Estados en La Materia

7
ESTADOS EN LA MATERIA La materia normalmente presenta tres estados o formas: sólida, líquida o gaseosa. Sin embargo, existe un cuarto estado, denominado estado plasma, el cual corresponde a un conjunto de partículas gaseosas eléctricamente cargadas (iones), con cantidades aproximadamente iguales de iones positivos y negativos, es decir, globalmente neutro. El estado sólido se caracteriza por su resistencia a cualquier cambio de forma, lo que se debe a la fuerte atracción que hay entre las moléculas que lo constituyen; es decir, las moléculas están muy cerca unas de otras. No todos los sólidos son iguales, ya que poseen propiedades específicas que los hacen ser diferentes. Estas propiedades son: Elasticidad Dureza Fragilidad SOLIDO Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada. Las sustancias en estado sólido suelen presentar algunas de las siguientes características: Cohesión elevada. Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original. A efectos prácticos son Incompresibles. Resistencia a la fragmentación. Fluidez muy baja o nula.

description

Quimica

Transcript of Estados en La Materia

Page 1: Estados en La Materia

ESTADOS EN LA MATERIA

La materia normalmente presenta tres estados o formas: sólida, líquida o gaseosa. Sin embargo, existe un cuarto estado, denominado estado plasma, el cual corresponde a un conjunto de partículas gaseosas eléctricamente cargadas (iones), con cantidades aproximadamente iguales de iones positivos y negativos, es decir, globalmente neutro.

El estado sólido se caracteriza por su resistencia a cualquier cambio de forma, lo que se debe a la fuerte atracción que hay entre las moléculas que lo constituyen; es decir, las moléculas están muy cerca unas de otras. No todos los sólidos son iguales, ya que poseen propiedades específicas que los hacen ser diferentes. Estas propiedades son:

Elasticidad Dureza Fragilidad

SOLIDO

Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión.

En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.

Las sustancias en estado sólido suelen presentar algunas de las siguientes características:

Cohesión elevada. Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se

deforman fuera de su configuración original. A efectos prácticos son Incompresibles. Resistencia a la fragmentación. Fluidez muy baja o nula. Algunos de ellos se subliman.

LEY DE HOOKE (F=KX)

Ley de Hooke establece que el límite de la tensión elástica de un cuerpo es directamente proporcional a la fuerza. Mediante un análisis e interpretación de la Ley de Hooke se estudia aspectos relacionados con la ley de fuerzas, trabajo, fuerzas conservativas y energía de Resortes. Los resortes son un modelo bastante interesante en la interpretación de la teoría de la elasticidad.

Page 2: Estados en La Materia

Hooke estableció la ley fundamental que relaciona la fuerza aplicada y la deformación producida. Para una deformación unidimensional, la Ley de Hooke se puede expresar matemáticamente así:

= -k

K es la constante de proporcionalidad o de elasticidad.

es la deformación, esto es, lo que se ha comprimido o estirado a partir del estado que no tiene deformación. Se conoce también como el alargamiento de su posición de equilibrio.

es la fuerza resistente del sólido.

El signo ( - ) en la ecuación se debe a la fuerza restauradora que tiene sentido contrario al desplazamiento. La fuerza se opone o se resiste a la deformación.

Las unidades son: Newton/metro (New/m) – Libras/pies (Lb/p).

Si el sólido se deforma más allá de un cierto punto, el cuerpo no volverá a su tamaño o forma original, entonces se dice que ha adquirido una deformación permanente.

Ejemplo 1:

Ley de fuerza de Resortes

Una masa de 0,30 Kg está suspendida de un resorte vertical y desciende a una distancia de 4,6 cm después de la cual cuelga en reposo. Luego se suspende una masa adicional de 0,50 Kg de la primera. ¿Cuál es la extensión total del resorte?

Datos:

m1= 0,30 Kg

m2= 0,50 Kg

X1= 4,6 cm = 0,046 m

g = 9,8 m/seg2

X =? (Longitud de alargamiento total)

Solución:La distancia de alargamiento o estiramiento total está dada por F = kX.. Donde F es la fuerza aplicada, en este caso el peso de la masa suspendida sobre el resorte.

F1 = m1. g = kX1

k = 63,9 New / m

Conociendo k, la extensión total del resorte se encuentra a partir de la situación de la fuerza equilibrada:

F = (m1 + m2).g = kX

Page 3: Estados en La Materia

Así:

X = (0,30 kg + 0,50 Kg) . 9,8 m / seg2 / 63,9 New / m

X = 0,12 m = 12 cm.

Ejemplo 2:

Si se tiene un resorte cuya constante de elasticidad es 400 N/m, ¿cuánto se desplazará si se le ejerce una fuerza de 4 Newton?

Datos:

k = 400 N/m

F = 4 N

F = kx → x = F/k = 4 N / 400 (N/m) = 0,01 m

MÓDULO DE YOUNG

El módulo de Young o módulo de elasticidad longitudinal es un parámetro que caracteriza el comportamiento de un material elástico, según la dirección en la que se aplica una fuerza. Este comportamiento fue observado y estudiado por el científico inglés Thomas Young.

Para un material elástico lineal e isótropo, el módulo de young tiene el mismo valor para una tracción que para una compresión, siendo una constante independiente del esfuerzo siempre que no exceda de un valor máximo denominado límite elástico, y es siempre mayor que cero: si se tracciona una barra, aumenta de longitud.

Tanto el módulo de Young como el límite elástico son distintos para los diversos materiales. El módulo de elasticidad es una constante elástica que, al igual que el límite elástico, puede encontrarse empíricamente mediante ensayo de tracción del material. Además de este módulo de elasticidad longitudinal, puede definirse el módulo de elasticidad transversal de un material.

Para un material elástico lineal el módulo de elasticidad longitudinal es una constante (para valores de tensión dentro del rango de reversibilidad completa de deformaciones). En este caso, su valor se define como el cociente entre la tensión y la deformación que aparecen en una barra recta estirada o comprimida fabricada con el material del que se quiere estimar el módulo de elasticidad:

Dónde:

es el módulo de elasticidad longitudinal.

es la presión ejercida sobre el área de sección transversal del objeto.

Page 4: Estados en La Materia

es la deformación unitaria en cualquier punto de la barra.

La ecuación anterior se puede expresar también como:

Por lo que dadas dos barras o prismas mecánicos geométricamente idénticos pero de materiales elásticos diferentes, al someter a ambas barras a deformaciones idénticas, se inducirán mayores tensiones cuanto mayor sea el módulo de elasticidad. De modo análogo, tenemos que sometidas a la misma fuerza, la ecuación anterior reescrita como:

nos indica que las deformaciones resultan menores para la barra con mayor módulo de elasticidad. En este caso, se dice que el material es más rígido.

Ejercicio 1:

Calcula el módulo de elasticidad de una barra de Φ=20mm y 5m de longitud de cierto material si, al ser sometido a un esfuerzo de tracción de 2.000Kg, experimenta un alargamiento de 2mm.

SOL:

E=15.900 Kg/mm2

Ejercicio 2.

Una barra cilíndrica de latón de 10mm de diámetro y con una longitud de 50mm, se somete a un esfuerzo de tracción, aplicando en sus extremos una carga de 25KN. De esta forma se observa que la distancia entre las marcas de calibración se incrementa en 0,152mm. Hallar el módulo de elasticidad del latón.

SOL:

E=104,7·109 Pa

LIQUIDO

Si se incrementa la temperatura, el sólido va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:

Cohesión menor. Movimiento energía cinética. Son fluidos, no poseen forma definida, ni memoria de forma por lo que toman la forma de la

superficie o el recipiente que lo contiene. En el frío se contrae (exceptuando el agua). Posee fluidez a través de pequeños orificios.

Page 5: Estados en La Materia

Puede presentar difusión. Son poco compresibles.

PROPIEDADES DE LOS FLUIDOS

Viscosidad

Se define como la resistencia al flujo. La viscosidad de un líquido depende de las fuerzas intermoleculares:

Cuantos mayores son las fuerzas intermoleculares de un líquido, sus moléculas tienen mayor dificultad de desplazarse entre sí, por lo tanto la sustancia es más viscosa.

Los líquidos que están formados por moléculas largas y flexibles que pueden doblarse y enredarse entre sí, son más viscosos.

Cohesión y adhesión

La cohesión y la adhesión son fuerzas que afectan a los líquidos. La cohesión se observa cuando, por ejemplo, se unen dos gotas de un líquido para formar una sola gota; y la adhesión cuando dos placas de vidrio humedecidas, puestas una sobre otra, se pegan por la adhesión del agua.

Capilaridad

La capilaridad consiste en el ascenso y descenso de líquidos por tubos delgados, como un cabello, conocidos como tubos capilares. Cuando un líquido moja las paredes del tubo capilar, debido a la adhesión, asciende y, su superficie libre, forma una curvatura llamada menisco cóncavo, y cuando el líquido no moja las paredes del tubo capilar, por su gran cohesión, desciende y su superficie libre forma un menisco convexo.

Densidad relativa

La densidad relativa de una sustancia es el cociente entre su densidad y la de otra sustancia diferente que se toma como referencia o patrón: Para sustancias líquidas se suele tomar como sustancia patrón el agua cuya densidad a 4 ºC es igual a 1000 kg/m3. Para gases la sustancia de referencia la constituye con frecuencia el aire que a 0 ºC de temperatura y 1 atm de presión tiene una densidad de 1,293 kg/m3. Como toda magnitud relativa, que se obtiene como cociente entre dos magnitudes iguales, la densidad relativa carece de unidades físicas.

Densidad y peso específico

La densidad está relacionada con el grado de acumulación de materia (un cuerpo compacto es, por lo general, más denso que otro más disperso), pero también lo está con el peso. Así, un cuerpo pequeño que es mucho más pesado que otro más grande es también mucho más denso. Esto es debido a la relación P = m·g existente entre masa y peso. No obstante, para referirse al peso por unidad de volumen la física ha introducido el concepto de peso específico pe que se define como el cociente entre el peso P de un cuerpo y su volumen. El peso específico representa la fuerza con que la Tierra atrae a un volumen unidad de la misma sustancia considerada. La relación entre peso específico y densidad es la misma que la existente entre peso y masa. En efecto: siendo g la aceleración de la gravedad.

Page 6: Estados en La Materia