EL CONCRETO.docx

28
INTRODUCCIÒN GENERAL AL CONCRETO El concreto es un material durable y resistente pero, dado que se trabaja en su forma líquida, prácticamente puede adquirir cualquier forma. .Esta combinación de características es la razón principal por la que es un material de construcción tan popular para exteriores. Ya sea que adquiera la forma de un camino de entrada amplio hacia una casa moderna, un paso vehicular semicircular frente a una residencia, o una modesta entrada delantera, el concreto proporciona solidez y permanencia a los lugares donde vivimos. En la forma de caminos y entradas, el concreto nos conduce a nuestro hogar, proporcionando un sendero confortable hacia la puerta. Además de servir a nuestras necesidades diarias en escalones exteriores, entradas y caminos, el concreto también es parte de nuestro tiempo libre, al proporcionar la superficie adecuada para un patio. El concreto de uso común, o convencional, se produce mediante la mezcla de tres componentes esenciales, cemento, agua y agregados, a los cuales eventualmente se incorpora un cuarto componente que genéricamente se designa como aditivo. Al mezclar estos componentes y producir lo que se conoce como una revoltura de concreto, se introduce de manera simultánea un quinto participante representado por el aire. La mezcla intima de los componentes del concreto convencional produce una masa plástica que puede ser moldeada y compactada con relativa facilidad; pero gradualmente pierde esta característica hasta que al cabo de algunas horas se torna rígida y comienza a adquirir el aspecto, comportamiento y propiedades de un cuerpo sólido, para convertirse finalmente en el material mecánicamente resistente que es el concreto endurecido. La representación común del concreto convencional en estado fresco, lo identifica como un conjunto de fragmentos de roca, globalmente definidos como agregados, dispersos en una matriz viscosa constituida por una pasta de cemento de consistencia plástica. Esto significa que en una mezcla así hay muy poco o ningún contacto entre las partículas de los agregados, característica que tiende a permanecer en el concreto ya endurecido. Consecuentemente con ello, el comportamiento mecánico de este material y su durabilidad en servicio dependen de tres aspectos básicos:

Transcript of EL CONCRETO.docx

INTRODUCCIÒN GENERAL AL CONCRETO

El concreto es un material durable y resistente pero, dado que se trabaja en su forma líquida, prácticamente puede adquirir cualquier forma. .Esta combinación de características es la razón principal por la que es un material de construcción tan popular para exteriores.Ya sea que adquiera la forma de un camino de entrada amplio hacia una casa moderna, un paso vehicular semicircular frente a una residencia, o una modesta entrada delantera, el concreto proporciona solidez y permanencia a los lugares donde vivimos.En la forma de caminos y entradas, el concreto nos conduce a nuestro hogar, proporcionando un sendero confortable hacia la puerta.Además de servir a nuestras necesidades diarias en escalones exteriores, entradas y caminos, el concreto también es parte de nuestro tiempo libre, al proporcionar la superficie adecuada para un patio.El concreto de uso común, o convencional, se produce mediante la mezcla de tres componentes esenciales, cemento, agua y agregados, a los cuales eventualmente se incorpora un cuarto componente que genéricamente se designa como aditivo.Al mezclar estos componentes y producir lo que se conoce como una revoltura de concreto, se introduce de manera simultánea un quinto participante representado por el aire.La mezcla intima de los componentes del concreto convencional produce una masa plástica que puede ser moldeada y compactada con relativa facilidad; pero gradualmente pierde esta característica hasta que al cabo de algunas horas se torna rígida y comienza a adquirir el aspecto, comportamiento y propiedades de un cuerpo sólido, para convertirse finalmente en el material mecánicamente resistente que es el concreto endurecido.La representación común del concreto convencional en estado fresco, lo identifica como un conjunto de fragmentos de roca, globalmente definidos como agregados, dispersos en una matriz viscosa constituida por una pasta de cemento de consistencia plástica. Esto significa que en una mezcla así hay muy poco o ningún contacto entre las partículas de los agregados, característica que tiende a permanecer en el concreto ya endurecido.Consecuentemente con ello, el comportamiento mecánico de este material y su durabilidad en servicio dependen de tres aspectos básicos:

1. Las características, composición y propiedades de la pasta de cemento, o matriz cementante, endurecida.

2. La calidad propia de los agregados, en el sentido más amplio.3. La afinidad de la matriz cementante con los agregados y su capacidad para

trabajar en conjunto.

En el primer aspecto debe contemplarse la selección de un cementante apropiado, el empleo de una relación agua/cemento conveniente y el uso eventual de un aditivo necesario, con todo lo cual debe resultar potencialmente asegurada la calidad de la matriz cementante.En cuanto a la calidad de los agregados, es importante adecuarla a las funciones que debe desempeñar la estructura, a fin de que no representen el punto débil en el comportamiento del concreto y en su capacidad para resistir adecuadamente y por largo tiempo los efectos consecuentes de las condiciones de exposición y servicio a que esté sometido.Finalmente, la compatibilidad y el buen trabajo de conjunto de la matriz cementante con los agregados, depende de diversos factores tales como las características físicas y químicas del cementante, la composición mineralógica y petrográfica de las rocas

que constituyen los agregados, y la forma, tamaño máximo y textura superficial de éstos.De la esmerada atención a estos tres aspectos básicos, depende sustancialmente la capacidad potencial del concreto, como material de construcción, para responder adecuadamente a las acciones resultantes de las condiciones en que debe prestar servicio. Pero esto, que sólo representa la previsión de emplear el material potencialmente adecuado, no basta para obtener estructuras resistentes y durables, pues requiere conjugarse con el cumplimiento de previsiones igualmente eficaces en cuanto al diseño, especificación, construcción y mantenimiento de las propias estructuras.

EL CONCRETO

Se denomina concreto a la mezcla de cemento, arena gruesa, piedra y agua, que se endurece conforme avanza la reacción química del agua con el cemento.

Algunas veces, por indicación del ingeniero proyectista, hay que añadirle ciertas sustancias químicas llamadas "aditivos", con el propósito de mejorar o modificar algunas de sus propiedades. 

La cantidad de cada material en la mezcla depende de la resistencia que se indique en los planos de estructuras. Siempre la resistencia de las columnas y de los techos debe ser superior a la resistencia de cimientos y falsos pisos.

Después del vaciado, es necesario garantizar que el cemento reaccione químicamente y desarrolle su resistencia. Esto sucede principalmente durante los 7 primeros días, por lo cual es muy importante mantenerlo húmedo en ese tiempo. A este proceso se le conoce como curado del concreto.

El concreto tiene dos etapas básicas: cuando está fresco y cuando ya se ha endurecido.

Las propiedades principales del concreto en estado fresco son:

Trabajabilidad: Es el mayor o menor trabajo que hay que aportar al concreto en estado fresco en los procesos de mezclado, transporte, colocación y compactación. La forma más común para medir la "trabajabilidad" es mediante "la prueba del slump". Los instrumentos que se necesitan son una plancha base, un cono y una varilla de metal. Esta prueba consiste en medir la altura de una masa de concreto luego de ser extraída de un molde en forma de cono. Cuanto mayor sea la altura, el concreto será más trabajable. De la misma manera, cuanto menor sea la altura, el concreto estará muy seco y será poco trabajable.

El primer paso para hacer esta prueba consiste en sacar una muestra de concreto de una determinada tanda de la mezcladora. Con esta muestra se llena el cono mediante tres capas y se chucea con la varilla, 25 veces cada una. Inmediatamente después se nivela el cono, se levanta verticalmente y se le coloca al lado del concreto. Por último, se mide la altura entre el cono y el concreto, colocando la varilla horizontalmente sobre el cono.

Segregación: Ocurre cuando los agregados gruesos, que son más pesados, como la piedra chancada se separan de los demás materiales del concreto. Es importante controlar el exceso de segregación para evitar mezclas de mala calidad. Esto se produce, por ejemplo, cuando se traslada el concreto en buggy por un camino accidentado y de largo recorrido, debido a eso la piedra se segrega, es decir, se asienta en el fondo del buggy.

Exudación: Se origina cuando una parte del agua sale a la superficie del concreto. Es importante controlar la exudación para evitar que la superficie se debilite por sobre-concentración de agua. Esto sucede, por ejemplo, cuando se excede el tiempo de vibrado haciendo que en la superficie se acumule una cantidad de agua mayor a la que normalmente debería exudar.

Contracción: Produce cambios de volumen en el concreto debido a la pérdida de agua por evaporación, causada por las variaciones de humedad y temperatura del medio ambiente. Es importante controlar la contracción porque puede producir problemas de fisuración. Una medida para reducir este problema es cumplir con el curado del concreto.

 Por otro lado, las propiedades del concreto en estado endurecido son:

Elasticidad: Es la capacidad de comportarse elásticamente dentro de ciertos límites. Es decir, que una vez deformado puede regresar a su forma original.

Resistencia: Es la capacidad del concreto para soportar las cargas que se le apliquen. Para que éste desarrolle la resistencia indicada en los planos, debe prepararse con cemento y agregados de calidad. Además, debe tener un transporte, colocado, vibrado y curado adecuado.

 Hay muchos tipos de concreto, pero para una casa generalmente se usan los siguientes:

a. Concreto CiclópeoEste tipo de concreto se usa en los cimientos y en los sobrecimientos:

Cuando se usa en los cimientos, la proporción recomendable es de 1 volumen de cemento por 10 volúmenes de hormigón. Esta proporción se logra usando: 1 bolsa de cemento, con 3 1/3 buggies de hormigón y la cantidad de agua necesaria para obtener una mezcla que permita un buen trabajo.

Adicionalmente, se debe incorporar piedra de zanja en una proporción equivalente a una tercera parte del volumen a vaciar. Las piedras tendrán un diámetro promedio de 25 cm., deben estar limpias y quedar completamente rodeadas de concreto.

Proporción de concreto para f´c=100kg/cm2

Cuando se usa en los sobrecimientos, la proporción recomendable es de 1 volumen de cemento por 8 volúmenes de hormigón. Esta proporción se logra usando: 1 bolsa de cemento, con 2 1/2 buggies de hormigón y la cantidad de agua necesaria para obtener una mezcla pastosa que permita un buen trabajo.

Adicionalmente se debe incorporar piedra de cajón en una proporción equivalente a una cuarta parte del volumen a vaciar. Las piedras tendrán un diámetro promedio de 10 cm, deben estar limpias y quedar completamente rodeadas de concreto.Proporción de concreto para f´c=100kg/cm2

b. Concreto Simple

El concreto simple se usa para vaciar el falsopiso y contrapiso.En el falsopiso, la proporción recomendable es de 1 volumen de cemento por 12 volúmenes de hormigón. Esta proporción se logra usando: 1 bolsa de cemento con 4 buggies de hormigón y la cantidad de agua necesaria para obtener una mezcla pastosa que permita un buen trabajo. Proporción de concreto para falsopiso

En el contrapiso, la proporción recomendable es 1 volumen de cemento por 5volúmenes de arena gruesa. Esta proporción se logra usando 1 bolsa de cemento con 1 1/2 buggies de arena gruesa y la cantidad de agua necesaria que permita una mezcla pastosa y trabajable. Proporción de concreto para contrapiso

c. Concreto ArmadoSe llama concreto armado a la unión del concreto reforzado con las varillas de acero.

El concreto armado se usa para vaciar las columnas y techos. La proporciónrecomendable para lograr una resistencia adecuada para una casa de 2 ó 3 pisos es de 1 volumen de cemento por 3 volúmenes de arena gruesa y 3 volúmenes de piedra chancada. Esta proporción se logra usando: 1 bolsa de cemento con 1 buggy de arena gruesa, 1 buggy de piedra chancada y la cantidad de agua necesaria para obtener una mezcla pastosa que permita un buen trabajo.

La cantidad de agua varía dependiendo del estado de humedad en que se encuentre la arena y la piedra. Si están totalmente secas, para una bolsa de cemento se necesitará 40 litros de agua. Pero si la piedra y la arena están totalmente mojadas, bastará con unos 20 litros. Proporción de concreto para f ' c=175kg/cm2

Con estas proporciones, la resistencia del concreto al cabo de un mes, debe ser 175 kg/cm2. Esto sólo sucederá si el concreto ha sido debidamente preparado, colocado y mojado durante varios días después de su fraguado.

Consideraciones

Es recomendable utilizar una mezcladora que garantice la completa unión de todos los componentes. El mezclado a mano con lampa no asegura una buena calidad.

Igualmente, es importante compactar el concreto fresco, con una vibradora. Si no se tiene este equipo, habrá que hacerlo mediante un vigoroso chuzado*, utilizando una varilla de fierro y golpeando el encofrado con un martillo.

Finalmente, es importante recalcar, que para que el concreto desarrolle una resistencia adecuada, se requiere mojarlo constantemente por lo menos durante los 7 primeros días.

Ingredientes del concreto

El concreto fresco es una mezcla semilíquida de cemento portland, arena (agregado fino), grava o piedra triturada (agregado grueso) yagua. Mediante un proceso llamado hidratación, las partículas del cemento reaccionan químicamente con el agua y el concreto se endurece y se convierte en un material durable. Cuando se mezcla, se hace el vaciado y se cura de manera apropiada, el concreto forma estructuras sólidas capaces de soportar las temperaturas extremas del invierno y del verano sin requerir de mucho mantenimiento. El material que se utilice en la preparación del concreto afecta la facilidad con que pueda vaciarse y con la que se le pueda dar el acabado; también influye en el tiempo que tarde en endurecer, la resistencia que pueda adquirir, y lo bien que cumpla las funciones para las que fue preparado.Además de los ingredientes de la mezcla de concreto en sí misma, será necesario un marco o cimbra y un refuerzo de acero para construir estructuras sólidas. La cimbra generalmente se construye de madera y puede hacerse con ella desde un sencillo cuadrado hasta formas más complejas, dependiendo de la naturaleza del proyecto. El acero reforzado puede ser de alta o baja resistencia, características que dependerán de las dimensiones y la resistencia que se requieran. El concreto se vacía en la cimbra con la forma deseada y después la superficie se alisa y se le da el acabado con diversas texturas.

NORMA E.060

CONCRETO ARMADO

CAPÍTULO 1GENERALIDADES

ARTÍCULO 1 - REQUISITOS GENERALES

1.1. ALCANCE

1.1.1. Esta Norma fija los requisitos y exigencias mínimas para el análisis, diseño, materiales, construcción, con- trol de calidad e inspección de estructuras de concreto simple o armado. Las estructuras de concreto presforzado se incluyen dentro de la definición de estructuras de concreto armado.

1.1.2. Los planos y las especificaciones técnicas del proyecto estructural deberán cumplir con esta Norma, pudiendo complementarla en lo no contemplado en ella.

1.1.3. Esta Norma tiene prioridad cuando sus recomen- daciones están en discrepancia con otras normas a las que ella hace referencia.

1.2. LIMITACIONES

1.2.1. Esta Norma incluye los requerimientos para estructuras de concreto de peso normal.

1.2.2. Esta Norma podrá ser aplicada al diseño y construcción de estructuras pre-fabricadas y/o estructuras especiales en la medida que ello sea pertinente.

CONCRETO

Concreto (*): Es la mezcla constituida por cemento, agregados, agua y eventualmente aditivos, en proporciones adecuadas para obtener las propiedades prefijadas. (*) El material que en nuestro medio es conocido como Concreto, es definido como Hormigón en las Normas del Comité Panamericano de Normas Técnicas (COPANT), adoptadas por el ITINTEC. Pasta de Cemento: Es una mezcla de cemento y agua. NORMA ITINTEC 400.002.

Mortero de Cemento:

Es la mezcla constituida por cemento, agregados pre- dominantemente finos y agua.

CONCRETO - TIPOS

Concreto Simple:

Concreto que no tiene armadura de refuerzo o que la tiene en una cantidad menor que el mínimo porcentaje especificado para el concreto armado.

Concreto Armado:

Concreto que tiene armadura de refuerzo en una cantidad igual o mayor que la requerida en esta Norma y en el que ambos materiales actúan juntos para resistir esfuerzos.

Concreto de Peso Normal:

Es un concreto que tiene un peso aproximado de 2300 kg/m3.

Concreto Prefabricado:

Elementos de concreto simple o armado fabricados en una ubicación diferente a su posición final en la estructura.

Concreto Ciclópeo:

Es el concreto simple en cuya masa se incorporan gran- des piedras o bloques y que no contiene armadura.

Concreto de Cascote:

Es el constituido por cemento, agregado fino, cascote de ladrillo y agua.

Concreto Premezclado:

Es el concreto que se dosifica en planta, que puede ser mezclado en la misma o en camiones mezcladores y que es transportado a obra. NORMA ITINTEC 339.047.

Concreto Bombeado:

Concreto que es impulsado por bombeo a través de tuberías hacia su ubicación final.

CARGAS

Carga de Servicio:

Carga prevista en el análisis durante la vida de la estructura (no tiene factores de amplificación).

Carga Factorizada o Carga Amplificada o Carga Última:

Carga multiplicada por factores de carga apropiados, utilizada en el diseño por resistencia a carga última (rotura).

Carga Muerta o Carga Permanente o Peso Muerto:

Es el peso de los materiales, dispositivos de servicio, equipos, tabiques y otros elementos soportados por la edificación, incluyendo su peso propio, que se supone sean permanentes.

Carga Viva:

Es el peso de todos los ocupantes, materiales, equipos, muebles y otros elementos móviles soportados por la edificación.

Carga de Sismo:

Fuerza evaluada según la Norma de Diseño Sismo- Resistente del Reglamento Nacional de Construcciones para estimar la acción sísmica sobre una estructura.

Carga de Viento:

Fuerza exterior evaluada según la Norma E. 020 Cargas.

CARACTERÍSTICAS DEL CONCRETO

 Antes de que empieces la preparación del concreto, es importante que conozcas algunas de las características que tiene este importante material.

a.- Su elevada resistencia a fuerzas de compresión. b.- Su escasa capacidad para soportar fuerzas de estiramiento. c.- Su elevada resistencia para soportar altas temperaturas, provenientes, por ejemplo, de incendios.

d.- Su impermeabilidad, es decir, la dificultad de no dejar pasar el agua u otro líquido a su interior.

e.- Su consistencia, es decir, el grado de fluidez de la mezcla para que le sea fácil desplazarse dentro del encofrado y llegar hasta el último "rincón".

f.- El concreto, como cualquier material, puede experimentar deterioro con el tiempo debido al medio que lo rodea. Por ejemplo:

El clima al cual está expuesto (brisa marina, heladas, deshielos, sol, frío, etc.). El suelo que rodea a una cimentación.

 

ACERO

HISTORIA.

Los primeros utensilios de hierro descubiertos por los arqueólogos en Egipto datan del año 3.000 a.C., y se sabe que antes de esa época se empleaban adornos de hierro. Los griegos ya conocían hacia el 1.000 a.C. la técnica, de cierta complejidad, para endurecer armas de hierro mediante tratamiento térmico.Las aleaciones producidas por los primeros artesanos del hierro se clasificarían en la actualidad como hierro forjado. Para producir esas aleaciones se calentaba una masa de mineral de hierro y carbón vegetal en un horno o forja con tiro forzado. Ese tratamiento reducía el mineral a una masa esponjosa de hierro metálico llena de una escoria formada por impurezas metálicas y cenizas de carbón vegetal. Esta esponja de hierro se retiraba mientras permanecía incandescente y se golpeaba con pesados martillos para expulsar la escoria y soldar y consolidar el hierro.Después del siglo XIV se aumentó el tamaño de los hornos utilizados para la fundición y se incrementó el tiro para forzar el paso de los gases de combustión por la carga o mezcla de materias primas. En estos hornos de mayor tamaño el mineral de hierro de la parte superior del horno se reducía a hierro metálico y a continuación absorbía más carbono como resultado de los gases que lo atravesaban. El producto de estos hornos era el llamado arrabio, una aleación que funde a una temperatura menor que el acero o el hierro forjado. El arrabio se refinaba después para fabricar acero.El proceso de refinado del arrabio mediante chorros de aire se debe al inventor británico Henry Bessemer, que en 1855 desarrolló el horno o convertidor que lleva su nombre. Desde la década de 1960 funcionan varios minihornos que emplean electricidad para producir acero a partir de chatarra. Sin embargo, las grandes instalaciones de altos hornos continúan siendo esenciales para producir acero a partir de mineral de hierro.

¿Qué es el Acero?

Los metales y las aleaciones empleados en la industria y en la construcción pueden dividirse en dos grupos principales: Materiales FERROSOS y NO FERROSOS. Ferroso viene de la palabra Ferrum que los romanos empleaban para el fierro o hierro. Por lo tanto, los materiales ferrosos son aquellos que contienen hierro como su ingrediente principal; es decir, las numerosas calidades del hierro y el acero. 

Los materiales No Ferrosos no contienen hierro. Estos incluyen el aluminio, magnesio, zinc, cobre, plomo y otros elementos metálicos. Las aleaciones el latón y el bronce, son una combinación de algunos de estos metales No Ferrosos y se les denomina Aleaciones No Ferrosas.

Uno de los materiales de fabricación y construcción más versátil, más adaptable y más ampliamente usado es el ACERO. A un precio relativamente bajo, el acero combina la resistencia y la posibilidad de ser trabajado, lo que se presta para fabricaciones mediante muchos métodos. Además, sus propiedades pueden ser manejadas de acuerdo a las necesidades específicas mediante tratamientos con calor, trabajo mecánico, o mediante aleaciones.

El Acero es básicamente una aleación o combinación de hierro y carbono (alrededor de 0,05% hasta menos de un 2%). Algunas veces otros elementos de aleación específicos tales como el Cr (Cromo) o Ni (Níquel) se agregan con propósitos determinados.

Ya que el acero es básicamente hierro altamente refinado (más de un 98%), su fabricación comienza con la reducción de hierro (producción de arrabio) el cual se convierte más tarde en acero.

El hierro puro es uno de los elementos del acero, por lo tanto consiste solamente de un tipo de átomos. No se encuentra libre en la naturaleza ya que químicamente reacciona con facilidad con el oxígeno del aire para formar óxido de hierro - herrumbre. El óxido se encuentra en cantidades significativas en el mineral de hierro, el cual es una concentración de óxido de hierro con impurezas y materiales térreos.

FABRICACION DEL ACERO.-

Su fabricación comienza con la reducción de hierro (producción de arrabio) el cual se convierte más tarde en Acero.

Los materiales básicos utilizados son Mineral de Hierro, Coque y Caliza. El coque se quema como combustible para calentar el horno, y al arder libera monóxido de carbono, que se combina con los óxidos de hierro del mineral y los reduce a hierro.

La ecuación de la reacción química fundamental de un alto horno es:

Fe2O3 + 3 CO => 3 CO2 + 2 Fe

La caliza de la carga del horno se emplea como fuente adicional de monóxido de carbono y como sustancia fundente. Este material se combina con la sílice presente en el mineral (que no se funde a las temperaturas del horno) para formar silicato de calcio, de menor punto de fusión. Sin la caliza se formaría silicato de hierro, con lo que se perdería hierro metálico. El silicato de calcio y otras impurezas forman una escoria que flota sobre el metal fundido en la parte inferior del horno.

El arrabio producido en los altos hornos tiene la siguiente composición:

92% de hierro

3 o 4% de carbono

0,5 a 3% de silicio

0,25% al 2,5% de manganeso

0,04 al 2% de fósforo

Algunas partículas de azufre

El Alto Horno es virtualmente una planta química que reduce continuamente el hierro del mineral. Químicamente desprende el oxígeno del óxido de hierro existente en el mineral para liberar el hierro. Está formado por una cápsula cilíndrica de acero forrada

con un material no metálico y resistente al calor, comoladrillos refractarios y placas refrigerantes. La parte inferior del horno está dotada de varias aberturas tubulares llamadas toberas, por donde se fuerza el paso del aire. La parte superior del horno, contiene respiraderos para los gases de escape, y un par de tolvas redondas, por las que se introduce la carga en el horno. Los materiales se llevan hasta las tolvas en pequeñas vagonetas o cucharas que se suben por un elevador inclinado situado en el exterior del horno.

Las materias primas se cargan (o se vacían) en la parte superior del horno. El aire, que ha sido precalentado hasta los 1.030ºC aproximadamente, es forzado dentro de la base del horno para quemar el coque. El coque en combustión genera el intenso calor requerido para fundir el mineral y produce los gases necesarios para separar el hierro del mineral.

Los altos hornos funcionan de forma continua.

Esencialmente, el CO gaseoso a altas temperaturas tiene una mayor atracción por el oxígeno presente en el mineral de hierro (Fe2O3) que el hierro mismo, de modo que reaccionará con él para liberarlo. Químicamente entonces, el hierro se ha reducido en el mineral. Mientras tanto, a alta temperatura, la piedra caliza fundida se convierte en cal, la cual se combina con el azufre y otras impurezas. Esto forma una escoria que flota encima del hierro derretido.

Presurización de los hornos:

Estrangulando el flujo de gas de los respiraderos del horno es posible aumentar la presión del interior del horno hasta 1,7 atmósferas o más. Esta técnica, llamada presurización, permite una mejor combustión del coque y una mayor producción de hierro. En muchos altos hornos puede lograrse un aumento de la producción de un 25%.

Cada cinco o seis horas, se cuelan desde la parte interior del horno hacia una olla de colada o a un carro de metal caliente, entre 150 a 375 toneladas de arrabio. A continuación, el contenedor lleno de arrabio se transporta a la fábrica siderúrgica (Acería).

Refinación del Arrabio:

El arrabio recién producido contiene demasiado carbono y demasiadas impurezas para ser provechoso. Debe ser refinado, porque esencialmente, el acero es hierro altamente refinado que contiene menos de un 2% de carbono.

En el alto horno, el oxígeno fue removido del mineral por la acción del CO (monóxido de carbono) gaseoso, el cual se combinó con los átomos de oxígeno en el mineral para terminar como CO2 gaseoso (dióxido de carbono). Ahora, el oxígeno se empleará para remover el exceso de carbono del arrabio. A alta temperatura, los átomos de carbono (C) disueltos en el hierro fundido se combinan con el oxígeno para producir monóxido de carbono gaseoso y de este modo remover el carbono mediante el proceso de oxidación.

Clasificación  del Acero

Los diferentes tipos de acero se clasifican de acuerdo a los elementos de aleación que producen distintos efectos en el Acero:

ACEROS AL CARBONO

Más del 90% de todos los aceros son aceros al carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre. Entre los productos fabricados con aceros al carbono figuran máquinas, carrocerías de automóvil, la mayor parte de las estructuras de construcción de acero, cascos de buques, somieres y horquillas.

ACEROS ALEADOS

Estos aceros contienen una proporción determinada de vanadio, molibdeno y otros elementos, además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono normales. Estos aceros de aleación se pueden sub-clasificar en :

Estructurales Son aquellos aceros que se emplean para diversas partes de máquinas, tales como engranajes, ejes y palancas. Además se utilizan en las estructuras de edificios, construcción de chasis de automóviles, puentes, barcos y semejantes. El contenido de la aleación varía desde 0,25% a un 6%.

Para Herramientas

Aceros de alta calidad que se emplean en herramientas para cortar y modelar metales y no-metales. Por lo tanto, son materiales empleados para cortar y construir herramientas tales como taladros, escariadores, fresas, terrajas y machos de roscar.

Especiales Los Aceros de Aleación especiales son los aceros inoxidables y aquellos con un contenido de cromo generalmente superior al 12%.

Estos aceros de gran dureza y alta resistencia a las altas temperaturas y a la corrosión, se emplean en turbinas de vapor, engranajes, ejes y rodamientos.

ACEROS DE BAJA ALEACION ULTRARRESISTENTES

Esta familia es la más reciente de las cuatro grandes clases de acero. Los aceros de baja aleación son más baratos que los aceros aleados convencionales ya que contienen cantidades menores de los costosos elementos de aleación. Sin embargo, reciben un tratamiento especial que les da una resistencia mucho mayor que la del acero al carbono. Por ejemplo, los vagones de mercancías fabricados con aceros de baja aleación pueden transportar cargas más grandes porque sus paredes son más delgadas que lo que sería necesario en CASO DE EMPLEAR  acero al carbono. Además, como los vagones de acero de baja aleación pesan menos, las cargas pueden ser más pesadas. En la actualidad se construyen muchos edificios con estructuras de aceros de baja aleación. Las vigas pueden ser más delgadas sin disminuir su resistencia, logrando un mayor espacio interior en los edificios.

ACEROS INOXIDABLES

Los aceros inoxidables contienen cromo, níquel y otros elementos de aleación, que los mantienen brillantes y resistentes a la herrumbre y oxidación a pesar de la acción de la humedad o de ácidos y gases corrosivos. Algunos aceros inoxidables son muy duros; otros son muy resistentes y mantienen esa resistencia durante largos periodos a temperaturas extremas. Debido a sus superficies brillantes, en arquitectura se emplean muchas veces con fines decorativos. El acero inoxidable se utiliza para las tuberías y tanques de refinerías de petróleo o plantas químicas, para los fuselajes de los aviones o para cápsulas espaciales. También se usa para fabricar instrumentos y equipos quirúrgicos, o para fijar o sustituir huesos rotos, ya que resiste a la acción de los fluidos corporales. En cocinas y zonas de preparación de alimentos los utensilios son a menudo de acero inoxidable, ya que no oscurece los alimentos y pueden limpiarse con facilidad.

ALEACIONES.-

El Acero ofrece diferentes resultados en función de la presencia o ausencia de otros metales: la adición de manganeso le confiere una mayor resistencia frente al impacto, el tungsteno, le permite soportar temperaturas más altas. Los aceros aleados no sólo mejoran las propiedades físicas, sino que también permiten una mayor amplitud en el proceso de tratamiento térmico.

Los efectos de la aleación son:

Mayor resistencia y dureza. Mayor resistencia al impacto. Mayor resistencia al desgaste. Mayor resistencia a la corrosión. Mayor resistencia a altas temperaturas. Penetración de temple (Aumento de la profundidad a la cual el Acero puede ser

endurecido).

TIPOS DE ACERO.

1. Acero al Carbono: Es aquel que tiene entre 0,1 y 1,9% de carbono en su contenido y no se le añade ningún otro material (otros metales).

2. Acero de baja aleación: Es aquel acero al que se le añaden otros metales para mejorar sus propiedades.

TENOR: Es el porcentaje de óxido de hierro que tiene algún metal en su condición natural.

PRODUCTOS ELABORADOS CON ACERO. –

-Tubos – Planchas – Productos no planos – Cabillas – Perfiles estructurales.

CARACTERÍSTICAS POSITIVAS DE LOS ACEROS. Alta resistencia mecánica: Los aceros son materiales con alta resistencia mecánica al someterlos a esfuerzos de tracción y compresión y lo soportan por la contribución química que tienen los aceros. Por medio de los ensayos de laboratorio se determina la resistencia a tracción y a compresión evaluando su límite elástico y el esfuerzo de rotura. Elasticidad: La elasticidad de los aceros es muy alta, en un ensayo de tracción del acero al estirarse antes de llegar a su límite elástico vuelve a su condición original. Soldabilidad:  Es un material que se puede unir por medio de soldadura y gracias a esto se pueden componer una serie de estructuras con piezas rectas. Ductilidad: Los aceros tienen una alta capacidad para trabajarlos, doblarlos y torcerlos. Forjabilidad: Significa que al calentarse y al darle martillazos se les puede dar cualquier forma deseada. Trabajabilidad: Se pueden cortar y perforar a pesar de que es muy resistente y aun así siguen manteniendo su eficacia.

CARACTERÍSTICAS NEGATIVAS DE LOS ACEROS.

Oxidación: Los aceros tienen una alta capacidad de oxidarse si se exponen al aire y al agua simultáneamente y se puede producir corrosión del material si se trata de agua salina. Transmisor de calor y electricidad:  El acero es un alto transmisor de corriente y a su vez se debilita mucho a altas temperaturas, por lo que es preferible utilizar aceros al níquel o al aluminio o tratar de protegerlos haciendo ventilados y evitar hacer fábricas de combustible o plásticos con este tipo de material. Estas dos desventajas son manejables teniendo en cuenta la utilización de los materiales y el mantenimiento que se les dé a los mismos.

CONTROL DE CALIDAD DE LOS ACEROS. El control de calidad de los aceros en nuestro país se basa en dos ensayos:

Comprobación química: Esta se hace porque existen muchos tipos de acero y se exige a la empresa que los fabrica un comprobante de su composición química. Ensayo de tracción axial: Este ensayo siempre se hace en obra de forma aleatoria a los aceros que se reciben. El objetivo de este ensayo es obtener en cualquier acero su límite de elasticidad y su esfuerzo de rotura para así se conoce la calidad del material y compararlo con los parámetros que se establecen para los aceros de buena calidad,

también se obtiene el porcentaje de alargamiento el cual permite conocer la ductilidad del acero. Equipos: Una prensa � Un extensómetro � Un vernier o calibrador. �

Características Mecánicas del Acero.-

Aunque es difícil establecer las propiedades físicas y mecánicas del acero debido a que estas varían con los ajustes en su composición y los diversos tratamientos térmicos o a los métodos de endurecimiento por acritud, con los que pueden conseguirse aceros con combinaciones de características adecuadas para infinidad de aplicaciones, se pueden citar algunas características genéricas:

Densidad Media: 7850 kg/m3

Comportamiento respecto a la Temperatura: se puede contraer, dilatar o fundir.

Punto de Fusión: depende del tipo de aleación, pero al ser su componente principal el hierro éste anda alrededor de los 1510 ºC. Sin embargo los aceros aleados presentan frecuentemente temperaturas de fusión de alrededor de 1375 ºC.

Punto de Ebullición: alrededor de los 3000 ºC.

Es muy tenaz

Es Dúctil: esta propiedad permite obtener alambres

Es Maleable: es posible deformarlo hasta obtener láminas

Es fácil de mecanizar: para un posterior tratamiento térmico

Fácilmente soldable

Dureza variable según el tipo de elementos de aleación

Templable o endurecible por tratamientos térmicos.

La Corrosión: es la mayor desventaja de los aceros, ya que el acero se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Además de con elementos de aleación, prueba de ello son los aceros inoxidables.

Alta Conductividad Térmica y Eléctrica

Los aceros inoxidables se designan mediante códigos especiales indicados a continuación.

Familias de Aceros según la norma: Se especifica un acero típico o base, que es el más representativo de cada grupo. Los otros aceros que pertenecen al mismo grupo, contienen alguna variación en su composición química, realizada para obtener propiedades particulares.

Las letras que aparecen acompañando al código del acero significan:

B: Cantidad de Boro, aumentada con respecto al base.

S: Cantidad extra de azufre.

L: Reducido (“lowered”), se refiere a un contenido menor de Carbono.

Se: Se ha agregado Selenio.

N: El acero lleva Nitrógeno.

F: Se ha agregado Fósforo.

TRABAJO EN ACERO El Reglamento Nacional de Edificaciones, en las normas E-070 de Albañilería y E-060 de Concreto Armado, presenta una serie de requisitos mínimos que se deben respetar cuando se trabaje con el acero, para formar las armaduras de los diferentes elementos (columnas, vigas, etc.). a. Doblado y Anclaje de Barras:Cuando se dobla una varilla, se debe cumplir con un diámetro mínimo de doblado y con una longitud mínima del extremo doblado. El primero nos garantiza que se pueda doblar la barra sin fisuras, y el segundo, asegura un adecuado anclaje del refuerzo en el concreto.

En obra, generalmente se dobla el fierro con tubo y trampa, para lo cual se deben respetar ciertas distancias mínimas, es decir, las distancias del tubo a la trampa, que nos aseguren un adecuado procedimiento de doblado. 

 A continuación se presenta un resumen con las dimensiones mínimas para realizar el doblado, así como los diámetros y extremos mínimos de doblado que deben tener las barras de acero: 

  

  

b. Empalmes mediante traslape

Los refuerzos que se colocan en las estructuras de concreto no son siempre continuos, muchas veces se tienen que unir las barras para alcanzar la longitud necesaria.

Cuando actúa una fuerza, el traslape de las barras resistirá debido a que toda su longitud está embebida en concreto, es decir hay adherencia entre ambos materiales. Es necesaria una longitud mínima de traslape que asegure que lo anterior se cumpla, y por lo tanto, la estructura pueda resistir la fuerza que se le aplique. 

 La longitud de empalme* variará de acuerdo con el diámetro de la barra, de laubicación del empalme, de la resistencia del concreto y del tipo de elemento (columna o viga). Estas longitudes son dimensiones mínimas que deben cumplirse, pudiendo ser mayores.

Longitud de empalme en columnas:

Cuando se empalma una columna, lo ideal es hacerlo en los dos tercios centrales (empalme A). Sin embargo, a veces se empalman en la parte inferior de la columna (empalme B y C), lo que no es recomendable ya que debilita esa sección. En el caso que se hagan los empalmes B ó C, la longitud de empalme deberá aumentar.

A continuación se detallan cada uno de estos casos: 

Empalme A: Las barras se empalman en los dos tercios centrales de la  columna y alternadas. Este caso es el más recomendable. Empalme B: Las barras se empalmanalternadas en la parte inferior de la columna. Al realizar este tipo de empalme, se debe aumentar la longitud del empalme tipo A en 30% .

Empalme C: Las barras se empalmansin alternar en la parte inferior de lacolumna. Al realizar este tipo de empalme, se debe aumentar la longituddel empalme tipo A en 70%. 

 

Longitud de empalme en vigas:

El acero superior debe empalmarse en el centro de la viga; y los inferiores, cerca de los extremos. En el caso de usar los empalmes tipo B ó C, se debe aumentar la longitud del empalme obtenida para el tipo A en un 30% y 70% respectivamente. 

 

 

c. Recubrimiento

Es el concreto que separa al acero del medio externo y evita que entre en contacto con el agua, la humedad o el fuego. Es importante porque protege el acero.

Se debe tomar en cuenta que este recubrimiento se mide desde la cara exterior del estribo*. A continuación, se presenta un cuadro resumen con los  recubrimientos: