Electronica basica (1)

28
ELECTRONICA BASICA. Para el correcto conocimiento de la electrónica es necesario saber algunas leyes y teoremas fundamentales como la Ley de Ohm, las Leyes de Kirchhoff, y otros teoremas de circuitos. Ley de Ohm Cuando una resistencia es atravesada por una corriente se cumple que: Donde V es la tensión que se mide en voltios (V). Donde I es la intensidad de la corriente que atraviesa la resistencia, y que se mide en Amperios (A). Donde R es la resistencia que se mide en Ohmios ( ). Leyes de Kirchhoff Ley de Kirchhoff de tensiones La suma de las caídas de tensiones de todos los componentes de una malla cerrada debe ser igual a cero.

Transcript of Electronica basica (1)

Page 1: Electronica basica (1)

ELECTRONICA BASICA.

Para el correcto conocimiento de la electrónica es necesario saber algunas leyes y

teoremas fundamentales como la Ley de Ohm, las Leyes de Kirchhoff, y otros

teoremas de circuitos.

Ley de Ohm

Cuando una resistencia es atravesada por una corriente se cumple que:

Donde V es la tensión que se mide en voltios (V).

Donde I es la intensidad de la corriente que atraviesa la resistencia, y que

se mide en Amperios (A).

Donde R es la resistencia que se mide en Ohmios ( ).

Leyes de Kirchhoff

Ley de Kirchhoff de tensiones

La suma de las caídas de tensiones de todos los componentes de una malla

cerrada debe ser igual a cero.

Page 2: Electronica basica (1)

V2 + V3 + V4 - V1 = 0

Ley de Kirchhoff de corrientes

La suma de corrientes entrantes en un nodo es igual a la suma de corrientes

salientes del nodo.

I1 = I2 + I3 + I4

Resistencias

Resistencias en serie

Dos o más resistencias en serie (que les atraviesa la misma intensidad) es

equivalente a una única resistencia cuyo valor es igual a la suma de las

resistencias.

Page 3: Electronica basica (1)

RT = R1 + R2

Resistencias en paralelo

Cuando tenemos dos o más resistencias en paralelo (que soportan la misma

tensión), pueden ser sustituidas por una resistencia equivalente, como se ve en el

dibujo:

el valor de esa resistencia equivalente (RT) lo conseguimos mediante esta

expresión:

Generadores

Generadores de Continua

Pueden ser tanto fuentes de corriente como de tensión, y su utilidad es

suministrar corriente o tensión, respectivamente de forma continua.

Generador de corriente continua Generador de tensión continua

Page 4: Electronica basica (1)

Generadores de Alterna

Pueden ser tanto fuentes de corriente como de tensión, y su utilidad es

suministrar corrientes o tensiones, respectivamente de forma alterna (por

ejemplo: de forma senoidal, de forma triangular, de forma cuadrada., etc....).

Generador de corriente alterna

Generador de tensión alterna

Aparatos de medición.

INTRODUCCIÓN

A finales de la década de 1940, la electrónica no tenia mayor consideración que la de ser una rama

secundaria de la electricidad.

Page 5: Electronica basica (1)

Aunque por aquel entonces ya existían aparatos que podrían tener al menos exteriormente, cierto

aspecto de "electrónicos", como receptores de radio, tocadiscos o rudimentarias máquinas de

calcular no dejaban de ser circuitos y piezas puramente eléctricas unidas mediante cables.

Las investigaciones en busca de mejoras, tanto en las propiedades como, sobre todo, en el tamaño de

las válvulas, dieron origen a la aparición de unos nuevos materiales llamados semiconductores, que a

su vez provocaron la creación de una nueva disciplina tecnológica denominada electrónica.

Sea como fuere, tanto en electricidad como en electrónica, el movimiento de los electrones es el

motivo fundamental del funcionamiento de sus circuitos; la única diferencia es que la segunda utiliza

componentes tales como las válvulas, los semiconductores y los circuitos integrados, a los que

genéricamente se denomina elementos activos en oposición a los usados en electricidad

(resistencias,condensadores, bobinas etc.), llamados elementos pasivos

Gracias a tales elementos activos, la electrónica se constituye en una ciencia cuyo objetivo primordial

es ser una perfecta herramienta para obtener, manejar y utilizar información.

Como ya hemos dicho, los componentes son elementos básicos con los que se construyen circuitos,

y desempeñan, por lo tanto, las funciones elementales de la electrónica.

Cada circuito, ya sea eléctrico o electrónico ha de contener, por lo menos, un componente pasivo que

actué como conductor y que provoque la circulación de una corriente eléctrica por dicho circuito.

RESISTENCIAS

Propiedad de un objeto o sustancia que hace que se resista u oponga al paso de una corriente

eléctrica. La resistencia de un circuito eléctrico determina según la llamada ley de Ohm cuánta

corriente fluye en el circuito cuando se le aplica un voltaje determinado. La unidad de resistencia es el

ohmio, que es la resistencia de un conductor si es recorrido por una corriente de un amperio cuando

se le aplica una tensión de 1 voltio. La abreviatura habitual para la resistencia eléctrica es R, y el

símbolo del ohmio es la letra griega omega, Ω. En algunos cαlculos eléctricos se emplea el inverso de

la resistencia, 1/R, que se denomina conductancia y se representa por G. La unidad de conductancia

es siemens, cuyo símbolo es S. Aún puede encontrarse en ciertas obras la denominación antigua de

esta unidad, mho.

RESISTENCIAS

CONDENSADOR

El condensador es uno de los componentes mas utilizados en los circuitos eléctricos.

Un condensador es un componente pasivo que presenta la cualidad de almacenar energía eléctrica. Esta

formado por dos laminas de material conductor (metal) que se encuentran separados por un material

dieléctrico (material aislante). En un condensador simple, cualquiera sea su aspecto exterior, dispondrá de

dos terminales, los cuales a su vez están conectados a las dos laminas conductoras.

Condensador no polarizado Condensador variable

REÓSTATOS

Son resistencias bobinadas variables dispuestas de tal forma que pueda variar el valor de la

resistencia del circuito en que esta instalada, como ya sabemos, son capaces de aguantar mas

corriente. . A las resistencias variables se le llaman reóstatos o potenciómetros, con un brazo de

contacto deslizante y ajustable, suelen utilizarse para controlar el volumen de radios y televisiones.

Page 6: Electronica basica (1)

TRANSFORMADOR

Dispositivo eléctrico que consta de una bobina de cable situada junto a una o varias bobinas más, y

que se utiliza para unir dos o más circuitos de corriente alterna (CA) aprovechando el efecto

de inducción entre las bobinas. La bobina conectada a la fuente de energía se llama bobina primaria.

Las demás bobinas reciben el nombre de bobinas secundarias. Un transformador cuyo voltaje

secundario sea superior al primario se llama transformador elevador. Si el voltaje secundario es

inferior al primario este dispositivo recibe el nombre de transformador reductor. El producto de

intensidad de corriente por voltaje es constante en cada juego de bobinas, de forma que en un

transformador elevador el aumento de voltaje de la bobina secundaria viene acompañado por la

correspondiente disminución de corriente. La cantidad de terminales varía según cuantos bobinados y

tomas tenga. Como mínimo son tres para los auto- transformadores y cuatro en adelante para los

transformadores. No tienen polaridad aunque si orientación magnética de los bobinados.

TRANSFORMADOR NÚCLEO DE AIRE TRANSFORMADOR

DIODO

Componente electrónico que permite el paso de la corriente en un solo sentido. Los primeros dispositivos de

este tipo fueron los diodos de tubo de vacío, que consistían en un receptáculo de vidrio o de acero al vacío

que contenía dos electrodos: un cátodo y un ánodo. Ya que los electrones pueden fluir en un solo sentido,

desde el cátodo hacia el ánodo, el diodo de tubo de vacío se podía utilizar en la rectificación. Los diodos más

empleados en los circuitos electrónicos actuales son los diodos fabricados con material semiconductor. El más

sencillo, el diodo con punto de contacto de germanio, se creó en los primeros días de la radio, cuando la señal

radiofónica se detectaba mediante un cristal de germanio y un cable fino terminado en punta y apoyado sobre

él. En los diodos de germanio (o de silicio) modernos, el cable y una minúscula placa de cristal van montados

dentro de un pequeño tubo de vidrio y conectados a dos cables que se sueldan a los extremos del tubo.

Diodo rectificador Diodo emisor de luz (LED)

BOBINA

Las bobinas (también llamadas inductores) consisten en un hilo conductor enrollado. Al pasar una corriente a

través de la bobina, alrededor de la misma se crea un campo magnético que tiende a oponerse a los cambios

bruscos de la intensidad de la corriente. Al igual que un condensador, una bobina puede utilizarse para

diferenciar entre señales rápida y lentamente cambiantes (altas y bajas frecuencias). Al utilizar una bobina

conjuntamente con un condensador, la tensión de la bobina alcanza un valor máximo a una frecuencia

específica que depende de la capacitancia y de la inductancia. Este principio se emplea en los receptores de

radio al seleccionar una frecuencia específica mediante un condensador variable.

BOBINAS

PILA (Acumulador, Batería)

Page 7: Electronica basica (1)

Dispositivo que convierte la energía química en eléctrica. Todas las pilas consisten en un electrolito

(que puede ser líquido, sólido o en pasta), un electrodo positivo y un electrodo negativo. El electrolito

es un conductor iónico; uno de los electrodos produce electrones y el otro electrodo los recibe. Al

conectar los electrodos al circuito que hay que alimentar, se produce una corriente eléctrica.

Las pilas en las que el producto químico no puede volver a su forma original una vez que la energía

química se ha transformado en energía eléctrica (es decir, cuando las pilas se han descargado), se

llaman pilas primarias o voltaicas. Las pilas secundarias o acumuladores son aquellas pilas

reversibles en las que el producto químico que al reaccionar en los electrodos produce energía

eléctrica, puede ser reconstituido pasando una corriente eléctrica a través de él en sentido opuesto a

la operación normal de la pila.

PILA-ACUMULADOR-BATERÍA

FUSIBLE

Dispositivo de seguridad utilizado para proteger un circuito eléctrico de un exceso de corriente. Su

componente esencial es, habitualmente, un hilo o una banda de metal que se derrite a una

determinada temperatura. El fusible está diseñado para que la banda de metal pueda colocarse fácilmente en

el circuito eléctrico. Si la corriente del circuito excede un valor predeterminado, el metal fusible se derrite y se

rompe o abre el circuito. Los dispositivos utilizados para detonar explosivos también se llaman fusibles.

Un fusible cilíndrico está formado por una banda de metal fusible encerrada en un cilindro de cerámica o de

fibra. Unos bornes de metal ajustados a los extremos del fusible hacen contacto con la banda de metal. Este

tipo de fusible se coloca en un circuito eléctrico de modo que la corriente fluya a través de la banda metálica

para que el circuito se complete. Si se da un exceso de corriente en el circuito, la conexión de metal se

calienta hasta su punto de fusión y se rompe. Esto abre el circuito, detiene el paso de la corriente y, de ese

modo, protege al circuito.

FUSIBLES

RELÉ

Conmutador eléctrico especializado que permite controlar un dispositivo de gran potencia mediante un

dispositivo de potencia mucho menor. Un relé está formado por un electroimán y unos contactos

conmutadores mecánicos que son impulsados por el electroimán. Éste requiere una corriente de sólo unos

cientos de miliamperios generada por una tensión de sólo unos voltios, mientras que los contactos pueden

estar sometidos a una tensión de cientos de voltios y soportar el paso de decenas de amperios. Por tanto, el

conmutador permite que una corriente y tensión pequeñas controlen una corriente y tensión mayores.

Técnicamente un relé es un aparato electromecánico capaz de accionar uno o varios interruptores cuando es

excitado por una corriente eléctrica.

Relé rápido Relé con doble bobinado

TRANSISTORES

Los transistores se componen de semiconductores. Se trata de materiales, como el silicio o el

germanio, dopados (es decir, se les han incrustado pequeñas cantidades de materias extrañas), de

manera que se produce un exceso o una carencia de electrones libres. En el primer caso, se dice que

Page 8: Electronica basica (1)

el semiconductor es del tipo n, y en el segundo, que es del tipo p. Combinando materiales del tipo n y

del tipo p se puede producir un diodo. Cuando éste se conecta a una batería de manera tal que el

material tipo p es positivo y el material tipo n es negativo, los electrones son repelidos desde el

terminal negativo de la batería y pasan, sin ningún obstáculo, a la región p, que carece de electrones.

Con la batería invertida, los electrones que llegan al material p pueden pasar sólo con muchas

dificultades hacia el material n, que ya está lleno de electrones libres, en cuyo caso la corriente es

prácticamente cero.

Transistor NPN Transistor PNP

CIRCUITOS INTEGRADOS

La mayoría de los circuitos integrados son pequeños trozos, o chips, de silicio, de entre 2 y 4 mm2,

sobre los que se fabrican los transistores. La fotolitografía permite al diseñador crear centenares de

miles de transistores en un solo chip situando de forma adecuada las numerosas regiones tipo n y p.

Durante la fabricación, estas regiones son interconectadas mediante conductores minúsculos, a fin de

producir circuitos especializados complejos. Estos circuitos integrados son llamados monolíticos por

estar fabricados sobre un único cristal de silicio. Los chips requieren mucho menos espacio y

potencia, y su fabricación es más barata que la de un circuito equivalente compuesto por transistores

individuales.

(IC)Circuito integrado símbolo genérico

CONCLUSIÓN

Los componentes electrónicos han venido evolucionando a través del tiempo que cada día, mas

pequeños y complejos son los circuitos eléctricos, esto se debe a que los componentes son

elaborados con la finalidad de realizar diversas tareas dentro del circuito en el caso de los circuitos

integrados su desarrollo ha revolucionado los campos de las comunicaciones, la gestión de la

información y lainformática. Los circuitos integrados han permitido reducir el tamaño de los

dispositivos con el consiguiente descenso de los costes de fabricación y de mantenimiento de

los sistemas. Al mismo tiempo, ofrecen mayor velocidad y fiabilidad. Los relojes digitales,

las computadoras portátiles y los juegos electrónicos son sistemas basados en microprocesadores.

Otro avance importante es la digitalización de las señales de sonido, proceso en el cual la frecuencia y

la amplitud de una señal de sonido se codifica digitalmente

mediante técnicas de muestreo adecuadas, es decir, técnicas para medir la amplitud de la señal a

intervalos muy cortos. La música grabada de forma digital, como la de los discos compactos, se

caracteriza por una fidelidad que no era posible alcanzar con losmétodos de grabación directa. De

igual manera pasa con los transistores, ha reemplazado casi completamente al tubo de vacío en la

mayoría de sus aplicaciones. Al incorporar un conjunto de materiales semiconductores y contactos

eléctricos, el transistor permite las mismas funciones que el tubo de vacío, pero con un coste, peso y

potencia más bajos, y una mayor fiabilidad.

Leer más: http://www.monografias.com/trabajos16/componentes-electronicos/componentes-

electronicos.shtml#ixzz2bQbksRdK

Page 9: Electronica basica (1)

Sensor CNY70

Introducción

El CNY70 es un sensor de infrarrojos de corto alcance basado en un emisor de luz y un

receptor, ambos apuntando en la misma dirección, y cuyo funcionamiento se basa en la

capacidad de reflexión del objeto, y la detección del rayo reflectado por el receptor.

Vista externa y circuitos internos del sensor CNY70

El CNY70 tiene cuatro pines de conexión. Dos de ellos se corresponden con el ánado y

cátodo del emisor, y las otras dos se corresponde con el colector y el emisor del receptor.

Los valores de las resistencias son típicamente 10K ohmios para el receptor y 220 ohmios

para el emisor.

Diferentes posibilidades de montaje del CNY70

Es importante fijarse bien en el lateral donde aparece el nombre del sensor, para identificar

correctamente cada uno de los pines.

Page 10: Electronica basica (1)

Patillaje del CNY70

Manejo del sensor

El CNY70 devuelve por la pata de salida correspondiente, según el montaje, un voltaje

relacionado con la cantidad de rayo reflectado por el objeto. Para el montaje A, se leerá del

emisor un '1' cuando se refleje luz y un '0' cuando no se refleje. Para el montaje B los

valores se leen del colector, y son los contrarios al montaje A.

Si conectamos la salida a una entrada digital del microcontrolador, entonces obtenedremos

un '1' o un '0' en función del nivel al que el microcontrolador establece la distinción entre

ambos niveles lógicos. Este nivel se puede controlar introduciendo un buffer trigger-schmitt

(por ejemplo el 74HC14, ¡ojo que es un inversor!) entre la salida del CNY70 y la entrada

del microcontrolador. Este sistema es el que se emplea para distinguir entre blanco y negro,

en la conocida aplicación del robot seguidor de línea.

Otra posibilidad es conectar la salida a una entrada analógica. De este modo, mediante un

conversor A/D se pueden obtener distintos valores. Esto permite la detección dinámica de

blanco y negro (muy útil cuando el recorrido presenta alteraciones en la iluminación). Pero

también, si empleamos el sensor con objetos de distintos color, establecer un mecanismo

para la detección de los distintos colores, determinando los valores marginales que separan

unos colores de otros. Esto permite emplear el sensor para alguna aplicación donde la

detección del color sea necesaria.

Conclusiones

El único inconveniente del sensor es la necesidad de tener que situarlo muy próximo al

objeto para detectar correctamente la reflexión. Por lo demás, es una solución muy buena

para la detección de línea e incluso para emplearlo como encoder para la medición de las

vueltas dadas por las ruedas del robot.

Page 11: Electronica basica (1)

CIRCUITO IMPRESO:

En electrónica, un circuito impreso, tarjeta de circuito impreso o PCB (del inglés printed circuit

board), es una superficie constituida por caminos o pistas de material conductor laminadas sobre

una base no conductora. El circuito impreso se utiliza para conectar eléctricamente - a través de los

caminos conductores, y sostener mecánicamente - por medio de la base, un conjunto de

componentes electrónicos. Los caminos son generalmente de cobre mientras que la base se

fabrica de resinas de fibra de vidrio reforzada (la más conocida es la

FR4), cerámica, plástico, teflón o polímeros como la baquelita.

La producción de los PCB y el montaje de los componentes puede ser automatizada.1 Esto permite

que en ambientes de producción en masa, sean más económicos y confiables que otras

alternativas de montaje- por ejemplo el punto a punto. En otros contextos, como la construcción de

prototipos basada en ensamble manual, la escasa capacidad de modificación una vez construidos

y el esfuerzo que implica la soldadura de los componentes2 hace que los PCB no sean una

alternativa óptima.

La Organización IPC (Institute for Printed Circuits), ha generado un conjunto de estándares que

regulan el diseño, ensamblado y control de calidad de los circuitos impresos, siendo la familia IPC-

2220 una de las de mayor reconocimiento en la industria. Otras organizaciones tales como

American National Standards Institute (ANSI), International Engineering Consortium (IEC),

Electronic Industries Alliance (EIA), Joint Electron Device Engineering Council (JEDEC) también

contribuyen con estándares relacionados.

HERRAMIENTAS:

enominaremos herramientas de mano a todos aquellos útiles simples para cuyo funcionamiento

actúa única y exclusivamente el esfuerzo físico del hombre, exceptuando las accionadas por

energía eléctrica o por medios neumáticos.

Riesgos

Proyecciones de partículas a los ojos.

Cortes y pinchazos.

Golpes y caídas de las herramientas.

Explosión o incendio (chispas en ambientes explosivos o inflamables).

Esguinces por sobre esfuerzos o gestos violentos.

Page 12: Electronica basica (1)

Medidas preventivas generales

En cada trabajo se utilizará la herramienta adecuada, empleándola para la función que fueron

diseñadas. No se emplearán, por ejemplo, llaves por martillos, destornilladores por cortafríos,

etc.

Cada usuario comprobará el buen estado de las herramientas antes de su uso, inspeccionando

cuidadosamente mangos, filos, zonas de ajuste, partes móviles, cortantes y susceptibles de

proyección, y será responsable de la conservación tanto de las herramientas que él tenga

encomendadas como de las que utilice ocasionalmente. Deberá dar cuenta de los defectos que se

observe a su superior inmediato, quien las sustituirá si aprecia cualquier anomalía.

Las herramientas se mantendrán limpias y en buenas condiciones.

No se utilizarán herramientas con mangos flojos, mal ajustados y astillados. Se tendrá especial

atención en los martillos y mazas.

Se prohibe lanzar herramientas; deben entregarse en mano.

Nunca se deben de llevar en los bolsillos. Transportarlas en cajas portátiles.

En trabajos en altura se llevarán las herramientas en bolsa o mochila existentes a tal fin o en el

cinto portaherramientas, con el fin de tener las manos libres.

Cuando se trabaje en alturas se tendrá especial atención en disponer las herramientas en lugares

desde los que no puedan caerse y originar daños a terceros.

Las herramientas de corte se mantendrán afiladas y con el corte protegido o tapado mediante

tapabocas de caucho, plástico, cuero, etc.

Las herramientas deberán estar ordenadas adecuadamente, tanto durante su uso como en su

almacenamiento, procurando no mezclar las que sean de diferentes características.

En caso de duda sobre la utilización correcta de una determinada herramienta, se pedirán

aclaraciones al jefe inmediato antes de ponerse a su uso.

Martillos y mazas

Como protección, se usarán gafas de seguridad en todos los trabajos con estas herramientas, y si

hay otros operarios próximos se protegerán de igual forma.

No utilizar un mango rajado aunque se haya reforzado con una ligadura.

Emplear martillos cuya cabeza presente aristas y esquinas limpias, evitando las rebabas, que

pueden dar lugar a proyecciones.

En las herramientas con mango se vigilará el estado de solidez de este y su ajuste en el ojo de la

herramienta. Los mangos no presentarán astillas ni fisuras. Se prohibe ajustar mangos mediante

clavos o astillas.

En el golpeo con mazos se cuidará de que ninguna persona ni objeto esté en el radio de acción

del mazo.

Page 13: Electronica basica (1)

Se debe procurar golpear sobre la superficie del impacto con toda la cara del martillo.

Encaso de tener que golpear clavos, estos se deben de sujetar por la cabeza y no por el extremo.

Utilizar gafas de seguridad homologadas.

Limas

Se prohibe utilizar estas herramientas sin mango, con las puntas rotas o los dientes engrasados o

desgastados. La espiga debe montarse sobre un mango liso sin grietas y la fijación debe

asegurarse mediante una virola o brazadera.

No se podrá utilizar las limas como palanca, martillo, punzón o para otros fines distintos a los que

son propios.

Para mantenerlas limpias de grasa y restos de materiales se limpiarán con cepillo de alambre.

Llaves

No se debe usar una llave con fisuras o que esté en mal estado

Esta prohibido utilizarla a modo de martillo o para hacer palanca.

Se mantendrán siempre limpias y sin grasa.

Se debe utilizar para cada trabajo el tipo y el calibre de llave adecuada. La llave deberá ajustar a

la tuerca y se situará perpendicularmente al eje del tornillo.

El esfuerzo sobre la llave se hará tirando, no empujando. Si no existiera posibilidad de tirar, se

empujará con la mano abierta.

En caso de llaves ajustables o inglesas, la mandíbula fija se colocará al lado opuesto de la

dirección de tiro o empuje de forma que la quijada que soporte el esfuerzo sea la fija.

Nunca rectificar llaves en la muela o esmeril para adaptar su abertura.

Preferentemente se usarán llaves fijas o de estrella en lugar de llaves ajustables.

No se emplearán tubos o cualquier elemento para aumentar el brazo de palanca en llaves fijas o

ajustables no concebidas para ello.

Se prohibe utilizar suplementos en las bocas de las llaves para ajustarlas a las tuercas.

Destornilladores

Se prohibe utilizarlos con el mango agrietado o suelto.

No usar con la boca de ataque redondeada, afilada o mellada.

El vástago del destornillador no puede estar torcido.

Nunca utilizar como cincel o palanca. Sólo debe emplearse para apretar y aflojar tornillos.

Se empleará el tamaño adecuado en cada caso, teniendo en cuenta que la palanca del

destornillador debe ajustarse hasta el fondo de la ranura del tornillo, pero sin sobresalir

lateralmente.

El vástago se mantendrá siempre perpendicular a la superficie del tornillo.

No utilizar sobre piezas sueltas y sujetas estas por la mano. En piezas pequeñas es más fácil que

Page 14: Electronica basica (1)

el destornillador se salga de la ranura. Por ello, la pieza se sujetará con tornillos de ajustador o

con tenazas para evitar lesiones. Las manos se situarán siempre fuera de la posible trayectoria

del destornillador. Ojo con poner la mano detrás o debajo de la pieza a atornillar.

Se evitará apoyar sobre el cuerpo la pieza en la que se va a atornillar, ni tampoco se apoyará el

cuerpo sobre la herramienta.

Sus mangos serán aislantes a la corriente eléctrica. Subir

Tenazas y alicates

No emplearlos con las mandíbulas desgastadas o sueltas.

El filo de la parte cortante no debe estar mellado.

No colocar los dedos entre los mangos

Engrasar periodicamente el pasador de la articulación.

No se deben usar en lugar de llaves para soltar o apretar tuercas o tornillos.

Tampoco se pueden emplear para golpear sobre objetos.

El uso de alicates para cortar hilos tensados exige sujetar firmemente ambos extremos del hilo

para evitar que puedan proyectarse involuntariamente. Para estos trabajos se usará

obligatoriamente las gafas de protección.

Las tenazas se emplearán únicamente para sacar clavos.

Respecto a las tenazas de sujetar pistoletes, cortafríos, etc., se comprobará que estén apretadas

correctamente sobre la herramienta a sujetar.

Cortafrios, cinceles, pistolestes, barrenas y punzones

Cuando se usen cortafríos, punteros, etc., se hará sujetándolos con las pinzas o tenazas o

empleando protectores de goma en los mismos, nunca con las manos directamente.

Las herramientas que actúen por percusión se utilizarán con protectores de goma.

Debe realizarse una limpieza periódica de las rebabas existentes en las herramientas de

percusión (cortafríos, cinceles, barrenas, etc.).

Nunca utilizarlos con las cabezas astilladas, saltadas o con rebordes.

No usar con las cabezas y bocas de ataque mal templadas; el templado debe realizarlo personal

especializado.

No emplearlos con los filos romos o saltados. Deberán estar afiladas para facilitar el trabajo.

Los cinceles deben ser lo suficentemente gruesos para que no se curven ni alabeen al ser

golpeados. Se deben desechar los cinceles mas o menos fungiformes utilizando solo el que

presente una curvatura de 3 cm. de radio.

Se manejarán con guantes de protección y haciendo uso de gafas protectoras.

No manejarlos jamas a modo de palancas, destornilladores o llaves.

Utilizar un cincel suficientemente grande para el trabajo que se realice.

Page 15: Electronica basica (1)

Los angulos de corte correctos son: un ángulo de 60º para el afilado y el rectificado, siendo el

angulo de corte más adecuado en la utilizaciones más habituales el de 70º.

Para metales mas blandos utilizar ángulos de corte mas agudos.

Usar el martillo de peso adecuado al tamaño del cincel.

Tener la pieza sobre la que se trabaje firmemente sujeta.

El cincel debe ser sujetado con la palma de la mano hacia arriba, sosteniendo el cincel con los

dedos del pulgar, indice y corazón.

Es imprescindible usar gafas protectoras y guantes de seguridad homologados.

Cuchillos y navajas

Se deben emplear bien afilados.

Nunca emplearlos con los mangos rajados, astillados o mellados.

No utilizarlos como destornilladores, bien sea por su punta o por su filo.

Los trabajos con estas herramientas se harán realizando los movimientos de corte desde el

cuerpo del trabajador hacia fuera.

Utilizar portacuchillos de material duro para el transporte, siendo recomendable el aluminio por

su fácil limpieza. El portacuchillos debería ser desabatible para facilitar su limpieza y tener un

tornillo dotado con palomilla de apriete para ajustar el cierre al tamaño de los cuchillos

guardados.

Los cuchillos no deben limpiarse con el delantal u otra prenda, sino con una toalla o trapo,

manteniendo el filo de corte girado hacia afuera de la mano que lo limpia.

Mantener distancias apropiadas entre los operarios que utilizan cuchillos simultáneamente.

Utilizar guantes de malla metálica homologados, delantales metálicos de malla o cuero y gafas de

seguridad homologadas.

Tijeras

Deberán ir siempre en sus bolsas o fundas protectoras.

En las tijeras de cortar chapa se prestará especial atención a su manejo, así como a la existencia

de un tope en las mismas que impida el aprisionamiento de los dedos de quien las use.

Realizar los cortes en dirección contraria al cuerpo.

Si se es diestro se debe cortar de forma que la parte cortada desechable quede a la derecha de

las tijeras y a la inversa si se es zurdo.

Si las tijeras disponen de sistema de bloqueo, accionarlo cuando no se utilicen.

Utilizar vainas de material duro para el transporte.

Utilizar guantes de cuero o lona gruesa homologados.

Utilizar gafas de seguridad homologadas.

Hachas

Page 16: Electronica basica (1)

Deberán estar siempre bien afiladas; un filo defectuoso, aparte de exigir mayor esfuerzo, resulta

peligroso.

Sierras

No serrar con demasiada fuerza; la hoja puede doblarse o partirse y producir la consiguiente

herida.

Las sierras se conservarán bien afiladas y engrasadas. Se encomendará el afilado a personas

especializadas.

Mantener los mangos bien fijados y en perfecto estado.

Antes de serrar fijar firmemente la pieza a serrar.

Cuando el material a cortar sea muy duro, antes de iniciar se recomienda hacer una ranura con

una lima para guiar el corte y evitar así movimientos indeseables al iniciar el corte.

Se protegerán, para su conservación y transporte con fundas de cuero o plástico adecuado

Androide Este artículo trata sobre el robot u organismo sintético. Para el sistema operativo móvil, véase Android.

Androide es la denominación que se le da a un robot u organismo sintético antropomorfo que, además

de imitar la apariencia humana, imita algunos aspectos de su conducta de manera autónoma. Es un

término mencionado por primera vez por Alberto Magno en 1270 y popularizado por el autor

francés Auguste Villiers en su novela de 1886 L'Ève future. Etimológicamente "androide" se refiere a los

robots humanoides de fisionomía masculina, a los robots de apariencia femenina se les llama

ocasionalmente ginoides, principalmente en las obras de ciencia ficción, aunque en el lenguaje coloquial

el término androide suele usarse para ambos casos.

Índice

[ocultar]

1 Androides en la cultura popular

2 Androides en la ciencia

3 Ejemplos famosos de androides de ciencia ficción

4 Enlaces externos

5 Véase también

Page 17: Electronica basica (1)

Androides en la cultura popular[editar · editar fuente]

Robot ASIMO de Honda.

Un robot humanoide que se limita a imitar los actos y gestos de un controlador humano, no es visto por

el público como un verdadero androide, sino como una simple marioneta animatrónica. El androide

siempre ha sido representado como una entidad que imita al ser humano tanto en apariencia, como en

capacidad mental e iniciativa. Antes incluso de haber visto un verdadero robot en acción, la mayoría de

las personas asocian la idea de robot con la de androide, debido a su extrema popularidad

como cliché de la ciencia ficción.

La actitud de base entre el público frente a los androides varía en función del bagaje cultural que posea

dicho público. En la cultura occidental la criatura humanoide, fabricada casi siempre por un sabio, es con

bastante frecuencia un monstruo que se rebela contra su creador y en ocasiones lo destruye como

castigo por su hubris; y el primero de los cuales no es necesariamente el monstruo

deFrankenstein de Mary Shelley. Bien que dicho monstruo sea fácilmente el más famoso.

Desde los Grecia Antigua existen leyendas y folklore narrando sobre seres humanoides fabricados en

metal por el artesano y herrero de los dioses, Hefesto. Aunque el carácter monstruoso del androide

parece haberse ganado con la cristianización del mundo occidental.

De hecho es tan notorio este fenómeno, que el reconocido experto en inteligencia artificial Marvin

Minsky, llegó a narrar como en ocasiones llegaba a sentirse incómodo frente a una de sus creaciones, el

androide Cog, cuando éste presentaba conductas inesperadas.

Page 18: Electronica basica (1)

En otras culturas las reacciones pueden ser bastante diferentes. Un ejemplo meritorio es la

actitud japonesa de cara a los androides, donde el público no teme la antropomorfización de las

máquinas, y aceptan por lo tanto con menos problemas la idea que un robot tenga apariencia humana,

para poder así interactuar más fácilmente con seres humanos.

Carrocerías según construcción[editar · editar fuente]

Chasis independiente[editar · editar fuente]

La técnica de construcción de chasis independiente utiliza un chasis rígido que soporta todo el

peso, las fuerzas del motor y de la transmisión. La carrocería, en esta técnica, cumple muy poca o

ninguna función estructural.

Esta técnica de construcción era la única utilizada hasta 1923, año en el que se lanzó el primer

automóvil con estructura monocasco, el Lancia Lambda. Las carrocerías autoportantes, a lo largo

del siglo XX, fueron sustituyendo al chasis independiente. Actualmente sólo se construyen con

chasis independiente varios vehículos todoterreno,deportivo utilitarios, y la mayoría de

las camionetas grandes y algunas de las camionetas ligeras así como varios automóviles

americanos.

Los primeros chasis independientes eran de madera, heredando las técnicas de construcción de

los coches de caballos. En los años 1930 fueron sustituidos de forma generalizada por chasis de

acero.

Existen chasis con bastidores de largueros en forma de escalera; dos travesaños paralelos

longitudinales cruzados por travesaños transversales, con travesaño en forma de X y de tubo

central (Backbone frame → en).

Ford T, vehículo veterano con chasis independiente

El Toyota Land Cruiser, moderno vehículo con chasis independiente

Page 19: Electronica basica (1)

El Ford Crown Victoria, favorito entre los taxis por su fortaleza y rigidez

En Estados Unidos el chasis independiente duró más que en otros países, ya que la costumbre

estadounidense del cambio anual de diseño era más difícil con estructuras monocasco. Desde

los años 90 la mayor parte de los automóviles de pasajeros utilizaron la construcción monocasco;

sólo los camiones, autobuses, todoterrenos para uso rudo y automóviles grandes siguen usando el

chasis independiente, si bien cada vez más ha incorporado la estructura autoportante.

El chasis independiente sigue siendo el preferido para vehículos industriales, que han de

transportar o arrastrar cargas pesadas. De entre los pocos automóviles de gran serie que se

siguen fabricando con chasis independiente destacan el Ford Crown Victoria (→ en), el Mercury

Grand Marquis (→ en) y el Lincoln Town Car (→ en) . Las ventajas son la facilidad de reparación

en caso de colisión (lo que le hace ser preferido como vehículo policial) y de alargar para hacer

una limusina.

Autoportante[editar · editar fuente]

En la carrocería autoportante es una técnica de construcción en la cual la chapa externa del

vehículo soporta algo (semi-monocasco) o toda la carga estructural del vehículo.

El primer vehículo en incorporar esta técnica constructiva fue el Lancia Lambda, de 1923.

Los primeros vehículos de gran serie en tener carrocería autoportante fueron el Chrysler Airflow y

el Citroën Traction Avant.

El Volkswagen Escarabajo de 1938 tenía una carrocería semi-monocasco, ya que tenía chasis

independiente, pero este necesitaba también de la carrocería para soportar el peso del vehículo.

La Segunda Guerra Mundial supuso un alto en el desarrollo automovilístico. Tras la guerra, la

carrocería autoportante se fue difundiendo.

El Morris Minor de 1948 fue un vehículo de posguerra que adoptó tempranamente la técnica.

El Ford Consul introdujo una variante de carrocería autoportante llamada unit body o unibody, en la

cual los distintos paneles de la carrocería se atornillaban a una estructura monocasco.

Otros vehículos (por ejemplo el Chevrolet Camaro de 1967) utilizaron una técnica mixta, en la cual

un semi-monocasco se combinaba con un chasis parcial (subchasis) que soportaba el motor, el

puente delantero y la transmisión. Esta técnica trataba de combinar la rigidez y la resistencia de la

carrocería autoportante con la facilidad de fabricación del vehículo con chasis independiente,

actualmente este sistema se encuentran en algunas SUV´s de las marcas Japonesas Toyota,

Mitsubishi y Suzuki para obtener mayor rigidez torsional y tener a la vez la ventaja monocasco en

SUV´s que requieran mayor resistencia a malos tratos. Los inconvenientes eran desajustes entre el

Page 20: Electronica basica (1)

chasis parcial y la carrocería, solucionado ahora con puntos de soldadura de nueva generación y

adhesivos especiales.

Actualmente, casi todos los automóviles se construyen con la técnica de monocasco, realizándose

las uniones entre las distintas piezas mediante soldadura de puntos. En los vehículos modernos,

hasta los cristales forman parte de la estructura del vehículo, colaborando en darle fortaleza y

rigidez.

Lancia Lambda, primer vehículo con

carrocería autoportante

Citroën Traction Avant1934

En 1960 Detroit tuvo grandes innovaciones en la construcción tipo autoportante, aquí elChevrolet Corvair

Tubular[editar · editar fuente]

La carrocería tubular o superleggera ("superligera" en italiano), es un tipo de carrocería utilizado

en vehículos clásicos deportivos de mediados del siglo XX y por los grupos Bde los años 80. Fue

creada por el carrocero italiano Touring en 1937.

Esta técnica utiliza como estructura del vehículo una red de finos tubos metálicos soldados,

recubierta después con láminas metálicas, frecuentemente de metales exóticos tales

como aluminio o magnesio.

Esta técnica consigue una carrocería de gran rigidez y resistencia con muy poco peso. Por otra

parte, la fabricación es muy cara y laboriosa.

La técnica todavía se utiliza en modelos deportivos hechos a mano.

Page 21: Electronica basica (1)

Estructura tubular de unCaterham Seven actual

Estructura tubular en el habitáculo de un Ferrari250 GTO de 1962

FABRICACIOND E AUTOMOVILES:

La fabricación de automóviles se refiere a la producción industrial de vehículos automóviles en

fabricas habilitadas para ello. La fabricación de automóviles requiere un capital

humano y financiero muy importante.

Dependiendo del tipo de vehículo, la cantidad de unidades a fabricar por día y el emplazamiento de

la fabrica el grado de automatización puede variar considerablemente. Si las unidades a producir

son muy reducidas entonces es rentable la producción manual en un taller, pues la inversión para

una línea de ensamble no es viable. Igualmente, en países con costes laborales reducidos el grado

de automatización suele ser menor y muchos procesos son manuales. En cualquier caso, en

general se puede afirmar que el grado de automatización es alto.

Los vehículos se fabrican normalmente en una línea de producción, que cuenta con numerosas

estaciones donde operarios, fijos en cada estación, realizan el mismo trabajo en cada vehículo que

llega. Los operarios pueden rotar 1 o 2 veces al día de estación a estación por razones

ergonómicas (ej. en los EE. UU.) y trabajar de forma permanente en una estación (Europa). El

desplazamiento de los vehículos de una estación a otra se basa se realiza siguiendo el principio de

una cinta transportadora.

Page 22: Electronica basica (1)

El movimiento de los robots

Robot industrial

Los robots industriales suelen tener un brazo mecánico capaz de realizar diversas tareas. En el

extremo del brazo se sitúa el elemento manipulador, que puede tener diversas formas en

función de la labor que realice. Una de las formas más habituales es la de una pinza, que puede

agarrar objetos y situarlos en una cierta posición. También pueden incorporar herramientas

como, por ejemplo, un soldador o brazos compactos si han de transmitir un golpe, etc.

El brazo del robot está formado por varios eslabones, unidos mediante articulaciones, que

pueden ser de dos tipos:

Articulación prismática: permite realizar solo traslaciones lineales, de avance o retroceso.

Articulación giratoria: permite realizar solo un movimiento de giro.

El brazo del robot puede incorporar varias articulaciones, de forma que los movimientos que

realiza van a ser una combinación más o menos compleja de traslaciones y giros.

Un robot industrial puede tener las siguientes estructuras fundamentales:

Estructura cartesiana: consta de tres articulaciones prismáticas. Este tipo utiliza coordenadas

cartesianas (altura, anchura y profundidad) para situar un objeto en el espacio.

Page 27: Electronica basica (1)

MAQUINAS:

na máquina es un conjunto de elementos móviles y fijos cuyo funcionamiento posibilita

aprovechar, dirigir, regular o transformarenergía o realizar un trabajo con un fin determinado. Se

denomina maquinaria (del latín machinarĭus) al conjunto de máquinas que se aplican para un

mismo fin y al mecanismo que da movimiento a un dispositivo.

Índice

[ocultar]

1 Componentes

2 Clasificaciones

3 Maquinaria

4 Véase también

5 Enlaces externos

Componentes[editar · editar fuente]

Artículo principal: Elementos de máquinas.

Los elementos que componen una máquina son:

Motor: es el mecanismo que transforma una fuente de energía en trabajo requerido.

Conviene señalar que los motores también son máquinas, en este caso destinadas a

transformar la energía original (eléctrica,química, potencial, cinética)la energía

mecánica en forma de rotación de un eje o movimiento alternativo de un pistón. Aquellas

máquinas que realizan la transformación inversa, cuando es posible, se

denominan máquinas generadoras o generadores y aunque pueda pensarse que se

circunscriben a los generadores de energía eléctrica, también deben incluirse en esta

categoría otro tipos de máquinas como, por ejemplo, las bombas o compresores.

Evidentemente, en ambos casos hablaremos de máquina cuando tenga elementos

móviles, de modo que quedarían excluidas, por ejemplo, pilas y baterías.

Mecanismo: es el conjunto de elementos mecánicos, de los que alguno será móvil,

destinado a transformar la energía proporcionada por el motor en el efecto útil

buscado.

Bastidor: es la estructura rígida que soporta el motor y el mecanismo, garantizando el

enlace entre todos los elementos.

Componentes de seguridad: son aquellos que, sin contribuir al trabajo de la

máquina, están destinados a proteger a las personas que trabajan con ella.

Page 28: Electronica basica (1)

Actualmente, en el ámbito industrial es de suma importancia la protección de

los trabajadores, atendiendo al imperativo legal y económico y a la condición social de

una empresa que constituye el campo de la seguridad laboral, que está comprendida

dentro del conceptomás amplio de prevención de riesgos laborales.

También es importante darles mantenimiento periódicamente para su buen

funcionamiento.