Esfuerzos en Materiales Conocidos

10
CONCLUSIÓN Los materiales, en su totalidad, se deforman a una carga externa. Se sabe además que, hasta cierta carga límite el sólido recobra sus dimensiones originales cuando se le descarga. La recuperación de las dimensiones originales al eliminar la carga es lo que caracteriza al comportamiento elástico. La carga límite por encima de la cual ya no se comporta elásticamente es el límite elástico. Al sobrepasar el límite elástico, los cuerpo sufre cierta deformación permanente al ser descargado, se dice entonces que ha sufrido deformación plástica. El comportamiento general de los materiales bajo carga se puede clasificar como dúctil o frágil según que el material muestre o no capacidad para sufrir deformación plástica. Los materiales dúctiles exhiben una curva Esfuerzo - Deformación que llega a su máximo en el punto de resistencia a la tensión. En materiales más frágiles, la carga máxima o resistencia a la tensión ocurre en el punto de falla. En materiales extremadamente frágiles, como los cerámicos, el esfuerzo de fluencia, la resistencia a la tensión y el esfuerzo de ruptura son iguales.

description

Esfuerzo en materiales conocidos

Transcript of Esfuerzos en Materiales Conocidos

CONCLUSIÓNLos materiales, en su totalidad, se deforman a una carga externa. Se sabe además que, hasta cierta carga límite el sólido recobra sus dimensiones originales cuando se le descarga. La recuperación de las dimensiones originales al eliminar la carga es lo que caracteriza al comportamiento elástico. La carga límite por encima de la cual ya no se comporta elásticamente es el límite elástico. Al sobrepasar el límite elástico, los cuerpo sufre cierta deformación permanente al ser descargado, se dice entonces que ha sufrido deformación plástica. El comportamiento general de los materiales bajo carga se puede clasificar como dúctil o frágil según que el material muestre o no capacidad para sufrir deformación plástica. Los materiales dúctiles exhiben una curva Esfuerzo - Deformación que llega a su máximo en el punto de resistencia a la tensión. En materiales más frágiles, la carga máxima o resistencia a la tensión ocurre en el punto de falla. En materiales extremadamente frágiles, como los cerámicos, el esfuerzo de fluencia, la resistencia a la tensión y el esfuerzo de ruptura son iguales.

ESFUERZOS EN EL ACERO

En general, en el caso de los aceros de dureza natural, el límite de fluencia coincide con el valor aparente de la tensión correspondiente al escalón de cedencia. En los casos en que no aparece este escalón o aparece poco definido, como suele ocurrir con los aceros estirados en frío, es necesario recurrir al valor convencional establecido en las prescripciones, como se explica mas abajo, para aceros de resistencia mayor a 4200 Kg/cm2

Las barras con resistencias hasta 2800 Kg/cm2 presentan una curva elasto-plástica, como se ve en la figura 5.10 a), entonces fy se identifica con claridad.

Para aceros de resistencias mayores, hasta 4200 Kg/cm2, la curva esfuerzo-deformación unitaria puede ser elasto-plastica o no, dependiendo de las propiedades del acero y del procesos de fabricación.

Para aceros de resistencias mayores a 4200 Kg/cm2, donde el grado de fluencia no esta definido, el código ACI especifica que el esfuerzo de fluencia, fy, debe determinarse como el esfuerzo que corresponde a una deformación de 0.0035 cm/cm, tal como se muestra en la Probablemente, la resistencia en el punto de fluencia, es decir, el esfuerzo elástico máximo que puede soportar la barra, es la propiedad mecánica más importante para el diseñador.

La resistencia a la tensión se controla por un limite sobre la resistencia en el punto de fluencia y esta no puede ser menor que 1.25 veces la resistencia real en el punto de fluencia.

Si bien la tendencia actual, en la construcción con hormigón reforzado, es hacia el uso de barras de refuerzo con grado de resistencia más elevado, dado que el  uso de estas conduce a una reducción significativa del tonelaje de acero y del tamaño de los miembros estructurales de hormigón, lo que da por resultado economía en la mano de obra y en otros materiales, se tiene un limite practico sobre cuan fuerte debe ser el acero de refuerzo utilizado en una construcción estándar de Hormigón armado: Todas las resistencias del acero tienen aproximadamente la misma elongación para el mismo esfuerzo de tensión aplicado  (mismo  modulo  de  elasticidad  Es=2.1*106  Kg/cm2).   Si  un  acero  tiene  una resistencia en el punto de fluencia que es el doble de la de otro, puede aplicarse el doble de deformación permanente, esta se llama deformación elastica. El ingeniero utiliza el limite de fluencia de la barra para calcular la dimensión de la estructura, pues la barra soporta cargas y sobrecargas hasta este punto y vuelve a su condición inicial sin deformación. Pasado este punto, la estructura esta fragilizada y comprometida.

En general, en el caso de los aceros de dureza natural, el límite de fluencia coincide con el valor aparente de la tensión correspondiente al escalón de cedencia (figura 5.10 a). En los casos en que no aparece este escalón o aparece poco definido, como suele ocurrir con los aceros estirados en frío, es necesario recurrir al valor convencional establecido en las prescripciones, como se explica mas abajo, para aceros de resistencia mayor a 4200 Kg/cm2.

Las barras con resistencias hasta 2800 Kg/cm2 presentan una curva elasto-plástica, como se ve en la figura 5.10 a), entonces fy se identifica con claridad. Para aceros de resistencias mayores, hasta 4200 Kg/cm2, la curva esfuerzo-deformación unitaria puede ser elasto-plastica o no, dependiendo de las propiedades del acero y del procesos de fabricación.

Para aceros de resistencias mayores a 4200 Kg/cm2, donde el grado de fluencia no esta definido, el código ACI especifica que el esfuerzo de fluencia, fy, debe determinarse como el esfuerzo que corresponde a una deformación de 0.0035 cm/cm, tal como se muestra en la figura 5.11.

Probablemente, la resistencia en el punto de fluencia, es decir, el esfuerzo elástico máximo que puede soportar la barra, es la propiedad mecánica más importante para el diseñador.

La resistencia a la tensión se controla por un limite sobre la resistencia en el punto de fluencia y esta no puede ser menor que 1.25 veces la resistencia real en el punto de fluencia.

FIGURA 5.10  a) Diagrama Esfuerzo De formación para Aceros de Dureza Natural Laminados en

Caliente b) curvas típicas esfuerzo-deformación unitarias para barras de refuerzo

Nota: Las curvas están indicadas según su límite de fluencia

FIGURA 5.11    Diagrama  Esfuerzo  Deformación  para  Aceros  de  resistencia mayor a 4200 kg/cm2

En general, no se puede usar la mayor resistencia de los aceros con resistencias en el punto de fluencia de 4200   Kg/cm2, como refuerzo estándar a la tracción, sin causar el agrietamiento del hormigón, a menos que se tomen disposiciones especiales en el diseño del miembro. 

•Maleabilidad,  es  la  capacidad  que  presenta  el  acero  de  soportar  la  deformación,  sin romperse, al ser sometido a un esfuerzo de compresión.

•Tenacidad, viene siendo la conjugación de dos propiedades: ductilidad y resistencia. Un material tenaz será aquel que posee una buena ductilidad y una buena resistencia al mismotiempo.

•Fatiga, cuando un elemento estructural se somete a cargas cíclicas, este puede fallar debido a  las grietas que se forman y propagan, en especial cuando se presentan inversiones deesfuerzos, esto es conocido como falla por fatiga, que puede ocurrir con esfuerzos menores a la carga de deformación remanente.

     Limite de fatiga. Se evalúa en un diagrama Esfuerzo máximo (resistencia ala fatiga) vs. el número de ciclos hasta la falla, estos diagramas indican que la resistencia a la fatiga, de un acero estructural, decrece con un aumento de número de ciclos, hasta que  se  alcanza  un  valor  mínimo  que  es  el  Limite  de  Fatiga.  Con  la  tracción considerada como positiva y la compresión negativa, las pruebas también demuestran que a medida que disminuye la relación entre el esfuerzo máximo y el mínimo, se reduce de modo considerable la resistencia al a fatiga. Las pruebas indican además que los aceros con resistencia a la tracción semejante tienen casi la misma resistencia a la fatiga.

ESFUERZOS EN CONCRETO HIDRAULICO

El cemento Porlan es el mas comúnmente usado y consiste en un material grisáceo finamente pulverizado, conformado principalmente por silicatos de calcio y aluminio.

El comportamiento de una estructura bajo carga depende en alto grado de las relaciones esfuerzo-deformación del material con el cual esta construida, para el tipo de esfuerzo al que esta sometido el material dentro de la estructura. Debido a que el concreto se utiliza principalmente en compresión, resulta de interés fundamental su curva esfuerzo-deformación unitaria a la compresión. Esta curva se obtiene mediante mediciones apropiadas de la deformación unitaria en ensayos de cilindros o en la zona de compresión de vigas.

La curva de esfuerzo –deformación para las distintas resistencias del concreto consta de dos porciones:

Una porción inicial relativamente elástica y lineal en el cual el esfuerzo y la deformación unitaria son proporcionales.

Luego comienza a inclinarse hacia la horizontal alcanzando el esfuerzo máximo, o sea la resistencia a la compresión para una deformación unitaria que varia aproximadamente entre 0.002 a 0.003 para concretos livianos donde los mayores valores en cada caso corresponden a las mayores resistencias. Todas las curvas muestran un tramo descendente después de que se ha alcanzado el esfuerzo pico; en este tramo el comportamiento del concreto es inelástico o plástico.

EL modulo de elasticidad 1kg/cm2, es decir la pendiente del tramo recto inicial de la curva esfuerzo-deformación unitaria, aumenta con la resistencia del concreto.

Para concretos con resistencia de aproximadamente 6000 lb/pulg2, este puede calcularse con suficiente precisión a partir de la siguiente ecuación empirica dada por el código ACI

Ec=w^1.5*4000*(f’c)^1/2

Donde:W=peso volumétrico del concreto en ton/m3=2.4F’c=resistencia de concreto a la compresión en kg/cm2=210 (3000psi)G=0.4*Ec modulo de eleasticidad al esfuerzo cortante.U=(0.12-0.20) modulo de poisson (para concreto normal es 0.18)

Aunque el concreto se emplea de mejor manera cuando se utilizan su buena resistencia a la compresión, su resistencia a la tensión también es de importancia en varias situaciones.

ESFUERZOS EN CONCRETO ASFALTICO

Dada la forma tradicional de estructuración de los materiales que conforman el pavimento, la deformabilidad suele crecer hacia abajo. La deformabilidad interesa sobre todo a niveles profundos, pues es relativamente fácil que las capas superiores tengan niveles de deformación tolerables aún para los altos valores de esfuerzos que en ellas actúan.

En pavimentos, las deformaciones interesan desde dos puntos de vista: por un lado, las deformaciones excesivas están asociadas a estados de falla, y por otro, porque es sabido que un pavimento deformado puede dejar de cumplir sus funciones, independientemente de que las deformaciones no hayan conducido a un colapso estructural propiamente dicho (Rico A., Del Castillo H., 1992).

Brown (1996), reporta gráficas de esfuerzos y deformaciones obtenidas mediante la instrumentación de una estructura de pavimento sujeta a la aplicación de cargas repetidas por medio del paso de un tractocamión. Las Figuras 1.16 (a) y (b) corresponden a las mediciones antes mencionadas en un punto ubicado a 35 cm de profundidad con respecto a la superficie de rodamiento.

Se puede apreciar que la carga que transmiten los vehículos es en forma de pulsos, cuya magnitud depende de la presión de inflado de las llantas y de la carga por eje; además, la duración de aplicación del pulso depende de la velocidad y del nivel de tránsito diario. También se observa que la máxima deformación registrada corresponde al valor del esfuerzo máximo.

Para reducir la formación de roderas debe minimizarse la energía disipada en cada ciclo de carga. Para un material viscoelástico como lo es el asfalto en las temperaturas normales de trabajo, la energía disipada se puede calcular:

WC = π σ ε senδ⋅ ⋅ ⋅

Este fenómeno puede considerarse como controlado por esfuerzo por la aplicación de cargas cíclicas, para un fenómeno de este tipo σo es el esfuerzo aplicado

WC = π σ 0 ε senδ⋅ ⋅ ⋅

La deformación debida al esfuerzo aplicado puede representarse como: ε=0 σ /IGI Sustituyendo en la ecuación de energía, tenemos que

Este parámetro combina la resistencia total del material ante la deformación │G*│ y la relativa no-elasticidad del ligante asfáltico reflejada por sen δ.

Fig. 1. Importancia del ángulo de fase (δ). Cuanto menor es el ángulo de fase mayor es la capacidad del material de recuperar las deformaciones.