Ejercicios Estadistica Inferencial II
-
Upload
jav-alfonso -
Category
Documents
-
view
253 -
download
2
Embed Size (px)
Transcript of Ejercicios Estadistica Inferencial II
-
8/12/2019 Ejercicios Estadistica Inferencial II
1/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
ESTADSTICAINFERENCIAL II
EJERCICIOS
FRANCISCO JAVIER ALFONSO ARROYO 1002E011
19/12/2013
ESPECIALIDAD: ING. INDUSTRIAL
NOMBRE DEL DOCENTE: SUBDIRECTOR MEDINA
SEMESTRE Y GRUPO:7 501 A
PEROTE, VER. DICIEMBRE / 2013
-
8/12/2019 Ejercicios Estadistica Inferencial II
2/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
2
Ejercicio 1.1
Pureza (%) Hidrocarburos (%)
86,91 1,0289,85 1,11
90,28 1,43
86,34 1,11
92,58 1,01
87,33 0,95
86,29 1,11
91,86 0,87
95,61 1,43
89,86 1,02
96,73 1,4699,42 1,55
98,66 1,55
96,07 1,55
93,65 1,40
87,31 1,15
95,00 1,01
96,85 0,99
85,20 0,95
90,56 0,98
-
8/12/2019 Ejercicios Estadistica Inferencial II
3/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
3
(%) is statistically significant (p < 0,05).The relationship between Pureza (%) and Hidrocarburos
> 0,50,10,050
NoYes
P = 0,003
for by the regression model.35,52% of the variation in Pureza (%) can be accounted
100%0%
R-sq (adj) = 35,52%
increase.Hidrocarburos (%) increases, Pureza (%) also tends toThe positive correlation (r = 0,62) indicates that when
10-1
0,62
1,61,41,21,0
100
95
90
85
Hidrocarburos (%)
Pureza(%)
causes Y.A statistically significant relationship does not imply that Xa desired value or range of values for Pureza (%).find the settings for Hidrocarburos (%) that correspond toto predict Pureza (%) for a value of Hidrocarburos (%), orIf the model fits the data well, this equation can be used Y = 77,86 + 11,80 X
relationship between Y and X is:The fitted equation for the linear model that describes the
Y: Pureza (%)X: Hidrocarburos (%)
Is there a relationship between Y and X?Fitted Line Plot for Linear Model
Y = 77,86 + 11,80 X
Comments
Regression for Pureza (%) vs Hidrocarburos (%)Summary Report
%of variation accounted for by model
Correlation between Y and XNegative No correlation Positive
Ejercicio 1.2
Radio Viscocidad
1,0 0,45
0,9 0,20
0,8 0,34
0,7 0,58
0,6 0,70
0,5 0,57
0,4 0,55
0,3 0,44
-
8/12/2019 Ejercicios Estadistica Inferencial II
4/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
4
statistically significant (p > 0,05).The relationship between Radio and Viscocidad is not
> 0,50,10,050
NoYes
P = 0,248
the regression model.8,38% of the variation in Radio can be accounted for by
100%0%
R-sq (adj) = 8,38%
statistically significant (p > 0,05).The correlation between Radio and Viscocidad is not
10-1
-0,46
0,60,40,2
1,0
0,8
0,6
0,4
Viscocidad
Radio
causes Y.A statistically significant relationship does not imply that Xor range of values for Radio.settings for Viscocidad that correspond to a desired valueto predict Radio for a value of Viscocidad, or find theIf the model fits the data well, this equation can be used Y = 0,9968 - 0,7243 X
relationship between Y and X is:The fitted equation for the linear model that describes the
Y: RadioX: Viscocidad
Is there a relationship between Y and X?Fitted Line Plot for Linear Model
Y = 0,9968 - 0,7243 X
Comments
Regression for Radio vs ViscocidadSummary Report
%of variation accounted for by model
Correlation between Y and XNegative No correlation Positive
Ejercicio 1.3
Estudiante Evaluacin a mediosemestre
Calificacin final
1 82 76
2 73 83
3 95 89
4 66 76
5 84 796 89 73
7 51 62
8 82 89
9 75 77
10 90 85
11 60 48
-
8/12/2019 Ejercicios Estadistica Inferencial II
5/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
5
12 81 69
13 34 51
14 49 25
15 87 74
and Calificacin final is statistically significant (p < 0,05).The relationship between Evaluacin a medio semestre
> 0,50,10,050
NoYes
P = 0,001
can be accounted for by the regression model.56,80% of the variation in Evaluacin a medio semestre
100%0%
R-sq (adj) = 56,80%
also tends to increase.Calificacin final increases, Evaluacin a medio semestreThe positive correlation (r = 0,77) indicates that when
10-1
0,77
80604020
100
80
60
40
Calificacin final
Evaluacinamediosemestre
causes Y.A statistically significant relationship does not imply that XEvaluacin a medio semestre.that correspond to a desired value or range of values forCalificacin final, or find the settings for Calificacin finalto predict Evaluacin a medio semestre for a value ofIf the model fits the data well, this equation can be used Y = 18,09 + 0,7828 Xrelationship between Y and X is:The fitted equation for the linear model that describes the
Y: Evaluacin a medio semestreX: Calificacin final
Is there a relationship between Y and X?Fitted Line Plot for Linear Model
Y = 18,09 + 0,7828 X
Comments
Regression for Evaluacin a medio semestre vs Calificacin finalSummary Report
%of variation accounted for by model
Correlation between Y and XNegative No correlation Positive
Ejercicio 1.4
-
8/12/2019 Ejercicios Estadistica Inferencial II
6/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
6
statistically significant (p > 0.05).The relationship between ndice and Das is not
> 0.50.10.050
NoYes
P = 0.127
the regression model.9.84% of the variation in ndice can be accounted for by
100%0%
R-sq (adj) = 9.84%
statistically significant (p > 0.05).The correlation between ndice and Das is not
10-1
0.40
100806040
18
17
16
Das
ndice
causes Y.A statistically significant relationship does not imply that Xfor ndice.Das that correspond to a desired value or range of valuesto predict ndice for a value of Das, or find the settings forIf the model fits the data well, this equation can be used Y = 16.59 + 0.01036 X
relationship between Y and X is:The fitted equation for the linear model that describes the
Y: ndiceX: Das
Is there a relationship between Y and X?Fitted Line Plot for Linear Model
Y = 16.59 + 0.01036 X
Comments
Regression for ndice vs DasSummary Report
%of variation accounted for by model
Correlation between Y and XNegative No correlation Positive
-
8/12/2019 Ejercicios Estadistica Inferencial II
7/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
7
Ejercicio 1.5
significant (p < 0,05).The relationship between WT and TL is statistically
> 0,50,10,050
NoYes
P = 0,000
the regression model.89,19% of the variation in WT can be accounted for by
100%0%
R-sq (adj) = 89,19%
TL increases, WT also tends to increase.The positive correlation (r = 0,95) indicates that when
10-1
0,95
400300200100
1200
800
400
0
TL
WT
causes Y.A statistically significant relationship does not imply that XWT.that correspond to a desired value or range of values forto predict WT for a value of TL, or find the settings for TLIf the model fits the data well, this equation can be used Y = - 595,6 + 3,567 Xrelationship between Y and X is:The fitted equation for the linear model that describes the
Y: WTX: TL
Is there a relationship between Y and X?Fitted Line Plot for Linear Model
Y = - 595,6 + 3,567 X
Comments
Regression for WT vs TLSummary Report
%of variation accounted for by model
Correlation between Y and XNegative No correlation Positive
Ejercicio 1.6
-
8/12/2019 Ejercicios Estadistica Inferencial II
8/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
8
Promesas hechas is statistically significant (p < 0,05).The relationship between promesas no cumplidas and
> 0,50,10,050
NoYes
P = 0,001
be accounted for by the regression model.74,82% of the variation in promesas no cumplidas can
100%0%
R-sq (adj) = 74,82%
tends to decrease.Promesas hechas increases, promesas no cumplidasThe negative correlation (r = -0,88) indicates that when
10-1
-0,88
6050403020
6
4
2
Promesas hechas
promesasnocumplidas
causes Y.A statistically significant relationship does not imply that Xpromesas no cumplidas.correspond to a desired value or range of values forhechas, or find the settings for Promesas hechas thatto predict promesas no cumplidas for a value of PromesasIf the model fits the data well, this equation can be used Y = 9,268 - 0,1180 X
relationship between Y and X is:The fitted equation for the linear model that describes the
Y: promesas no cumplidasX: Promesas hechas
Is there a relationship between Y and X?Fitted Line Plot for Linear Model
Y = 9,268 - 0,1180 X
Comments
Regression for promesas no cumplidas vs Promesas hechasSummary Report
%of variation accounted for by model
Correlation between Y and XNegative No correlation Positive
Ejercicio1.11Regression Analysis: Peso final Y versus Peso Inicial; Alimento Con
The regression equation isPeso final Y = - 23,0 + 1,40 Peso Inicial X1 + 0,218 Alimento Consumido X2
Predictor Coef SE Coef T PConstant -22,99 17,76 -1,29 0,237Peso Inicial X1 1,3957 0,5825 2,40 0,048Alimento Consumido X2 0,21761 0,05777 3,77 0,007
-
8/12/2019 Ejercicios Estadistica Inferencial II
9/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
9
S = 6,05079 R-Sq = 87,3% R-Sq(adj) = 83,7%
Analysis of Variance
Source DF SS MS F PRegression 2 1764,22 882,11 24,09 0,001Residual Error 7 256,28 36,61Total 9 2020,50
Source DF Seq SSPeso Inicial X1 1 1244,66Alimento Consumido X2 1 519,56
Ejercicio1.12Regression Analysis: Y versus X1; X2; X3; X4
The regression equation isY = - 162 + 0,600 X1 + 9,56 X2 + 1,71 X3 + 0,222 X4
Predictor Coef SE Coef T PConstant -161,9 179,3 -0,90 0,397X1 0,6002 0,3138 1,91 0,097X2 9,558 4,534 2,11 0,073
-
8/12/2019 Ejercicios Estadistica Inferencial II
10/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
10
X3 1,714 1,445 1,19 0,274X4 0,2224 0,6987 0,32 0,760
S = 14,5781 R-Sq = 77,7% R-Sq(adj) = 64,9%
Analysis of Variance
Source DF SS MS F PRegression 4 5168,6 1292,2 6,08 0,020Residual Error 7 1487,6 212,5Total 11 6656,3
Source DF Seq SSX1 1 3758,9X2 1 1109,4X3 1 278,8X4 1 21,5
Unusual Observations
Obs X1 Y Fit SE Fit Residual St Resid9 75,0 267,00 287,83 10,96 -20,83 -2,17R
R denotes an observation with a large standardized residual.
Ejercicio1.13
Regression Analysis: Y versus X1, X2, X3, X4, X5
The regression equation is
-
8/12/2019 Ejercicios Estadistica Inferencial II
11/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
11
Y = - 6.51 + 2.00 X1 - 3.68 X2 + 2.52 X3 + 5.16 X4 + 14.4 X5
Predictor Coef SE Coef T PConstant -6.5122 0.9336 -6.98 0.000X1 1.999 2.573 0.78 0.449
X2 -3.675 2.774 -1.32 0.204X3 2.524 6.347 0.40 0.696X4 5.158 3.660 1.41 0.178X5 14.401 4.856 2.97 0.009
S = 0.703452 R-Sq = 96.3% R-Sq(adj) = 95.2%
Analysis of Variance
Source DF SS MS F PRegression 5 208.007 41.601 84.07 0.000Residual Error 16 7.918 0.495Total 21 215.925
Source DF Seq SSX1 1 199.145X2 1 0.127X3 1 4.120X4 1 0.263X5 1 4.352
Unusual Observations
Obs X1 Y Fit SE Fit Residual St Resid2 1.55 2.900 3.860 0.529 -0.960 -2.07R18 1.72 6.360 7.621 0.390 -1.261 -2.15R
R denotes an observation with a large standardized residual.
Ejercicio1.14
-
8/12/2019 Ejercicios Estadistica Inferencial II
12/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
12
Regression Analysis: Q3 versus P1, P2, P3, Q1, Q2
The regression equation isQ3 = 89.0 - 0.079 P1 + 0.090 P2 - 1.29 P3 + 0.403 Q1 + 1.04 Q2
Predictor Coef SE Coef T PConstant 88.97 32.53 2.74 0.011P1 -0.0786 0.3544 -0.22 0.826P2 0.0896 0.4197 0.21 0.833P3 -1.2852 0.2977 -4.32 0.000Q1 0.4035 0.3751 1.08 0.292Q2 1.0369 0.5140 2.02 0.055
S = 13.6522 R-Sq = 59.1% R-Sq(adj) = 50.9%
Analysis of Variance
Source DF SS MS F PRegression 5 6737.7 1347.5 7.23 0.000Residual Error 25 4659.5 186.4Total 30 11397.2
Source DF Seq SSP1 1 99.2P2 1 533.2P3 1 5024.7Q1 1 322.1Q2 1 758.5
Unusual Observations
Obs P1 Q3 Fit SE Fit Residual St Resid9 41.0 68.49 40.66 5.36 27.83 2.22R14 49.0 10.70 34.99 9.01 -24.29 -2.37R15 59.0 77.24 50.60 6.67 26.64 2.24R
R denotes an observation with a large standardized residual.
-
8/12/2019 Ejercicios Estadistica Inferencial II
13/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
13
Ejercicio1.15
Regression Analysis: All versus Energy, trans, Med
The regression equation isAll = - 3.82 - 0.346 Energy + 1.35 trans + 0.0449 Med
Predictor Coef SE Coef T PConstant -3.818 1.535 -2.49 0.018Energy -0.34637 0.08043 -4.31 0.000trans 1.3462 0.1316 10.23 0.000Med 0.04491 0.03892 1.15 0.257
S = 1.11641 R-Sq = 99.9% R-Sq(adj) = 99.9%
Analysis of Variance
Source DF SS MS F PRegression 3 56279 18760 15051.66 0.000Residual Error 31 39 1Total 34 56318
Source DF Seq SSEnergy 1 51848trans 1 4430
Med 1 2
Unusual Observations
Obs Energy All Fit SE Fit Residual St Resid15 38 49.300 46.544 0.250 2.756 2.53R16 42 53.800 51.177 0.223 2.623 2.40R35 105 148.200 150.219 0.595 -2.019 -2.14R
R denotes an observation with a large standardized residual.
-
8/12/2019 Ejercicios Estadistica Inferencial II
14/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
14
Ejercicio1.16
Welcome to Minitab, press F1 for help.
Regression Analysis: Iron versus Phos
The regression equation isIron = 0.171 - 0.0273 Phos
Predictor Coef SE Coef T PConstant 0.17124 0.02574 6.65 0.000Phos -0.02732 0.03181 -0.86 0.406
S = 0.0659626 R-Sq = 5.4% R-Sq(adj) = 0.0%
Analysis of Variance
Source DF SS MS F PRegression 1 0.003209 0.003209 0.74 0.406Residual Error 13 0.056564 0.004351Total 14 0.059773
Unusual Observations
Obs Phos Iron Fit SE Fit Residual St Resid1 0.05 0.3300 0.1699 0.0246 0.1601 2.62R15 2.00 0.1700 0.1166 0.0475 0.0534 1.17 X
R denotes an observation with a large standardized residual.X denotes an observation whose X value gives it large leverage.
-
8/12/2019 Ejercicios Estadistica Inferencial II
15/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
15
Ejercicio1.17Regression Analysis: y versus t
The regression equation isy = 1.98 + 1.39 t
Predictor Coef SE Coef T PConstant 1.9800 0.8590 2.30 0.033t 1.39432 0.07730 18.04 0.000
S = 1.99334 R-Sq = 94.8% R-Sq(adj) = 94.5%
Analysis of Variance
Source DF SS MS F P
Regression 1 1292.8 1292.8 325.37 0.000Residual Error 18 71.5 4.0Total 19 1364.4
Unusual Observations
Obs t y Fit SE Fit Residual St Resid20 19.0 32.425 28.472 0.859 3.953 2.20R
R denotes an observation with a large standardized residual.
-
8/12/2019 Ejercicios Estadistica Inferencial II
16/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
16
Ejercicio1.18
Regression Analysis: Perdida de Peso y versus Mes despues de Producido x
The regression equation isPerdida de Peso y = - 0.422 + 2.88 Mes despues de Producido x
Predictor Coef SE Coef T PConstant -0.4220 0.5184 -0.81 0.439Mes despues de Producido x 2.8778 0.3342 8.61 0.000
S = 0.758866 R-Sq = 90.3% R-Sq(adj) = 89.0%
Analysis of Variance
Source DF SS MS F PRegression 1 42.703 42.703 74.15 0.000Residual Error 8 4.607 0.576Total 9 47.310
-
8/12/2019 Ejercicios Estadistica Inferencial II
17/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
17
Ejercicio1.19
Regression Analysis: Y versus X
The regression equation isY = 12.3 - 0.0308 X
Predictor Coef SE Coef T PConstant 12.2909 0.7491 16.41 0.000X -0.030773 0.003571 -8.62 0.000
S = 0.749146 R-Sq = 89.2% R-Sq(adj) = 88.0%
Analysis of Variance
Source DF SS MS F PRegression 1 41.666 41.666 74.24 0.000Residual Error 9 5.051 0.561Total 10 46.717
-
8/12/2019 Ejercicios Estadistica Inferencial II
18/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
18
Ejercicio1.20
Regression Analysis: Carbonatacin y versus Temperaturas X1, Presin X2
The regression equation isCarbonatacin y = - 140 + 1.38 Temperaturas X1 + 4.67 Presin X2
Predictor Coef SE Coef T PConstant -139.75 23.38 -5.98 0.000Temperaturas X1 1.3812 0.8061 1.71 0.121Presin X2 4.6730 0.2986 15.65 0.000
S = 1.03173 R-Sq = 97.2% R-Sq(adj) = 96.6%
Analysis of Variance
Source DF SS MS F PRegression 2 332.61 166.30 156.23 0.000Residual Error 9 9.58 1.06Total 11 342.19
Source DF Seq SSTemperaturas X1 1 71.83Presin X2 1 260.78
-
8/12/2019 Ejercicios Estadistica Inferencial II
19/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
19
EJERCICIO 3.1
Factor Type Levels ValuesQuimico fixed 5 Q1. Q2. Q3. Q4. Q5
Analysis of Variance for Prenda, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PQuimico 4 14,00 14,00 3,50 0,30 0,876Error 15 177,75 177,75 11,85
-
8/12/2019 Ejercicios Estadistica Inferencial II
20/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
20
Total 19 191,75
S = 3,44238 R-Sq = 7,30% R-Sq(adj) = 0,00%
Unusual Observations for Prenda
Obs Prenda Fit SE Fit Residual St Resid6 67,0000 73,2500 1,7212 -6,2500 -2,10 R
R denotes an observation with a large standardized residual.
EJERCICIO 3.2
Factor Type Levels ValuesSOLUCIN fixed 3 S1. S2. S3
Analysis of Variance for DAS, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PSOLUCIN 2 703,5 703,5 351,8 2,73 0,118Error 9 1158,8 1158,8 128,8Total 11 1862,3
S = 11,3468 R-Sq = 37,78% R-Sq(adj) = 23,95%
-
8/12/2019 Ejercicios Estadistica Inferencial II
21/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
21
EJERCICIO 3.4
Factor Type Levels ValuesDistancia (ft) fixed 4 D10. D4. D6. D8
Analysis of Variance for Sujeto, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PDistancia (ft) 3 67,600 67,600 22,533 2,66 0,083Error 16 135,600 135,600 8,475Total 19 203,200
S = 2,91119 R-Sq = 33,27% R-Sq(adj) = 20,76%
Unusual Observations for Sujeto
Obs Sujeto Fit SE Fit Residual St Resid1 17,0000 8,2000 1,3019 8,8000 3,38 R
R denotes an observation with a large standardized residual.
EJERCICIO 3.5
Factor Type Levels ValuesLUGAR fixed 3 L1A. L2B. L3C
Analysis of Variance for RENDIMIENTO, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PLUGAR 2 24,50 24,50 12,25 0,52 0,613Error 9 213,50 213,50 23,72Total 11 238,00
S = 4,87055 R-Sq = 10,29% R-Sq(adj) = 0,00%
-
8/12/2019 Ejercicios Estadistica Inferencial II
22/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
22
EJERCICIO 3.6
Factor Type Levels ValuesESTUDIANTE Y MATERIA fixed 5 E1. E2. E3. E4. E5
Analysis of Variance for CALIFICACIN, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PESTUDIANTE Y MATERIA 4 1618,70 1618,70 404,67 5,26 0,008Error 15 1154,25 1154,25 76,95Total 19 2772,95
S = 8,77211 R-Sq = 58,37% R-Sq(adj) = 47,27%
EJERCICIO 3.7
Factor Type Levels ValuesCURSO fixed 4 A. B. C. D
Analysis of Variance for CALIFICACIN, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PCURSO 3 723,50 723,50 241,17 2,85 0,082Error 12 1014,50 1014,50 84,54Total 15 1738,00
S = 9,19465 R-Sq = 41,63% R-Sq(adj) = 27,04%
Unusual Observations for CALIFICACIN
Obs CALIFICACIN Fit SE Fit Residual St Resid16 97,0000 80,5000 4,5973 16,5000 2,07 R
R denotes an observation with a large standardized residual.
EJERCICIO 3.8
Factor Type Levels Values
Trabajador fixed 5 1, 2, 3, 4, 5
Analysis of Variance for C2, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PTrabajador 4 12.434 12.434 3.109 2.22 0.104Error 20 28.052 28.052 1.403Total 24 40.486
-
8/12/2019 Ejercicios Estadistica Inferencial II
23/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
23
S = 1.18431 R-Sq = 30.71% R-Sq(adj) = 16.86%
EJERCICIO 3.9
Source DF Seq SS Adj SS Adj MS F PDIA 4 15,440 15,440 3,860 0,40 0,804Error 20 191,200 191,200 9,560Total 24 206,640
S = 3,09192 R-Sq = 7,47% R-Sq(adj) = 0,00%
EJERCICIO 3.10
Analysis of Variance for EFECTO, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PDIA 4 15,440 15,440 3,860 0,40 0,804Error 20 191,200 191,200 9,560Total 24 206,640
UNIDAD 4
4.1 General Linear Model: RENDIMIENTO versus TEMPERATURA, HORNO
-
8/12/2019 Ejercicios Estadistica Inferencial II
24/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
24
Factor Type Levels ValuesTEMPERATURA fixed 3 t1, t2, t3HORNO fixed 4 H1, H2, H3, H4
Analysis of Variance for RENDIMIENTO, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PTEMPERATURA 2 5194.1 5194.1 2597.0 8.13 0.006HORNO 3 4963.1 4963.1 1654.4 5.18 0.016TEMPERATURA*HORNO 6 3126.3 3126.3 521.0 1.63 0.222Error 12 3833.5 3833.5 319.5Total 23 17117.0
S = 17.8734 R-Sq = 77.60% R-Sq(adj) = 57.07%
4.2 General Linear Model: TIEMPO versus MARCA, SEMANA
Factor Type Levels ValuesMARCA fixed 3 M1, M2, M3SEMANA fixed 3 S0, S3, S7
Analysis of Variance for TIEMPO, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PMARCA 2 32.752 32.752 16.376 1.74 0.195SEMANA 2 227.212 227.212 113.606 12.04 0.000MARCA*SEMANA 4 17.322 17.322 4.330 0.46 0.765Error 27 254.702 254.702 9.433Total 35 531.988
S = 3.07139 R-Sq = 52.12% R-Sq(adj) = 37.94%
Unusual Observations for TIEMPO
Obs TIEMPO Fit SE Fit Residual St Resid5 56.0000 50.5000 1.5357 5.5000 2.07 R15 42.8000 48.6500 1.5357 -5.8500 -2.20 R
R denotes an observation with a large standardized residual.
4.4 General Linear Model: Rendimiento versus Recover, Humedad
Factor Type Levels ValuesRecover fixed 3 R1, R2, R3Humedad fixed 3 H1, H2, H3
Analysis of Variance for Rendimiento, using Adjusted SS for Tests
-
8/12/2019 Ejercicios Estadistica Inferencial II
25/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
25
Source DF Seq SS Adj SS Adj MS F PRecover 2 1535021 1535021 767511 6.87 0.002Humedad 2 1020639 1020639 510320 4.57 0.016Recover*Humedad 4 1089990 1089990 272497 2.44 0.061Error 45 5028397 5028397 111742Total 53 8674047
S = 334.279 R-Sq = 42.03% R-Sq(adj) = 31.72%
Unusual Observations for Rendimiento
Obs Rendimiento Fit SE Fit Residual St Resid5 1236.00 536.33 136.47 699.67 2.29 R7 130.00 888.50 136.47 -758.50 -2.49 R9 1595.00 888.50 136.47 706.50 2.32 R
R denotes an observation with a large standardized residual.
4.5 General Linear Model: Rendimiento versus Temperatura, Catalizador
Factor Type Levels ValuesTemperatura fixed 4 t1, t2, t3, t4Catalizador fixed 5 c1, c2, c3, c4, c5
Analysis of Variance for Rendimiento, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PTemperatura 3 430.48 430.48 143.49 10.85 0.000Catalizador 4 2466.65 2466.65 616.66 46.63 0.000Temperatura*Catalizador 12 326.15 326.15 27.18 2.06 0.074
Error 20 264.50 264.50 13.23Total 39 3487.78
S = 3.63662 R-Sq = 92.42% R-Sq(adj) = 85.21%
Unusual Observations for Rendimiento
Obs Rendimiento Fit SE Fit Residual St Resid23 70.0000 62.5000 2.5715 7.5000 2.92 R24 55.0000 62.5000 2.5715 -7.5000 -2.92 R29 73.0000 67.0000 2.5715 6.0000 2.33 R30 61.0000 67.0000 2.5715 -6.0000 -2.33 R
R denotes an observation with a large standardized residual.
4.6 General Linear Model: Rendimiento versus A, C, B
-
8/12/2019 Ejercicios Estadistica Inferencial II
26/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
FCO. JAVIER ALFONSO ARROYO
26
Factor Type Levels ValuesA fixed 2 a1, a2C fixed 3 c1, c2, c3B fixed 3 b1, b2, b3
Analysis of Variance for Rendimiento, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F PA 1 2.241 2.241 2.241 0.51 0.478C 2 17.651 17.651 8.826 2.02 0.146B 2 56.318 56.318 28.159 6.44 0.004A*B 2 31.471 31.471 15.736 3.60 0.037A*C 2 31.203 31.203 15.601 3.57 0.037C*B 4 21.561 21.561 5.390 1.23 0.312Error 40 174.839 174.839 4.371Total 53 335.284
S = 2.09068 R-Sq = 47.85% R-Sq(adj) = 30.91%
Unusual Observations for Rendimiento
Obs Rendimiento Fit SE Fit Residual St Resid3 22.1000 17.4481 1.0645 4.6519 2.59 R4 11.3000 15.7852 1.0645 -4.4852 -2.49 R49 19.2000 13.4648 1.0645 5.7352 3.19 R52 7.8000 11.6352 1.0645 -3.8352 -2.13 R
4.7 General Linear Model: potencia versus temperatura, estado, dureza
Factor Type Levels Valuestemperatura fixed 3 t1, t2, t3estado fixed 3 e1, e2, e3dureza fixed 3 d1, d2, d3
Analysis of Variance for potencia, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F Ptemperatura 2 0.166169 0.166169 0.083084 12.03 0.000estado 2 0.078252 0.078252 0.039126 5.67 0.005dureza 2 0.019469 0.019469 0.009734 1.41 0.250temperatura*estado 4 0.128454 0.128454 0.032113 4.65 0.002temperatura*dureza 4 0.062804 0.062804 0.015701 2.27 0.067estado*dureza 4 0.126437 0.126437 0.031609 4.58 0.002
Error 89 0.614449 0.614449 0.006904Total 107 1.196032
S = 0.0830898 R-Sq = 48.63% R-Sq(adj) = 38.24%
Unusual Observations for potencia
Obs potencia Fit SE Fit Residual St Resid
-
8/12/2019 Ejercicios Estadistica Inferencial II
27/27
INSTITUTO TECNOLGICO SUPERIOR DE PEROTE
15 0.580000 0.427685 0.034851 0.152315 2.02 R18 0.430000 0.588796 0.034851 -0.158796 -2.11 R49 0.310000 0.474352 0.034851 -0.164352 -2.18 R52 0.660000 0.474352 0.034851 0.185648 2.46 R75 0.780000 0.575185 0.034851 0.204815 2.72 R79 0.740000 0.578796 0.034851 0.161204 2.14 R
103 0.740000 0.556296 0.034851 0.183704 2.44 R
R denotes an observation with a large standardized residual.