Entropia

4
Entropia En termodinámica, la entropía (simbolizada como S) es la magnitud física que mide la parte de la energía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (ἐντροπία) y significa evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la década de 1850. 1 La entropía, el desorden y el grado de organización. Vamos a imaginar que tenemos una caja con tres divisiones; dentro de la caja y en cada división se encuentran tres tipos diferentes de canicas: azules, amarillas y rojas, respectivamente. Las divisiones son movibles así que me decido a quitar la primera de ellas, la que separa a las canicas azules de las amarillas. Lo que estoy haciendo dentro del punto de vista de la entropía es quitar un grado o índice de restricción a mi sistema; antes de que yo quitara la primera división, las canicas se encontraban separadas y ordenadas en colores: en la primera división las azules, en la segunda las amarillas y en la tercera las rojas, estaban restringidas a un cierto orden. Al quitar la segunda división, estoy quitando también otro grado de restricción. Las canicas se han mezclados unas con otras de tal manera que ahora no las puedo tener ordenas pues las barreras que les restringían han sido quitadas. La entropía de este sistema ha aumentado al ir quitando las restricciones pues inicialmente había un orden establecido y al final del proceso (el proceso es en este caso el quitar las divisiones de la caja) no existe orden alguno dentro de la caja. La entropía es en este caso una medida del orden (o desorden) de un sistema o de la falta de grados de restricción; la

Transcript of Entropia

Page 1: Entropia

Entropia

En termodinámica, la entropía (simbolizada como S) es la magnitud física que mide la parte de la energía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (ἐντροπία) y significa evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la década de 1850.1

La entropía, el desorden y el grado de organización.

Vamos a imaginar que tenemos una caja con tres divisiones; dentro de la caja y en cada división se encuentran tres tipos diferentes de canicas: azules, amarillas y rojas, respectivamente. Las divisiones son movibles así que me decido a quitar la primera de ellas, la que separa a las canicas azules de las amarillas. Lo que estoy haciendo dentro del punto de vista de la entropía es quitar un grado o índice de restricción a mi sistema; antes de que yo quitara la primera división, las canicas se encontraban separadas y ordenadas en colores: en la primera división las azules, en la segunda las amarillas y en la tercera las rojas, estaban restringidas a un cierto orden.

Al quitar la segunda división, estoy quitando también otro grado de restricción. Las canicas se han mezclados unas con otras de tal manera que ahora no las puedo tener ordenas pues las barreras que les restringían han sido quitadas.

La entropía de este sistema ha aumentado al ir quitando las restricciones pues inicialmente había un orden establecido y al final del proceso (el proceso es en este caso el quitar las divisiones de la caja) no existe orden alguno dentro de la caja.

La entropía es en este caso una medida del orden (o desorden) de un sistema o de la falta de grados de restricción; la manera de utilizarla es medirla en nuestro sistema inicial, es decir, antes de remover alguna restricción, y volverla a medir al final del proceso que sufrió el sistema.

Es importante señalar que la entropía no está definida como una cantidad absoluta S (símbolo de la entropía), sino lo que se puede medir es la diferencia entre la entropía inicial de un sistema Si y la entropía final del mismo Sf. No tiene sentido hablar de entropía sino en términos de un cambio en las condiciones de un sistema

Page 2: Entropia

Sinergia

La sinergia es la integración de elementos que da como resultado algo más grande que la simple suma de éstos, es decir, cuando dos o más elementos se unen sinérgicamente crean un resultado que aprovecha y maximiza las cualidades de cada uno de los elementos.La sinergia es un concepto que proviene del griego "synergo", lo que quiere decir literalmente "trabajando en conjunto". Su significado actual se refiere al fenómeno en que el efecto de la influencia o trabajo de dos o más agentes actuando en conjunto es mayor al esperado considerando a la sumatoria de la acción de los agentes por separado.

Holística

La holística es aquello perteneciente al holismo, una tendencia o corriente que analiza los eventos desde el punto de vista de las múltiples interacciones que los caracterizan. El holismo supone que todas las propiedades de un sistema no pueden ser determinadas o explicadas como la suma de sus componentes. En otras palabras, el holismo considera que el sistema completo se comporta de un modo distinto que la suma de sus partes. De esta forma, el holismo resalta la importancia del todo como algo que trasciende a la suma de las partes, destacando la importancia de la interdependencia de éstas. Cabe mencionar que el holos (un término griego que significa “todo” o “entero”) alude a contextos y complejidades que entran en relación, ya que es dinámico.

TELEOLOGÍA

Su definición es: "Doctrina de las causas finales". Los escolásticos sentaron el principio de que quidquid fit, propter finem fit = "todo lo que se hace, se hace con algún fin". Y Aristóteles, más conciso aún, encerró su doctrina teleológica en dos palabras: ouden mathn udén máten) = "Nada en vano". Y Santo Tomás de Aquino, dice: Si no hubiese un fin último, no tenderíamos nunca a nada; ni llegaría ninguna acción a su término; ni tendría descanso la inclinación a ir hacia algo. Si no existiese un primero que nos moviese hacia un final, nadie empezaría a hacer nada, ni se tomaría nunca ninguna determinación, sino que se le daría vueltas hasta el infinito. Si algo queda claro de todo esto, es que si no existe un destino, es decir un final de trayecto, nada se pone en marcha. La doctrina suena obvia. Pero está en flagrante contradicción con el mecanicismo, que no necesita causas ni fines, tan duro de roer intelectualmente como su contrario. Vamos al léxico:

Neguentropia:

La neguentropía se puede definir como la tendencia natural de que un sistema se modifique según su estructura y se plasme en los niveles que poseen los

Page 3: Entropia

subsistemas dentro del mismo. Por ejemplo: las plantas y su fruto, ya que dependen los dos para lograr el método de neguentropía.

Isomorfismo

Se puede definir concisamente como: un isomorfismo es un homomorfismo biyectivo tal que su inversa es también homomorfismo.

Por ejemplo, si X es un número real positivo con el producto e Y es un número real con la suma, el logaritmo ln:X→Y es un isomorfismo, porque

y cada número real es el logaritmo de un único número real positivo. Esto significa que cada enunciado sobre el producto de números reales positivos tiene (sin más que sustituir cada número por su logaritmo) un enunciado equivalente en términos de la suma de números reales, que suele ser más simple.

Correspondencia biunívoca entre dos estructuras algebraicas que conserva las operaciones

Se dice de los cuerpos de diferente composición química e igual forma cristalina, que pueden cristalizar asociados; como el espato de Islandia y la giobertita, que forman la dolomía.