (m + 1) = (m + 1)^2

Factorar: 4x^2 + 25y^2 ± 20xy

Ordenando el trinomio, tenemos:

4x^2 ± 20xy ± 25y^2 = (2x ± 5y) (2x ± 5y) = (2x ± 5y)^2

Page 19: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 19/25

 

 

Importante:

Cualquiera de las dos raíces puede ponerse de minuendo. Así en el ejemplo anterior se tendrá

también:

4x^2 ± 20xy ± 25y^2 = (5y ± 2x) (5y ± 2x) = (5y ± 2x)^2

Porque desarrollando este binomio se tiene:

(5y ± 2x)^2 = 25y^2 ± 20xy + 4x^2

Expresión idéntica a 4x^2 ± 20xy + 25y^2 ya que tiene las mismas cantidades con los mismos

signos.

El caso especial del trinomio cuadrado perfecto lo tenemos en un archivo pdf para obtenerlo

hacer clic aqui

Caso IV 

Diferencia de cuadrados perfectos 

Regla para factorar una diferencia de cuadrados.

 

Se extrae la raíz cuadrada al minuendo y al sustraendo y se multiplica la suma de estas raíces

cuadradas por la diferencia entre la raíz del minuendo y la del sustraendo.

Los pasos para saber si es un cuadrado perfectos es seguir los siguientes pasos .

 

1) observar que los dos términos tengan raíz o se le pueda sacar raíz cuadrada y que el segundo

término este precedido del signo - ejemplo:

m^2 ± 4 = es una diferencia de cuadrados porque tiene raíz cuadrada tanto el primer 

termino; raiz cuadrada de m^2 es m y en el segundo termino; raiz cuadrada de 4 es 2 y por ultimo el

segundo termino va precedido del signo ± en este caso ± 4.

Page 20: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 20/25

 

 

Ejemplos descriptivos de factorizacion:

Factorizar: 1 ± a^2

La raíz cuadrada de 1 es 1; la raíz cuadrada de a^2 es a. multiplica la suma de estas raíces (1 + a) por 

la diferencia (1 ± a) y tendremos:

1 ± a^2 = (1 + a) (1 ± a)

Factorizar: 49 x^2 y^6 z^10 ± a^12

49 x^2 y^6 z^10 ± a^12 = (7x y^3 z^5 + a^6 ) (7 x y^3 z^5 ± a^6 )

Factorizar o descomponer en dos factores.

1) a^2 ± 25 = (a + 5) (a ± 5)

2) 36a^2 ± 64b^2 = (6a + 8 b) (6a ± 8b)

3) 16m^2 ± 100 = (4m + 10) (4m ± 10)

4) m^4 x ± n^2 x= (m^2 x + nx) (m^2 x ± nx)

Caso Especial de la diferencia de cuadrados perfectos.

Factorizar: (a + b) ^2 ± c^2

La regla empleada en los ejemplos anteriores es aplicable a las diferencias de cuadrados en que uno

o ambos cuadrados son expresiones compuestas.

Así, en este caso tenemos:

La raíz cuadrada de (a + b) ^2 es (a + b).

Page 21: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 21/25

 

 

La raíz cuadrada de c^2 es c.

Multiplico la suma de estas raíces (a + b) + c por la diferencia (a + b) ± c y tengo:

(a + b) ^2 ± c^2 = [(a + b) + c] [(a + b) ± c]

= (a + b + c) (a + b ± c)

Factorizar: (p + q)^2 ± (q + 2)^2

La raíz cuadrada de (p + q)^2 es (p + q).

La raíz cuadrada de (q + 2)^2 es (q + 2).

Se multiplica la suma de estas raíces (p + q) + (q + 2) por la diferencia (p + q) ± (q + 2) y tengo:

(p + q) ^2 ± (q + 2) ^2 = [(p + q) + (q + 2)] [(p + q) ± (q + 2)]

= (p + q + q + 2) (p + q ± q ± 2) se reduce a términos semejantes y

queda.

= (p + 2q + 2) (p ± 2).

Ejercicios del caso especial.

a^2 ± (b + c) ^2 = [a + (b + c)] [a ± (b + c)]

= (a + b + c) (a ± b + c)

(x ± y) ^2 ± (c + d) ^2 = [(x ± y) + (c + d)] [(x ± y) ± (c + d)]

= (x ± y + c + d) (x ± y ± c ± d)

4(a + b) ^2 ± 9(c + d) ^2 = [2(a + b) + 3(c + d)] [2(a + b) ± 3(c + d)]

Page 22: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 22/25

 

 

= (2a + 2b + 3c + 3d) (2a + 2b ± 3c ± 3d)

Casos Especiales

Combinación de los casos III y IV.

Regla para resolver una combinación de los casos III y IV.

1) Observar detenidamente el ejercicio y fijarse si en ella hay un trinomio cuadrado perfecto,

ejemplo:

a^2 + m^2 ± 4b^2 ± 2am

ordenando para observar de mejor manera el trinomio cuadrado perfecto nos queda

 

a^2 ± 2am + m^2 ± 4b^2

Como vemos en la parte sombreada de azul identificamos un trinomio cuadrado perfecto que ya lo

estudiamos anteriormente.

2) Luego resolvemos encerrando en paréntesis todo el trinomio cuadrado perfecto:

Quedándonos de esta manera (a^2 ± 2am + m^2 ) ± 4b^2 .

3) Una vez que lo agrupamos comenzamos resolviendo el trinomio cuadrado perfecto

 

Page 23: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 23/25

 

 

(a^2 ± 2am + m^2 ) ± 4b^2 = (a ± m) ^2 ± 4b^2

Luego observamos detenidamente que se trata de una diferencia de cuadrados perfectos delcaso

especial que ya lo estudiamos.

4) Resolvemos la diferencia de cuadrados perfecto y nos queda:

(a^2 ± 2am + m^2 ) ± 4b^2 = (a ± m) ± 4b

= (a ± m + 2b) (a ± m ± 2b)

Siendo la respuesta (a ± m + 2b) (a ± m ± 2b)

Factorizar: 1 ± 9x^2 + 24 xy ± 16y^2

Resolviendo: 1 ± (9x^2 + 24xy ± 16y^2 )

En este ejemplo vemos que al agrupar no nos da un trinomio.

(9x^2 + 24xy ± 16y^2 )

  No es un trinomio cuadrado perfecto porque al multiplicarlo (9x + 4y) ^2 es decir 

(9x + 4y) (9x + 4y) no nos va a dar el trinomio inicial.

Entonces hacemos lo siguiente:

1 ± (9x^2 + 24xy ± 16y^2 ) = 1 ± (9x^2 - 24xy + 16y^2 )

donde esta el signo ± que esta de azul cambiamos los signo de los términos que están adentro del

 paréntesis es decir 9x ^2 cambia a ±9x^2 ; de 24xy cambia a ± 24xy; de -16y^2 cambia a 16y ^2.

sombrear este grupo

Pero agrupándolo nos queda 1 ± (9x^2 - 24xy + 16y^2) para no afectar el trinomio el

cuadrado perfecto, el - 9x^2 el signo ± se queda afuera como estamos observando en el ejemplo

anterior para no afectar el trinomio.

Page 24: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 24/25

 

 

De ahí si podemos resolver el ejercicio:

[1 ± (9x^2 ± 24xy + 16y^2 )]

[1 ± (3x ± 4y) ^2 ]

[(1 + (3x ± 4y)] [(1 ± (3x ± 4y)] ojo en la segunda agrupación vemos el ± en el

siguiente paso se cambia el signo.

(1 + 3x ± 4y) (1 ± 3x + 4y).

quedándonos como resultado (1 + 3x ± 4y) (1 ± 3x + 4y).

Ejercicios de la combinación de los casos III y IV

1) c^2 ± a^2 + 2a - 1 = c ± (a ± 2a + 1)

= c^2 ± (a ± 1) ^2

= (c + a ± 1) [c ± (a ± 1)]

= (c + a ± 1) (c ± a + 1)

2) m^2 ± x^2 + 9n^2 + 6mn ± 4ax ± 4a^2 = (m^2 + 6mn + 9n^2 ) ± (4a^2 ± 4ax x^2)

= (m^2 + 6mn + 9n^2 ) ± (4a^2 + 4ax + x^2 )

Page 25: Ejercicios de Los 5 Ultimos Casos de Factorizacion

5/9/2018 Ejercicios de Los 5 Ultimos Casos de Factorizacion - slidepdf.com

http://slidepdf.com/reader/full/ejercicios-de-los-5-ultimos-casos-de-factorizacion 25/25

 

 

= (m^2 + 3n) ± (2a^2 + x)

= (m + 3n + 2a + x) (m + 3n ± 2a ± x)

3) x^2 ± a^2 + 2xy + y^2 + 2ab ± b^2 = (x^2 + 2xy + y^2 ) ± (a^2 + 2ab ± b^2)

= (x^2 + 2xy + y^2) ± (a^2 ± 2ab + b^2)

= (x^2 + y) ± (a^2 ± b)

= (x + y + a ± b) (x + y ± a + b)

El caso del Trinomio Cuadrado Perfecto por Adición y Sustracción lo tenemos en archivo pdf 

para obtenerlo hacar clic aqui

Nota: E

 

n este blog los exponentes se expresan de la siguiente manera:

a^2 = se lee a elevada a la segunda potencia

ab^2 = se lee b es elevado a la segunda potencia l el símbolo ^ no influye en la letra a

(a + b)^2 = se lee que el polinomio (a + b) es elevado a la segunda potencia