Fundamentos Sonido

download Fundamentos Sonido

of 16

Transcript of Fundamentos Sonido

  • 8/18/2019 Fundamentos Sonido

    1/16

     

    FUNDAMENTOS DE ONDAS SONORASEMPLEANDO PHYSICSSENSORS

     Por: Diego Luis Aristizábal Ramírez, Roberto Restrepo Aguilar y Carlos Alberto Ramírez Martínez

    Profesores asociados de la Escuela de Física de la Universidad Nacional de Colombia, sede Medellín,

     Julio de 2012

    PARTE A: CONCEPTOS BÁSICOS

    LA ONDA SONORA

    Las ondas que se propagan a lo largo de un resorte como consecuencia de una compresión

    longitudinal del mismo constituyen un modelo de ondas mecánicas que se asemeja bastante a

    la forma en la que el sonido se genera y se propaga. Las ondas sonoras en los fluidos se

    producen también como consecuencia de una compresión del medio a lo largo de la

    dirección de propagación. Son, por tanto, ondas longitudinales.

    Para que se produzca un sonido, es necesario que exista un cuerpo que vibre y un medio

    elástico que propague esas vibraciones. Los sonidos son diferentes unos de otros, la voz de un

    ser humano se puede distinguir del sonido que emiten los pájaros, de un instrumento

    musical o del viento; pero para que pueda transmitirse requiere de un medio que puede ser

    gaseoso, sólido o líquido. El ser humano requiere del aire para comunicarse mediante los

    diversos sonidos, los peces del agua y algunos animales como los topos y castores de la tierraque es sólida. En el vacío el sonido no se propaga.

    El sonido se propaga más rápido en el estado sólido que en el estado líquido y se propaga

    más rápido en el estado líquido que en el gaseoso. La razón de esto tiene que ver con la

    cercanía de las partículas en cada uno de estos medios y en la magnitud de la interacción

    eléctrica entre ellas. El sonido en el hierro se propaga a unos 5000 m/s, en el agua a unos

    1500 m/s y en el aire a temperatura ambiente a unos 340 m/s ( ver en tabla periódica la

     velocidad del sonido en los elementos).

    En relación a la frecuencia, el oído humano es capaz de captar sonidos emitidos entre los 16

    Hz y los 20.000 Hz. Los ultrasonidos tienen una frecuencia mayor a los 20.000 Hz y los

    infrasonidos una frecuencia menor a los 16 Hz.

    Cuando se propaga una sonora en un gas, simultáneamente varían tres magnitudes físicas: la

    elongación, la densidad y la presión. Es decir se puede hablar de la propagación simultánea

    de tres ondas: onda de elongación (oscilación de las partículas alrededor de las posiciones de

    equilibrio), onda de densidad y onda de presión (onda de presión manométrica: variación de

    la presión alrededor de la presión atmosférica). Las tres viajan a la misma velocidad

    (velocidad del sonido en el gas) pero no se encuentran en fase: la onda de elongación y la de

    densidad se encuentran desfasadas en π/2, es decir en un cuarto de longitud de onda ( /4),

    http://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/velocidad_sonido.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/velocidad_sonido.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/velocidad_sonido.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/velocidad_sonido.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/velocidad_sonido.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/velocidad_sonido.htm

  • 8/18/2019 Fundamentos Sonido

    2/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    Figura 1. En la práctica la magnitud que se mide es la presión: por lo tanto se suele decir que

    el sonido en un gas es una onda de presión.  Ver simulación. 

    Figura 1: Fotograma de una simulación

    que ilustra una onda sonora propagándoseen una columna de gas. Arriba se observa

    la columna de gas perturbada, y abajo se

    observan las respectivas gráficas respecto a

    la posición en esta columna (en un

    instante) de la elongación y de la presión

    manométrica (claramente se deduce el

    desfase de  /4 entre ambas ondas.

    En resumen, las ondas sonoras en los gases son longitudinales y mecánicas.

     Velocidad del sonido en el aire

     A mayor temperatura del aire mayor es la velocidad de propagación del sonido: aumenta

    0,6 m/s por cada grado Celsius de aumento en la temperatura:

    t V    6,05,331   (1)

    en donde t es la temperatura del aire en grados Celsius y V   la velocidad del sonido en el aireen m/s.

    CUALIDADES DEL SONIDO

    El oído humano es capaz de distinguir unos sonidos de otros porque es sensible a las

    diferencias que puedan existir entre ellos en lo que concierne a alguna de las tres cualidades

    que caracterizan todo sonido y que son la intensidad, el tono  y el timbre. Aun cuando todas

    ellas se refieren al sonido fisiológico, están relacionadas con diferentes propiedades de las

    ondas sonoras.

    Timbre y tono

    Si la forma de la onda sonora es una función seno o coseno se dice que es armónica. Esta se

    puede conseguir con un diapasón o con un generador de señales armónicas (por ejemplo, el

    de PhysicsSensor).

    http://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/ondas_elongacion_presion.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/ondas_elongacion_presion.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/ondas_elongacion_presion.htm

  • 8/18/2019 Fundamentos Sonido

    3/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

     Actividad 1:

    Observar la forma sinusoidal del sonido generado por un diapasón y medir su período y

    frecuencia de vibración, Figura 2.

      Conectar un micrófono a la entrada del sonido del PC.  Ejecutar el Sonoscopio de PhysicsSensor.

      Golpear el diapasón y capturar con el sonoscopio el sonido.

      Desplegar el sonograma de la onda sonora en el sonoscopio y proceder a medir su

    periodo P  y su frecuencia f   (recordar que f=P -1).

    Figura 2: Sonido generado por un diapasón de frecuencia 250 Hz y periodo es igual a 0,004 s.

     Actividad 2:

    Obtener sonidos sinusoidales con el generador de señales de PhysicsSensor, Figura 3.

      Conectar un micrófono a la entrada del sonido del PC.

      Ejecutar el Generador de señales de PhysicsSensor.

      Ejecutar el Sonoscopio de PhysicsSensor.

      Generar un sonido de frecuencia igual a 500 Hz (o la deseada).

       Acercar el micrófono al parlante del PC y capturar el sonido (la señal) con el

    sonoscopio.

      Desplegar el sonograma de la onda sonora en el sonoscopio y proceder a medir su

    periodo P  y su frecuencia f   (recordar que f=P -1).

  • 8/18/2019 Fundamentos Sonido

    4/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    Figura 3: Sonido generado con la tarjeta de sonido del PC mediante el generador de señales de

    PhysicsSensor 

     Actividad 3:

     Analizar el sonido generado por seres humanos, Figura 4.

      Conectar un micrófono a la entrada del sonido del PC.

      Ejecutar el Sonoscopio de PhysicsSensor.

      Una mujer al frente del micrófono genera el sonido de una vocal (por ejemplo,

    aaaaaaaaaaaaaaaaa…..).  

      Capturar el sonido (la señal) con el sonoscopio.

      Desplegar el sonograma de la onda sonora en el sonoscopio y proceder a medir su

    periodo P   y su frecuencia f   (recordar que f=P -1). Observar que la onda sonora ya no es

    sinusoidal pero es periódica: a la frecuencia calculada con este periodo se le denomina

    frecuencia fundamental y es la que da la sensación del tono del sonido.

      Repetir el experimento con la misma vocal pero generada por un hombre.

    En la Figura 4 aparece el resultado de un caso de este experimento. Se debe observar lo

    siguiente:

      La forma de los sonidos no es sinusoidal, es decir no son armónicos.

      La forma de los sonidos es periódica: el periodo del sonido emitido por Camila es igual a

    0,0038 s y el de Diego es 0,0069 s.

      Las frecuencias fundamentales (las correspondientes a los periodos medidos) son iguales a

    263, 16 Hz y 144,93 Hz para Camila y Diego respectivamente. Es decir el tono de Camila

    es más agudo que el de Diego (esto es lo normal en los seres humanos para los sexos: lasmujeres tonos agudos y los hombres tonos graves).

      La forma de las ondas son las que explican la sensación de lo que se denomina el timbre 

    del sonido. El timbre es una especie de “huella digital”. 

  • 8/18/2019 Fundamentos Sonido

    5/16

  • 8/18/2019 Fundamentos Sonido

    6/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    Intensidad y Nivel de Intensidad

    La intensidad del sonido percibido, o propiedad que hace que éste se capte como fuerte o

    como débil, está relacionada con la intensidad de la onda sonora correspondiente, también

    llamada intensidad acústica .

    La intensidad acústica es una magnitud que da idea de la cantidad de energía que estáfluyendo por el medio como consecuencia de la propagación de la onda. Se define como la

    energía que atraviesa por segundo una superficie unidad dispuesta perpendicularmente a la

    dirección de propagación. Equivale a la potencia por unidad de superficie y se expresa en

     W.m-2.

    La ley de Weber-Fechner  establece una relación cuantitativa entre la magnitud de un estimulo

    físico y como este es percibido (sensación). La ley expresa que la relación entre el estímulo y

    la percepción corresponde a una escala logarítmica. Aplicada esta ley al sonido expresa que el

    nivel sonoro crece con el logaritmo de la intensidad, es decir cuando la intensidad crece en

    progresión geométrica, la sonoridad crece en progresión aritmética. A esta escala se le

    denomina nivel de intensidad   y se expresa en dB (decibeles):

    0

    log10 I 

     I      (2)

    donde I0 es una intensidad de referencia. Para el caso del aire se ha tomado 10-12  W.m-2. Una

    intensidad acústica de 10 decibelios corresponde a una energía diez veces mayor que una

    intensidad de cero decibelios; una intensidad de 20 dB representa una energía 100 veces

    mayor que la que corresponde a 0 decibelios y así sucesivamente. El nivel de intensidad mide

    la sensación y la intensidad mide el estímulo. En la tabla 1 se ilustra las equivalencias entre las

    intensidades y los niveles de intensidad de ondas sonoras en el aire con algunos ejemplos.

    Intensidad

    en W.m-2 

    Nivel de Intensidad

    en dbEjemplo

    10-12  0 Sonido más tenue que percibe el oído humano

    10-11  10 Susurro, respiración normal, pisadas suaves.

    10-10  20 Rumor de las hojas en el campo al aire libre

    10-9  30 Murmullo, oleaje suave en la costa

    10-8  40 Biblioteca, habitación en silencio10

    -7  50 Tráfico ligero, conversación normal

    10-6  60 Oficina grande en horario de trabajo

    10-5  70

    Conversación en voz muy alta, gritería, tráfico

    intenso de ciudad.

    10-4  80 Timbre, camión pesado moviéndose

    10-3  90 Aspiradora funcionando, maquinaria de una fábrica

  • 8/18/2019 Fundamentos Sonido

    7/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    trabajando.

    10-2  100 Banda de música rock.

    10-1  110

    Explosión de petardos o cohetes empleados en

    pirotecnia.

    1=100 120 Umbral de dolor

    101 130 Martillo neumático (de aire)

    103 150 Avión de reacción durante el despegue.

    106 180 Motor de un cohete espacial durante el despegue.

    Tabla 1

    El sonómetro de PhysicsSensor

    Para medir el nivel de intensidad sonora (  ) en decibles (db), PhysicsSensor proporciona un

    sonómetro digital, el cual utilizando la tarjeta de sonido del computador y entrando la señal

    a través del micrófono, realiza una digitalización con una frecuencia de muestreo  igual a 44

    100 Hz y una cuantización  con 8 bits ( 28 ), proporcionando un rango dinámico (escala) entre0 y 48 db, Figura 5:

    db482

    2log10

    2

    0

    8

     

      

          (3)

    Figura 5: Sonómetro de PhysicsSensor 

    Ley del inverso cuadrado

    En general la onda sonora no es plana sino esférica, debido a que las fuentes son en general

    puntuales. Por tanto, la intensidad decrece a medida que el sonido avanza, de acuerdo a la ley

    del inverso cuadrado,

  • 8/18/2019 Fundamentos Sonido

    8/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    2

    1

    2

    2

    2

    1

     I 

     I    (4)

    Siendo I1, I2 las correspondientes intensidades de la onda sonora a las distancias r 1 y r 2 de la

    fuente.

     Actividad 5:

    Un ejemplo

    Como la ley del inverso cuadrado se aplica a las intensidades de las ondas esféricas y no a sus

    niveles de intensidad será necesario hacer la conversión con la siguiente expresión deducida

    de (3):

    1

    Ilog10β    

    10

    β

    1010

    βantilogI  

     

      

        (5)

    SUPERPOSICIÓN DE ONDAS SONORAS

    Pulsaciones

    La superposición de ondas sonoras armónicas de frecuencia diferentes  f 1  y  f 2  da comoresultado una onda sonora de amplitud modulada con frecuencia de modulación  f m  y

    frecuencia de la portadora  f p  (que corresponde a la frecuencia promedio) y se perciben las

    denominadas pulsaciones  de frecuencia  f pul  (que corresponde al doble de la frecuencia de

    modulación):

    Dependencia en el tiempo de la Onda 1:

  • 8/18/2019 Fundamentos Sonido

    9/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    t   f   Asen y 11  2    (6)

    Dependencia en el tiempo de la Onda 2:

    t   f   Asen y 22  2    (7)

    Dependencia en el tiempo de la Onda resultante:

      pm   f   sen  f   A y y y  22cos221          (8)

    en donde la frecuencia de modulación es (Figura 6):

    21 21   f    f   P 

      f  m

    m   (8)

    La frecuencia promedio es (Figura 7):

    2

    1 21   f    f  

      f    f  

     p

     p

      (9)

    La frecuencia de pulsación es (Figura 6):

    21   f    f    f   pul      (10)

    Figura 6: Periodo de modulación y periodo de pulsación

  • 8/18/2019 Fundamentos Sonido

    10/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    10 

    Figura 7: Periodo promedio

     Actividad 6:

     Analizar la superposición de los sonidos generados por dos diapasones de frecuencias

    ligeramente diferentes.

      Conectar un micrófono a la entrada del sonido del PC.

      Ejecutar el Sonoscopio Virtual de PhysicsSensor.

      Generar el sonido con cada diapasón y medir el periodo y la frecuencia individual con

    sus sonogramas (si los diapasones tienen igual frecuencia se le puede amarrar en una de

    las ramas de uno de ellos una masa para variar ligeramente su frecuencia: ver foto).

      Generar los sonidos simultáneos con los dos diapasones y medir el periodo promedio, el

    periodo de modulación y las frecuencias asociadas (modulación, promedio y pulsaciones).

     Verificar que se cumplen las expresiones de las ecuaciones (8), (9) y (10). A continuación

    se ilustra un ejemplo realizado en nuestro laboratorio, Figura 8, 9, 10 y 11.

    Figura 8: El diapasón 1 emite sonido de periodo 0,003999961 s y frecuencia 250,02 Hz

  • 8/18/2019 Fundamentos Sonido

    11/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    11 

    Figura 9: El diapasón 2 (al cual se le colocó una masa en una de sus ramas) emite sonido de periodo

    0,0039947885 s y frecuencia 253,30 Hz

    Figura 9: Superposición de los sonidos generados por los dos diapasones. Se mide un periodo de modulación

    igual a 0,57286 s, una frecuencia de modulación igual a 1,745 Hz y una frecuencia de pulsación igual a 3,49 Hz

    Figura 10: Superposición de los sonidos generados por los dos diapasones. Se mide un periodo promedio igual

    a 0,0039705 s y una frecuencia promedio igual a 251,86 Hz 

    Para verificar las ecuaciones (8), (9) y (10) se reemplazo en ellas las frecuencias medidas de los

    diapasones individuales y se obtuvo:

  • 8/18/2019 Fundamentos Sonido

    12/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    12 

      Frecuencia promedio=251,7 Hz

      Frecuencia modulación=1,64 Hz

      Frecuencia pulsaciones=3,28 Hz

    que correspondería a porcentajes de error respectivamente iguales a: 0,06 %, 6,4 % y 6,4 %.

    Interferencia

    Ondas sonoras estacionarias 

    La superposición de dos ondas viajeras de igual frecuencia, igual amplitud e igual dirección

    de vibración pero viajando en sentidos opuestos da como resultado una onda estacionaria.

    Esta se caracteriza por no propagarse (solo se presenta vibración), y por tener la presencia de

     vientres (interferencia constructiva) y nodos (interferencia destructiva).  Ver simulación. 

    Tubo cerrado

     Ver simulación. 

    Tubo abierto

     Ver simulación 

     Actividad 7

    Deslizando un dedo sobre la superficie de una copa (Figura 11) es posible hacerla “silvar” 

    intensamente. Esto se explica mediante el fenómeno de resonancia.

     Ver video 

    Figura 11

    http://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/superposicion_ondas_armonicas_sentido_opuesto_igual_frecuencia.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/superposicion_ondas_armonicas_sentido_opuesto_igual_frecuencia.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/superposicion_ondas_armonicas_sentido_opuesto_igual_frecuencia.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/OndaLongitudinalEstacionariaTuboCerrado.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/OndaLongitudinalEstacionariaTuboCerrado.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/OndaLongitudinalEstacionariaTuboAbierto.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/OndaLongitudinalEstacionariaTuboAbierto.htmhttp://fisica.medellin.unal.edu.co/recursos/videos/videos_experimentos_fisica/oscilaciones/resonancia_copa.http://fisica.medellin.unal.edu.co/recursos/videos/videos_experimentos_fisica/oscilaciones/resonancia_copa.http://fisica.medellin.unal.edu.co/recursos/videos/videos_experimentos_fisica/oscilaciones/resonancia_copa.http://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/OndaLongitudinalEstacionariaTuboAbierto.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/OndaLongitudinalEstacionariaTuboCerrado.htmhttp://maescen.medellin.unal.edu.co/facultad/escfisica/oscilacionesyoptica/daristiz/recursos/simulaciones/ondas_mecanicas/superposicion_ondas_armonicas_sentido_opuesto_igual_frecuencia.htm

  • 8/18/2019 Fundamentos Sonido

    13/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    13 

     Actividad 8

    Detectar los nodos y vientres de las ondas de presión (sonido) generadas por resonancia en

    una columna de aire (tubo con aire), Figura 12.

      Conectar el amplificador del generador de señales de PhysicsSensor  a la salida de latarjeta de sonido del PC.

      Conectar el amplificador de señales al parlante del tubo de Kundt de PhysicsSensor.

      Ejecutar el software Generador de Señales de PhysicsSensor y seleccionar una frecuencia

    determinada (por ejemplo, 2000 Hz).

      Desplazar el pistón del tubo de Kundt a partir de una posición cerca del parlante hasta

    recorrer gran parte del tubo. Hacerlo de forma lente y estando atento a detectar las

    posiciones en donde se escuchan los máximos (vientres de presión) y los mínimos (nodos

    de presión).

    Figura 12

  • 8/18/2019 Fundamentos Sonido

    14/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    14 

    PARTE B: MEDIDA DE LA VELOCIDAD DEL SONIDO

    Objetivo

    Medir la velocidad del sonido en el aire empelando ondas estacionarias generadas en un tubo

    (columna de aire).

    Versión 1 del experimento (sin usar el sonómetro de PhysicsSensor) 

      Seguir los mismos pasos de la actividad 8, pero en este caso marcar sobre el tubo las

    posiciones de los nodos de presión.

      Medir la distancia que hay entre nodo y nodo consecutivo. Con los valores obtenidos

    obtener un promedio. Este es el valor de semilongitud de onda del sonido generado: la

    longitud de onda  es igual al doble de ese valor.

      Calcular la velocidad del sonido en el aire empleando la expresión que relaciona lafrecuencia y la longitud de onda:

    Vf     (11)

      Con un termómetro medir la temperatura a la que se encuentra el medio y calcular la

     velocidad del sonido empleando la ecuación (1). Este valor se considerará como el valor

    convencionalmente verdadero para este experimento. Con base en esto calcular el

    porcentaje de error.

    Versión 2 del experimento (usando el sonómetro de PhysicsSensor) Nota : Se recomienda cuando varios grupos de laboratorio van a realizar simultáneamente el

    experimento.

      Conectar el amplificador del generador de señales de PhysicsSensor  a la salida de la

    tarjeta de sonido del PC.

      Conectar el amplificador de señales al parlante del tubo de Kundt de PhysicsSensor.

      Conectar el micrófono del tubo de Kundt de PhysicsSensor a la entrada de la tarjeta de

    sonido del PC.  Ejecutar el software Generador de Señales de PhysicsSensor y seleccionar una frecuencia

    determinada (por ejemplo, 2000 Hz).

      Ejecutar el software Sonometro de PhysicsSensor para medir los niveles de intensidad

    sonora. Esta herramienta permite emplear volúmenes del sonido muy bajos, lo que da

    gran comodidad y bienestar para que varios grupos realicen simultáneamente la práctica.

      Desplazar el pistón del tubo de Kundt a partir de una posición cerca del parlante hasta

    recorrer gran parte del tubo. Hacerlo de forma lente y estando atento a detectar las

  • 8/18/2019 Fundamentos Sonido

    15/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    15 

    posiciones en donde se presentan los máximos (vientres de presión) o los mínimos

    (nodos de presión). Marcar sobre el tubo estas posiciones. 

      Medir la distancia que hay entre nodo (vientre) y nodo (vientre) consecutivo. Con los

     valores obtenidos obtener un promedio. Este es el valor de semilongitud de onda del

    sonido generado: la longitud de onda  es igual al doble de ese valor.

      Calcular la velocidad del sonido en el aire empleando la ecuación (11).  Con un termómetro medir la temperatura a la que se encuentra el medio y calcular la

     velocidad del sonido empleando la ecuación (1). Este valor se considerará como el valor

    convencionalmente verdadero para este experimento. Con base en esto calcular el

    porcentaje de error.

    PREGUNTAS

  • 8/18/2019 Fundamentos Sonido

    16/16

    Universidad Nacional de Colombia sede Medellín 

    PhysicsSensor 1.2

    16 

    REFERENCIAS

      PhysicsSensor, Escuela de Física de la Universidad Nacional de Colombia sede

    Medellín [en línea: http://fisica.medellin.unal.edu.co/index.php/software-hardware],

    Mayo de 2012. 

      Notas de clase de Física para Ingenieros, D. Aristizábal y R. Restrepo, profesores

    ascociados de la Escuela de Física de la Universidad Nacional de Colombia sede

    Medellín [en línea: http://maescen.medellin.unal.edu.co/moodle/ course/view.php?

    id=40], Mayo de 2012. 

    FIN