Electiva 3 perdida y reynolds

17
República Bolivariana de Venezuela Ministerio del Poder Popular para la Educa. Universitaria I.U “Politécnico Santiago Mariño” Extensión Barinas *Número de Reynolds y Pérdidas en Tuberías* Docente: Blanca Salazar Alumno: Oquendo Joel Cedula: 19, 619,623 Sección: Electiva 3 (SAIA) Barinas-Barinas

Transcript of Electiva 3 perdida y reynolds

República Bolivariana de Venezuela

Ministerio del Poder Popular para la Educa. Universitaria

I.U “Politécnico Santiago Mariño”

Extensión Barinas

*Número de Reynolds y Pérdidas

en Tuberías*

Docente:

Blanca Salazar

Alumno:

Oquendo Joel

Cedula:

19, 619,623

Sección:

Electiva 3 (SAIA)

Barinas-Barinas

*El número de Reynolds*

El número de Reynolds:

Osborne Reynolds fue el primero que relacionó la densidad, la viscosidad, el

diámetro de la tubería y la velocidad promedio del fluido en una tubería, y por medio

de una magnitud adimensional llamada Número de Reynold nos indica si un flujo es

laminar ó turbulento.

NR = v D ρ / μ = v D / Ʋ porque Ʋ = μ / ρ

En aplicaciones prácticas en flujo de tuberías se considera que si el número de Reynold es

menor de 2000, el flujo es laminar.

Con valores de Número de Reynold entre 2000 y 4000 es prácticamente imposible predecir

que tipo de flujo tenemos y es por esto que se le llama a ese rango, la región crítica.

Por encima de 4000 el flujo se considera turbulento.

*NR < 2000 el flujo es laminar NR > 4000 el flujo es turbulento*

Ejercicios del número de Reynolds

Ejercicio 1:

Determine si el flujo es laminar o turbulento:

Si la glicerina a 25 ºC fluye en una tubería de 150 mm de diámetro interior y la velocidad

promedio del flujo es de 3,6 m/s.

NR: NUMERO DE REYNOLDS

NR = v D ρ / μ Tenemos los siguientes datos:

Diámetro= 150 mm = 0,15 metros,

Velocidad = 3,6 m/ s

Tenemos que la densidad ρ de la glicerina es 1258 kg / m3 .

Y la viscosidad dinámica μ = 9,60 * 10-1 .

Entonces

NR = ( 3,6 )( 0,15 )( 1258 ) / 9,60 * 10-1 = 708 NR = 708 ➱ el flujo es laminar porque NR <

2000

Ejemplo de flujo laminar:

Ejercicio 2:

¿Cuál debe ser la rapidez del viento en el túnel? ¿Es el flujo turbulento? Se utiliza un túnel de viento con un modelo de automóvil de 20 cm. de altura para reproducir aproximadamente las situaciones que tiene un automóvil de 550 cm de altura moviéndose a 15 m/s. Se desea que NR sea el mismo para ambos casos, así que las situaciones tienen que ser similares. Esto es:

NR = (D) = (D)

( ) Túnel ( ) viento

En virtud de que y son iguales para los dos casos, tenemos:

tDt = a Da de donde t = a Da = (15m/s) (550/20) = 413m/s Para investigar la turbulencia, evaluemos NR utilizando los valores para el aire:

= 1.29 kg/m3 y = 1.8 x 10 Pa sustituyendo obtenemos NR = 5.9 x 106, Un valor mucho mayor que el requerido para flujo turbulento. Obviamente el flujo es turbulento.

-Ejemplo de flujo turbulento:

Ejercicio 3:

Determinar la velocidad media, el gasto y el número de Reynolds para = 0.0133 cm2/seg.

Tenemos Agua a 10°C que es forzada a fluir en un tubo capilar D=0.8mm y 70m de longitud. La diferencia de presiones entre los extremos del tubo es de 0.02 Kg/cm2. En este problema se maneja un tubo horizontal de diámetro constante, implica que Z 1=Z2, por lo tanto V1=V2.

12

2

22

2

2

11

1

22h

g

VZ

P

g

VZ

P

Por lo que respecta a calcular la velocidad, el problema consiste en seleccionar adecuadamente la fórmula para el coeficiente de fricción, y como se nos da viscosidad se

usara Darcy. Ahora bien el coeficiente de fricción se calculara con f = 64/NR debido a que se supone que es un flujo laminar es decir con numero de Reynolds menor de 2000. Por otra parte el NR se calculara con la formula NR = (VD) / . Entonces sustituyendo en nuestra ecuación de pérdidas lo pasado tenemos que:

aguadecolumnademts

mkg

mkg

PPh 2.0

1000

200

3

221

12

mtsg

V

D

Lf 2.0

2

2

2

2

2

·2

···642.0

2

64

2.02

64

Dg

vLV

g

V

D

L

VD

g

V

D

L

Nr

Sustituyendo valores obtenemos:

Despejando la velocidad no queda que es V=4.2x10-4 m/s o bien 0.042 cm/s.

Por último el gasto y el número de Reynolds se calculan con V=0.042 cm

2.0)62.19()108.0(

)70)(1033.1(6423

6

x

Vx

2526.00133.0

)08.0)(042.0(

.

/0002.0042.0·4

·08.0· 3

2

VDNr

scmVAQ

Ejercicio 4: Calcular la fuerza de arrastre de una esfera de 12 mm de diámetro moviéndose a 8 cm/s en un aceite con: h= 0.1 Ns/m2 r = 850 kg/m3. Suponemos C = 5.3

Nvd

R

= (0.08m/s)(850 kg/m3 )(0.012m)/0.1 Ns/m2 = 8.16

Usaremos la relación de Prandtl, con r = 12/2 mm

FC r v

d 2 2

2= (5.3)(850)(p)(0.006)2(0.08)2/2 = 0.00163 N

*Pérdidas en Tuberías*

Perdidas en tuberías:

La pérdida de carga en una tubería es la pérdida de energía del fluido debido a la fricción de

las partículas del fluido entre sí (viscosidad) y contra las paredes de la tubería que las

contiene (rugosidad). Estas pérdidas llamadas caídas de presión, también se producen por

estrechamiento o cambio de dirección del fluido al pasar por un accesorio (válvulas, codos,

etc.)

La caída de presión se debe a la rugosidad excesiva de las tuberías debido a las sales y óxidos

depositados en la instalación antigua

Para describir el comportamiento de las pérdidas existen muchas ecuaciones que se trabajan

según el fluido a tratar. Una de estas es la de Darcy-Weisbach que es la general para agua

líquida.

Es importante para continuar establecer las siguientes definiciones:

Tubería: Conducto cerrado de sección transversal circular de área constante.

Ducto: Conducto de sección transversal diferente a la circular.

La pérdida por fricción es una importante componente de la pérdida total de energía en un

sistema de flujo de fluidos. Es la pérdida de energía del fluido a lo largo de la longitud de

tubería por la cual fluye. Se le llama pérdida por fricción porque es el resultado de la fricción

interna del fluido contra las paredes de la tubería. El efecto general de esta pérdida de

energía es una disminución de presión entre dos puntos de interés del sistema. Esta pérdida

por fricción influye en la cantidad de potencia ó fuerza de empuje que una bomba debe

entregar al fluido para que este se mueva a través del sistema venciendo la resistencia

friccional. En cualquier sistema de flujo de fluidos, un cierto volumen de fluido entra al

sistema a una velocidad y a una presión dada.

En puntos más lejanos (tomando cualquier punto como referencia) la presión será

notablemente más baja que en el punto de referencia. En una manguera la presión de agua

al salir de la válvula va decayendo hasta el valor de la presión atmosférica en el extremo

libre, esa caída de presión es debido a la pérdida de energía debido a la fricción a lo largo de

la manguera. En el suministro de agua potable de una región, los vecinos que vivan más lejos

de la unidad de bombeo van a recibir una menor presión de agua que los vecinos que viven

cerca de la unidad. Es responsabilidad del operador de dicha unidad mandar un volumen de

agua a una presión determinada que sea capaz de que le llegue a todo el vecindario

hL = f ( L/ D ) ( v2 / 2 g )

A esta expresión se le llama Ecuación de Darcy

Siendo f el factor de fricción. (Adimensional)

L.- longitud de la vena o chorro del flujo. ( m ó pies )

D.- diámetro exterior de la tubería. (m ó pies )

v.- velocidad promedio del flujo ( m / s ó pies /

Ejercicios de Perdidas en tuberías

Ejercicio 1:

Por una tubería horizontal de polietileno de 20 mm de diámetro, circula agua con

una velocidad de 3 m/s. Posteriormente, hay un angostamiento de 10 mm de

diámetro.

a) Calcular el caudal en m3 /s.

b) Calcular la velocidad en la sección de 10 mm, en m/s. c)

Calcular la diferencia de altura total (en m) entre los puntos 1 y 2 ubicados según la

figura.

¿Qué le llama la atención de resultado?

Datos:

Angostamiento: k = 0,25

Fricción: C = 12

Solución:

Calculamos las áreas de las secciones 1 y 2:

A = ∏ x r2 r1 = 0,01 m r2 = 0,005 m A1 = 0,000314 m2 A2 = 0,0000785 m

Como Q = vxA,

Q = 3 m/s x 0,000314 m2

Q = 0,000942 m3/s

Para calcular la velocidad en la sección 2 aplicamos simplemente continuidad:

v1xA1 = v2xA2

v1xA1 = v2

A2

v2 = 3 m/s x 0,000314 m2

0,0000785 m2

v2 = 12 m/s

La diferencia de altura total es simplemente la pérdida de carga total entre los

Puntos 1 y 2:

· Pérdida singular: Λs = Kx(v2

/2g)

Λs = 0,25x(32

/2x10) (unidades en MKS)

Λs = 0,1125 m

· Pérdida friccional: Λf = 10,67xQ1,85/(C1,85xD4,86)

Como hay dos tramos de tubería con distinta sección, se sumarán las pérdidas para

Cada tramo:

Tramo 1:

Λf = 10,67x0,0009421,85/(1201,85x0,024,86) (unidades en MKS)

Λf1 = 0,69 m

Tramo 2:

Λf = 10,67x0,0009421,85/(1201,85x0,014,86) (unidades en MKS)

Λf2 = 20,12 m

Pérdida friccional total:

Λf = Λf1 + Λf2 = 0,69 m + 20,12 m

Λf =20,81 m

Pérdida total entre puntos 1 y 2:

Λs + Λf = 0,1125 m + 2,2275 m

ΛT =20,92 m

Llama la atención el gran aumento de la pérdida friccional al pasar de un diámetro

de 20 mm a uno de 10 mm (casi un 3.000 %).

Ejercicio 2:

Determine las fuerzas de empuje tanto en avance como en retroceso: De un cilindro

neumático de simple efecto:

- se conocen las siguientes características:

- Diámetro del embolo: 50 mm.

- Diámetro del vástago : 10 mm.

- Presión : 6 bar

- Perdidas de fuerza por rozamiento : 10%

Primeramente recordamos las equivalencias de algunas unidades y establecemos algunos

valores:

La superficie del émbolo es

Ejercicio 3:

De un cilindro neumático de doble efecto se conocen los siguientes datos:

- Presión de trabajo: 8.105N/m2

- Diámetro interior del cilindro: 60mm

- Diámetro del vástago: 20mm.

- Pérdidas por fricción: 4%.

Determinar la fuerza que proporciona el vástago en el movimiento de avance y en el

de retroceso.