explicando

7

Transcript of explicando

Page 1: explicando
Page 2: explicando

En teoría de probabilidad y estadística, la distribución de Bernoulli (o

distribución dicotómica), nombrada así por el matemático y científico suizo

Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1

para la probabilidad de éxito p y valor 0 para la probabilidad de fracaso q = 1

− p. Por lo tanto, si X es una variable aleatoria con esta distribución.

Consiste en realizar un experimento aleatorio una sola vez y observar si cierto

suceso ocurre o no, siendo p la probabilidad de que esto sea así (éxito) y q=1-

p el que no lo sea (fracaso).

Existen muchas situaciones en las que se presenta una experiencia binomial.

Cada uno de los experimentos es independiente de los restantes (la

probabilidad del resultado de un experimento no depende del resultado del

resto). El resultado de cada experimento ha de admitir sólo dos categorías (a

las que se denomina éxito y fracaso). Las probabilidades de ambas

posibilidades han de ser constantes en todos los experimentos

La distribución binomial esta asociada a experimentos del siguiente tipo:

- Realizamos n veces cierto experimento en el que consideramos solo la posibilidad de éxito o Fracaso.

- La obtención de éxito o fracaso en cada ocasión es independiente de la obtención de éxito o Fracaso en las demás ocasiones.

- La probabilidad de obtener ´éxito o fracaso siempre es la misma en cada ocasión. Veámoslo con un ejemplo

Tiramos un dado 7 veces y contamos el numero de cincos que obtenemos. ¿Cual es la probabilidad de obtener tres cincos?

Este es un típico ejemplo de distribución binomial, pues estamos repitiendo 7 veces el experimento de lanzar un dado. ¿Cual es nuestro ´éxito?

Evidentemente, sacar un 5, que es en lo que nos fijamos.

El fracaso, por tanto, seria no sacar 5, sino sacar cualquier otro número. Por

tanto, Éxito = E = “sacar un 5” = ´ ⇒p (E) =

1

6

Page 3: explicando

Fracaso = F = “no sacar un 5” =⇒p (F) =

5

6

Para calcular la probabilidad que nos piden, fijemonos en que nos dicen que sacamos 3 cincos y por lo tanto tenemos 3 ´éxitos y 4 fracasos, ¿de cuantas maneras pueden darse estas posibilidades?

Podríamos sacar 3 cincos en las 3 primeras tiradas y luego 4 tiradas sin sacar cinco, es decir: EEEFFFF

Pero también podríamos sacar EFEFFFE, es decir que en realidad estamos calculando de cuantas.

En teoría de probabilidad y estadística, la distribución de Poisson es

una distribución de probabilidad discreta que expresa, a partir de una

frecuencia de ocurrencia media, la probabilidad que ocurra un determinado

número de eventos durante cierto periodo de tiempo.

La función de masa de la distribución de Poisson es

Donde

k es el número de ocurrencias del evento o fenómeno (la función nos da

la probabilidad de que el evento suceda precisamente k veces).

λ es un parámetro positivo que representa el número de veces que se

espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo,

si el suceso estudiado tiene lugar en promedio 4 veces por minuto y

estamos interesados en la probabilidad de que ocurra k veces dentro de

un intervalo de 10 minutos, usaremos un modelo de distribución de

Poisson con λ = 10×4 = 40.

e es la base de los logaritmos naturales (e = 2,71828 ...)

Tanto el valor esperado como la varianza de una variable aleatoria con

distribución de Poisson son iguales a λ. Los momentos de orden superior

son polinomios de Touchard en λ cuyos coeficientes tienen una

interpretación combinatoria. De hecho, cuando el valor esperado de la

distribución de Poisson es 1, entonces según la fórmula de Dobinski, el n-ésimo

momento iguala al número de particiones de tamaño n.

Page 4: explicando

La moda de una variable aleatoria de distribución de Poisson con un λ no

entero es igual a , el mayor de los enteros menores que λ (los símbolos

representan la función parte entera). Cuando λ es un entero positivo, las

modas son λ y λ − 1.

La función generadora de momentos de la distribución de Poisson con valor

esperado λ es

Las variables aleatorias de Poisson tienen la propiedad de ser infinitamente

divisibles.

La divergencia Kullback-Leibler desde una variable aleatoria de Poisson de

parámetro λ0 a otra de parámetro λ es

Para qué sirve conocer que algo es Poisson?

Porque si se tiene caracterizado el comportamiento probabilístico de un

fenómeno aleatorio, podemos contestar preguntas como:

Qué probabilidad hay de que lleguen más de 15 clientes al banco en un

intervalo de 5 minutos de duración?

Qué probabilidad hay de que suceda por lo menos una falla en un tramo

de 1km de tubería de gas?

Qué probabilidad hay de que en un estanque de cultivo de camarón,

haya más de media tonelada?

Qué probabilidad hay de que en un área de 1km se encuentren más de

3 brotes de una enfermedad?

Por qué algunas cosas supimos de antemano que iban a ser Poisson y que

otras no?

Porque los fenómenos que son procesos de Poisson en la línea o en el tiempo,

en la superficie, o en el espacio, tienen algunas características que

matemáticamente la delatan, como son:

Que se está contando el número de eventos que suceden en un área (o

intervalo de tiempo, o volumen) determinada.

Page 5: explicando

Que la probabilidad de que suceda un evento sobre un área muy

pequeña, es también muy pequeña.

Que en un mismo lugar (o en el mismo tiempo), no pueden suceder más

de uno solo de los eventos que se están contando.

Que si se duplica el tamaño de la superficie (intervalo de tiempo, etc.),

entonces se duplica la probabilidad de registrar ahí un evento.

Notas y conclusiones

Los ejemplos vistos de procesos de Poisson, son homogéneos en el

sentido de que la probabilidad de que suceda un evento no varía según

la posición sobre el espacio. Existen también procesos de Poisson que

son heterogéneos.

Se concluye que los fenómenos aleatorios no son tan impredecibles

como se pudiera pensar. Que en efecto, muestran un concepto llamado

regularidad estadística, que es la que hace que éstos se puedan

estudiar matemáticamente.

Que un observador de un fenómeno aleatorio, no puede esperar más

que cuantificar la posibilidad de que el mismo suceda.

Se le llama distribución normal, distribución de Gauss o distribución gaussiana,

a una de las distribuciones de probabilidad de variable continua que con más

frecuencia aparece aproximada en fenómenos reales.

La gráfica de su función de densidad tiene una forma acampanada y es

simétrica respecto de un determinado parámetro. Esta curva se conoce como

campana de Gauss y e es el gráfico de de una función gaussiana.

Ejemplo de alguna grafica seria:

Page 6: explicando

Es una distribución adecuada para modelizar el comportamiento de variables

aleatorias continuas con asimetría positiva. Es decir, variables que presentan

una mayor densidad de sucesos a la izquierda de la media que a la derecha.

En su expresión se encuentran dos parámetros, siempre positivos, (α) alfa y

(β) beta de los que depende su forma y alcance por la derecha, y también la

función Gamma Γ (α), responsable de la convergencia de la distribución.

Los parámetros de la distribución

El primer parámetro (α) sitúa la máxima intensidad de probabilidad y por este

motivo en algunas fuentes se denomina “la forma” de la distribución: cuando se

toman valores próximos a cero aparece entonces un dibujo muy similar al de la

distribución exponencial. Cuando se toman valores más grandes de (α) el

centro de la distribución se desplaza a la derecha y va apareciendo la forma de

una campana de Gauss con asimetría positiva. Es el segundo parámetro (β) el

que determina la forma o alcance de esta asimetría positiva desplazando la

densidad de probabilidad en la cola de la derecha. Para valores elevados de (β)

la distribución acumula más densidad de probabilidad en el extremo derecho de

la cola, alargando mucho su dibujo y dispersando la probabilidad a lo largo del

plano. Al dispersar la probabilidad la altura máxima de densidad de

probabilidad se va reduciendo; de aquí que se le denomine “escala”. Valores

más pequeños de (β) conducen a una figura más simétrica y concentrada, con

un pico de densidad de probabilidad más elevado. Una forma de interpretar (β)

es “tiempo promedio entre ocurrencia de un suceso”. Relacionándose con el

parámetro de la Poisson como β=1/λ. Alternativamente λ será el ratio de

ocurrencia: λ=1/β. La expresión también será necesaria más adelante para

poder llevar a cabo el desarrollo matemático.

Page 7: explicando

La distribución gamma se puede caracterizar del modo siguiente: si se está

interesado en la ocurrencia de un evento generado por un proceso de Poisson

de media lambda, la variable que mide el tiempo transcurrido hasta obtener n

ocurrencias del evento sigue una distribución gamma con parámetros

a=n×lambda (escala) y p=n (forma). Se denota Gamma(a,p).

Por ejemplo, la distribución gamma aparece cuando se realiza el estudio de la

duración de elementos físicos (tiempo de vida).

Esta distribución presenta como propiedad interesante la “falta de memoria”.

Por esta razón, es muy utilizada en las teorías de la fiabilidad, mantenimiento y

fenómenos de espera (por ejemplo en una consulta médica “tiempo que

transcurre hasta la llegada del segundo paciente”), la teoría de la cola,

electricidad, procesos industriales,

En probabilidad y estadística, la distribución t (de Student) es una distribución

de probabilidad que surge del problema de estimar la media de una

población normalmente distribuida cuando el tamaño de la muestra es

pequeño.

Aparece de manera natural al realizar la prueba t de Student para la

determinación de las diferencias entre dos medias muéstrales y para la

construcción del intervalo de confianza para la diferencia entre las medias de

dos poblaciones cuando se desconoce la desviación típica de una población y

ésta debe ser estimada a partir de los datos de una muestra.

Es una distribución de probabilidad que surge del problema de estimar la

media de una población normalmente distribuida cuando el tamaño de la

muestra es pequeño.

Aparece de manera natural al realizar la prueba t de Student para la

determinación de las diferencias entre dos medias muéstrales y para la

construcción del intervalo de confianza para la diferencia entre las medias de

dos poblaciones cuando se desconoce la desviación típica de una población y

ésta debe ser estimada a partir de los datos de una muestra.