Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

9
Departamento de Ciencias y Tecnología Subsector: Química Profesor: Carlos Donoso E. Nivel: 2° año Medio Año: MMXIII Guía de Apoyo n°1: Estequiometría y Leyes Ponderales Introducción La estequiometría es una rama de la química que se asocia al cálculo de las relaciones cuantitativas entre reactantes y productos en una reacción química Las relaciones estequiométricas se originaron como una suma de los conceptos relacionados con el estudio de las reacciones químicas, que se tradujeron en las llamadas leyes ponderales. Ecuación química. Todo cambio químico, vale decir, todo proceso que modifique las propiedades más profundas de la materia, se puede representar mediante una ecuación química. Podemos representarla de la siguiente forma: aA bB cC dD Donde A y B, corresponden a los reactantes o reaccionantes; C y D, a los productos. Los términos a, b, c y d, se denominan coeficientes estequiométricos e indican las proporciones de combinación de los reactantes y las proporciones de productos obtenidas. Importante: Una reacción química no nos informa sobre la energía necesaria para que el proceso ocurra o la energía liberada luego de ocurrida la reacción. Tampoco nos da información sobre la velocidad con que tiene lugar la reacción. A pesar de esto, podemos incorporar cierta información a la ecuación química, como por ejemplo: 1.- Los estados de agregación de los reactantes o productos: Sólido con (s) Líquido con (l) Gaseoso con (g) Acuoso con (ac) o (aq) Objetivos: -Reconocer las características de un proceso químico, por sobre uno físico -Asocian las ecuaciones químicas como representación de los procesos químicos -Identificar reactantes, productos y coeficientes estequiométricos -Caracterizar la información entregada por una ecuación química -Enunciar la ley de Lavoisier y aplicarla al balance de ecuaciones químicas -Interpretar los conceptos de pureza, rendimiento y reactivo limitante -Definir el concepto de peso atómico y obtenerlo a partir de las abundancias isotópicas -Definir el concepto de peso molecular y calcularlo a partir de la fórmula de un compuesto -Enunciar y ejemplificar las diferentes leyes ponderales: Ley de Proust, Ley de Dalton, Ley de Richter. Resolver problemas asociados con cálculos estequiométricos.

Transcript of Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

Page 1: Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

Departamento de Ciencias y Tecnología Subsector: Química

Profesor: Carlos Donoso E. Nivel: 2° año Medio

Año: MMXIII

Guía de Apoyo n°1: Estequiometría y Leyes Ponderales

Introducción

La estequiometría es una rama de la química que se asocia al cálculo de las

relaciones cuantitativas entre reactantes y productos en una reacción química Las relaciones estequiométricas se originaron como una suma de los conceptos

relacionados con el estudio de las reacciones químicas, que se tradujeron en las llamadas leyes ponderales.

Ecuación química.

Todo cambio químico, vale decir, todo proceso que modifique las propiedades más profundas de la materia, se puede representar mediante una ecuación química.

Podemos representarla de la siguiente forma:

aA bB cC dD

Donde A y B, corresponden a los reactantes o reaccionantes; C y D, a los productos. Los términos a, b, c y d, se denominan coeficientes estequiométricos e indican las

proporciones de combinación de los reactantes y las proporciones de productos obtenidas.

Importante: Una reacción química no nos informa sobre la energía necesaria para que el

proceso ocurra o la energía liberada luego de ocurrida la reacción. Tampoco nos da

información sobre la velocidad con que tiene lugar la reacción.

A pesar de esto, podemos incorporar cierta información a la ecuación química, como por ejemplo:

1.- Los estados de agregación de los reactantes o productos:

Sólido con (s)

Líquido con (l)

Gaseoso con (g) Acuoso con (ac) o (aq)

Objetivos:

-Reconocer las características de un proceso químico, por sobre uno físico -Asocian las ecuaciones químicas como representación de los procesos químicos -Identificar reactantes, productos y coeficientes estequiométricos -Caracterizar la información entregada por una ecuación química -Enunciar la ley de Lavoisier y aplicarla al balance de ecuaciones químicas -Interpretar los conceptos de pureza, rendimiento y reactivo limitante -Definir el concepto de peso atómico y obtenerlo a partir de las abundancias isotópicas -Definir el concepto de peso molecular y calcularlo a partir de la fórmula de un compuesto -Enunciar y ejemplificar las diferentes leyes ponderales: Ley de Proust, Ley de Dalton, Ley de Richter. Resolver problemas asociados con cálculos estequiométricos.

Page 2: Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

2

Ejemplos:

2 4(ac) 2(ac) (ac) 4(s)Na SO BaCl 2NaCl BaSO

(s) 2(g) 2(g)C O CO

2.- Ciertas condiciones generales necesarias para que ocurra la reacción, como por

ejemplo: Presión (P), Temperatura (T), Energía lumínica (h), catalizador (cat.), etc.

Ejemplos:

P,T

2(g) 2(g) 3(g)N 3H 2NH

P,T,catalizador

2 2(g) 2(g) 3 3(g)CH CH H CH CH

Ley de Lavoisier

En el siglo XVIII Antoine de Lavoisier (1743-1794), propuso la ley de conservación de la masa en las reacciones químicas, que lleva su nombre:

“En una reacción química, la materia no se crea ni se pierde, sólo se transforma”

Esta ley establece que: en una reacción química, la masa de los reactantes debe ser igual

a la masa de los productos. Esto se traduce en el llamado “balance de ecuaciones”

Por lo tanto, en una ecuación química debemos ver la forma que a cada lado esté la

misma cantidad de átomos involucrados. Ejemplo: tomemos la reacción

AlCl NH OH Al OH NH Cl3 4 3 4( )

Al agregarle los coeficientes estequiométricos adecuados tenemos:

AlCl NH OH Al OH NH Cl3 4 3 43 ( ) 3

Si contamos la cantidad de átomos de Al, Cl, N, H y O que forman los reactantes,

veremos que es la misma cantidad de átomos que forman los productos.

El mol

Como los átomos y las moléculas son tan pequeños, no podemos pesarlos. Por lo tanto, debemos considerar una cantidad fija de ellos para tal fin. Esa cantidad se llama

número de Avogadro y equivale a

6,02 x 1023

De esta forma, tener un mol de una sustancia significa: tener 6,02 x 1023 átomos o moléculas, según las unidades que la formen.

Page 3: Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

3

En otras palabras: 1 mol = 6,02 x 1023 átomos o moléculas. Peso Atómico (PA): Corresponde al peso en gramos de 1 mol de átomos de un

determinado elemento químico.

Ejemplo: El peso atómico del Hierro (Fe) es 55,8 g. Esto significa que 55,8 gramos del

elemento contienen 6,02x1023 átomos de Fe.

Determinación del Peso Atómico o Masa Atómica

El peso o masa atómica de un elemento se determina a partir de las masas (Números másicos, A) de los isótopos estables asociados al elemento. Sin embargo, las

cantidades de esos isótopos presentes en la naturaleza no son iguales. El concepto que

mide este último aspecto se denomina abundancia isotópica relativa o simplemente abundancia relativa y se expresa porcentualmente.

Por ejemplo, el nitrógeno presenta los siguientes isótopos:

N12

7, N13

7, N14

7, N15

7, N16

7, N17

7 y N18

7

De estos, los isótopos N-14 y N-15, son los más estables, con abundancias relativas de

99.63% y 0.366%, respectivamente. Dado los porcentajes tan dispares, no se puede hacer un promedio aritmético o media

aritmética con esos valores, por lo tanto se calcula una media o promedio ponderado.

Esto se hace de la siguiente manera: se multiplica el número másico de cada isótopo por su valor de abundancia y la suma se divide por 100. Es decir

NPA14 99.63 15 0.366

100

NPA1400.31

100

NPA g mol14.00[ / ]

En general, si el elemento X, tiene los isótopos estables X1, X2, X3, …..Xn., cuyas masas isotópicas son A1, A2, A3, …….,An y sus abundancias respectivas son B1, B2, B3, ……, Bn,

La relación general queda escrita de la siguiente manera:

n nX

A B A B A B A BPA 1 1 2 2 3 3 ........

100

n

i i

iX

A B

PA 1

100

Peso Molecular (PM): Corresponde al peso en gramos de 1 mol de moléculas de un elemento o compuesto.

Ejemplo: El oxígeno se encuentra en la naturaleza formando moléculas de O2. El peso

atómico del Oxígeno es 16. Luego como hay dos oxígenos por molécula, el peso total es

Page 4: Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

4

FeS O Fe O SO2 2 2 3 24 11 2 8

32. Si ese peso lo expresamos en gramos, se llama Peso Molecular del Oxígeno y su valor

será 32 g. Esto significa que en 32 gramos de Oxígeno hay 6,02x1023 moléculas del elemento.

Importante: Las moléculas son agrupaciones de dos o más átomos que pueden ser

iguales (elemento) o distintos (compuesto)

Determinación del peso molecular de una sustancia

Una forma de determinar el peso molecular de una sustancia, es simplemente sumar los

pesos atómicos de los elementos presentes en la fórmula, multiplicados por la cantidad en que aparecen en ella.

Ejemplo: Determinemos el PM del Al2(SO4)3.

Al SO Al S OPM PA PA PA2 4 3( ) 2 3 ( 4 )

Al SO Al S OPM PA PA PA2 4 3( ) 2 3 12

Al SOPM2 4 3( ) 2 27 3 32 12 16

Al SOPM g mol2 4 3( ) 342[ / ]

Pureza

Corresponde a la cantidad real de una sustancia presente en cierta masa de ella.

Ejemplo: Supongamos que tenemos 45 gramos de NaCl, cuya pureza es del 80 %. Esto

quiere decir que, sólo el 80% de esa cantidad corresponde al compuesto mencionado. El restante 20% corresponde a impurezas.

Calculemos dicha cantidad

Resolviendo la proporción tenemos que de los “supuestos” 45 gramos de NaCl, sólo 36

gramos corresponden al compuesto.

Información que nos entrega una reacción química

Ejemplo: Tomemos la siguiente reacción

4

moléculas 11 moléculas

2

moléculas

8 molécula

s

4 moles de moléculas

11 moles de moléculas

2 moles de moléculas

8 moles

de molécula

s

4∙PM 11∙PM 2∙PM 8∙PM

4∙119,8 11∙32 2∙159,6 8∙64

479,2 352 319,2 512

Page 5: Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

5

CNPT

Se denomina, con esta sigla a las “condiciones normales de presión y temperatura”. Estas son:

- para la presión: 760 mm de Hg o 1 atm.

- para la temperatura: 273 ºK o 0ºC.

La importancia que tiene esto es que: Si 1 mol de cualquier sustancia, se encuentra en estado gaseoso para estas condiciones de presión y temperatura, ocupará un volumen

igual a 22,4 L.

Resumiendo:

Reactivo limite o limitante

Dadas dos cantidades cualesquiera de los reactantes, el reactivo limitante será aquel que reaccione completamente en la reacción. Para calcularlo usamos proporciones. Veamos

un ejemplo.

En la reacción del ejemplo anterior tenemos que:

4FeS2 + 11O2 2Fe2O3 + 8SO2 479,2g + 352g 319,2 + 512g

Pero, supongamos que tenemos 56 g de FeS2 y 80 g de O2, ¿Cuál será el Reactivo Limitante?

Desarrollo:

Veamos si el FeS2 puede reaccionar completamente.

Según la ecuación tenemos que

O sea que tenemos O2 de sobra para asegurarnos que todo el FeS2 reaccione. Esto significa que el FeS2 es el Reactivo Limitante (ya que puede reaccionar completamente,

sin problemas).

Page 6: Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

6

Importancia: Frente a un problema como el que hemos descrito y asegurándonos en

primer lugar que la ecuación este equilibrada, la determinación del Reactivo Límite, permitirá que usemos ese valor, para calcular exactamente cuánto producto deberemos

esperar luego de transcurrida la reacción.

Rendimiento

Es la relación porcentual entre la masa de producto que realmente se obtiene,

transcurrida la reacción química y la masa teórica de producto calculada a través de la

relación estequiométrica.

realRendimiento

teórica

m% 100

m

Leyes Ponderales

Las leyes ponderales están relacionadas con la proporción en que se combinan los

elementos para formar un compuesto. Ellas son:

1.- Ley de la conservación de la masa o Ley de Lavoisier (Pág. 1)

2.- Ley de las proporciones constantes o Ley de Proust 3.- Ley de las proporciones múltiples o Ley de Dalton

4.- Ley de las proporciones equivalentes o Ley de Richter 5.- Ley de los volúmenes de combinación

Ley de las proporciones constantes

También denominada, ley de las proporciones definidas, fue enunciada en 1799 por el francés J. Proust.

Muestras diferentes de un mismo compuesto siempre contienen los mismos

elementos en una relación de masas constante, independiente del proceso seguido en su preparación

Esta ley introdujo por primera vez un criterio estricto para distinguir los compuestos químicos de las mezclas, ya que, en estas últimas, la proporción de sus componentes es

variable.

Ley de las proporciones variables

Es sabido que dos mismos elementos pueden formar varios compuestos diferentes.

Así, por ejemplo, nitrógeno y oxígeno se combinan produciendo varios óxidos, como N2O, NO y NO2.

En estos y en otros casos semejantes, los compuestos cumplen la ley de las proporciones constantes. Pero, además, entre las masas de elemento común existe una relación

cuantitativa.

El inglés J. Dalton estudió esta circunstancia y enunció esta ley:

Page 7: Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

7

Las masas de un mismo elemento que se combinan con una masa fija de otro elemento para formar en cada caso un compuesto diferente se encuentran en una relación de números enteros sencillos.

Ley de las proporciones equivalentes

El químico alemán J. B. Richter observó que existe una interesante relación entre las masas de elementos distintos que se combinan con una misma masa de otro.

Los datos experimentales revelan que 1 g de hidrógeno, 8 g de oxígeno y 20 g de calcio pueden considerarse como cantidades químicamente equivalentes capaces de

combinarse entre sí o de reemplazarse en los compuestos. Estos hechos permitieron a Richter enunciar en 1802 la ley de las proporciones equivalentes o de las masas de combinación.

Las masas de distintos elementos que se combinan con una misma masa de otro indican la relación de masas en que se combinan cuando reaccionan entre ellos, o bien múltiplos o submúltiplos sencillos

De esta ley se dedujo el concepto de masa equivalente de un elemento.

Tomando como referencia el oxígeno o el hidrógeno (ya que la mayoría de los elementos

químicos forman alguna clase de compuestos con ellos), se define del modo siguiente:

Masa equivalente o equivalente-gramo de un elemento es la masa de éste que se combina con 8.0 g de oxígeno o con 1.008 g de hidrógeno. Cuando un elemento no se combina con oxígeno o con hidrógeno, su masa equivalente

es la que se combina con una masa equivalente de cualquier otro elemento.

Basándose en este concepto, la ley puede enunciarse así:

Cuando dos elementos se combinan, lo hacen en cantidades iguales a sus masas equivalentes o proporcionales a ellas.

Como puede comprobarse fácilmente, la masa equivalente o masa de combinación es una cantidad de gramos igual al cociente entre la masa atómica (peso atómico) del

elemento y su valencia (estado de oxidación).

Ley de los volúmenes de combinación

El francés L. J. Gay-Lussac, después de investigar cuantitativamente diferentes

reacciones con gases, halló una interesante relación entre los volúmenes, tanto de los reactantes como de los productos gaseoso. Esta relación, formulada en 1808, se enuncia

así:

A temperatura y presión constante, los volúmenes de los gases que intervienen, como reactivos o como productos, en una reacción química guardan entre sí una relación de números enteros sencillos. En la reacción entre nitrógeno e hidrógeno para formar amoníaco se comprueba que un volumen de nitrógeno se combina con tres volúmenes de hidrógeno y se producen dos volúmenes de amoníaco. Es decir, entre los volúmenes de los gases citados se cumple la relación 1:3:2.

Obtención de la fórmula empírica de un compuesto

Page 8: Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

8

Unas de las aplicaciones de las leyes ponderales es la posibilidad de obtener la fórmula de un determinado compuesto.

Habitualmente, los datos relacionados con las cantidades de los elementos que forman el compuesto se entregan en unidades porcentuales.

Por lo tanto, hay que llevar esa relación a masa. Esto lo hacemos equiparando 100% a

100 g, así si uno de los elementos se encuentra en un 23%, corresponderán a 23 g. Esto lo hacemos para tener una referencia.

Veamos un ejemplo y sigamos paso a paso su desarrollo:

Ejemplo: ¿Cuál es la fórmula empírica de un compuesto que tiene la siguiente composición: 20.2% de Al y 79.8% de Cl?

1.- Transformar los porcentajes a gramos. Es decir, 20.2% de Al corresponde a 20.2 g de

Al y 79.8% de Cl, serán 79.8 g de Cl.

2.- Dividimos la masa de cada elemento por el peso atómico correspondiente.

Al20.2

0.74827

Cl79.8

2.2535.5

3.- Como cada resultado queda expresado en moles de átomos, dividimos cada uno por el

menor de los dos valores.

Al0.748

10.748

Cl2.25

3.00.748

4.- Finalmente se escribe la fórmula empírica del compuesto. Según lo anterior, el

compuesto está formado por 1 parte de aluminio y 3 partes de cloro. Es decir

Al Cl1 3

Sin embargo, el subíndice “1” no se escribe. Se asume, por lo tanto, la fórmula empírica final del compuesto será:

AlCl3

Composición Porcentual

Otra forma de usar las leyes ponderales es calculando la composición porcentual de los

elementos que forman un compuesto dado, los que se expresarán en unidades de porcentajes.

Page 9: Guía de apoyo nº1 q2 m 2013 estequiometría y leyes ponderales

9

Para poder calcular este valor, necesitamos la fórmula empírica del compuesto, el Peso Molecular del mismo y los Pesos Atómicos de los elementos que participan en él. Veamos un ejemplo:

Calcular la composición porcentual del nitrato de sodio (cuyo nombre común es salitre): NaNO3.

El peso molecular de este compuesto es

3NaNO Na N OPM PA PA 3 PA

3NaNOPM 23 14 3 16

3NaNOPM 85[g /mol]

Usando este valor como el 100%, podemos calcular los porcentajes que representan las masas de los elementos presentes. Esto es:

Na

23% 100 27,06%

85

N

14% 100 16.47%

85

O

48% 100 56.47%

85

La suma de estos porcentajes debe dar el 100%.