Gustavo E. Romero - Fapesp · Microquasars Gustavo E. Romero Instituto Argentino de...

39
Microquasars Gustavo E. Romero Instituto Argentino de Radioastronomía (CONICET) University of La Plata [email protected] [email protected] http://www.iar-conicet.gov.ar/garra/ 1 São Paulo, FAPESP, August 9, 2011

Transcript of Gustavo E. Romero - Fapesp · Microquasars Gustavo E. Romero Instituto Argentino de...

Microquasars

Gustavo E. RomeroInstituto Argentino de Radioastronomía (CONICET)

University of La Plata

[email protected]

[email protected]

http://www.iar-conicet.gov.ar/garra/

1

São Paulo, FAPESP, August 9, 2011

2

Stellar black holes can produce jets

NGC 7793: Pakull et al. (2010)

3

Stellar black holes can also produce jets

Cygnus X-1: Stirling et al. (2001), Gallo et al. (2005)

4

Stellar black holes can also produce jets

SS 433

Radio (Dubner et al); X-rays (Brinkmann et al)

- ATOMIC NUCLEI MOVING AT 0.26c

- MECHANICAL LUMINOSITY > 1039

erg/sec

- NON RADIATIVE JETS = “DARK” JETS

- >50% OF THE ENERGY IS NOT

RADIATED

5

Stellar black holes can also produce jets

Cygnus X-3: Mioduzewski et al. (2001)

6

Stellar black holes can also produce jets

Cygnus X-3: Martí, Paredes, et al. (2001)

7

…and gamma-rays

Cygnus X-3: Fermi collaboration (2009)

8

…and gamma-rays

Cygnus X-3: AGILE collaboration (2009)

9

The Cherenkov Telescope Array (CTA)

El Leoncito, San Juan, Argentina

10

Microquasars: accreting stellar black holes with jets

11

Be disk

NS or BH

overflow from Be disk

Accretion in Be/X-ray binaries

accretion disk

high energy emission

accretion

Romero et al. 2007, A&A

A “basic” jet model (in a nutshell)

Physical conditions near the jet base are similar to those of the corona (e.g. Bosch-Ramon et al. 2006; Romero & Vila 2008, 2009; Vila & Romero 2010)

The jet launching region is quite close to the central compact object (few Rg)

Thermal plasma injected at the base, equipartitionb/w particles and magnetic field to start with.

Jet plasma accelerates longitudinally due to pressure gradients, expands laterally with sound speed (Bosch-Ramon et al. 2006)

The plasma cools as it moves outward along the jet. Solve the continuity equation for cooling of the electron and proton energy distributions

A “basic” jet model (in a nutshell)

Physical conditions near the jet base are similar to those of the corona (e.g. Bosch-Ramon et al. 2006; Romero & Vila 2008, 2009; Vila & Romero 2010)

The jet launching region is quite close to the central compact object (few Rg)

Thermal plasma injected at the base, equipartitionb/w particles and magnetic field to start with.

Jet plasma accelerates longitudinally due to pressure gradients, expands laterally with sound speed (Falcke 1996, Bosch-Ramon et al. 2006)

The plasma cools as it moves outward along the jet. Solve the continuity equation for cooling of the electron and proton energy distributions

Lepto/hadronic models for LMXRB (Vila & Romero, MNRAS 403, 1457, 2010)

GX 339-4

LLAMA

An application – Vila & Romero, extended-zone model, 2011

Fit to the spectrum of the LMMQ XTE J1118+480

2000 outburst

-5 0 5 10 1528

29

30

31

32

33

34

35

36

37

Log10

(E /eV)

Lo

g 10(L

/er

g s

-1)

disc

synchrotron

SSC

pp

p

Fermi

VERITAS

CTA

LLAMA

18

“Dark” HE MQ (Romero & Vila 2008)

However, a strong neutrino source…

The black hole in the Galactic CenterSgr A* Spectrum

Mościbrodzka, Gammie, Dolence et al. (2009)

The physical model is a

geometrically thick, optically thin,

turbulent plasma accreting

onto a rotating black hole in a

statistically steady state. The

angular momentum of the

hole is assumed to be aligned with

the angular momentum of the

accreting plasma.

The ions and electrons are

assumed to have a thermal

distribution function, but with a

temperature ratio Ti/Te that may

be different from one

Future mm-VLBI

Existing facilities:

JCMT, CARMA, SMT, SPT

SPT-JCMT: 15.000km (~5µas)

Under construction:

LMT, ALMA

New ones?

LLAMA (Argentina)

Peru …?

21

Images of the accretion flow at

230 GHz for models with SEDs

that are consistent

with observations of SgrA*. The

images have been averaged over

time and over four separate

realizations of each model. The

images show inner 40GM/c2 .

The white circle marks

FWHM=37 µas of a symmetric

Gaussian brightness profile

centered at the image centroid.

Simulated 350 GHz VLBI

Scatter-Broadened best-fit Model Reconstructed Image

PSF

a=0.94, i=85°, Tp/Te=3

Mościbrodzka, Gammie, Dolence et al. (2009)

Simulated 350 GHz VLBI

“best-fit” model seen from above

…a=0.94, i=5°, Tp/Te=3

Reconstructed Image

Final comments MQs produce gamma-rays, likely in the jets. This emission is

related to the sub-mm synchrotron radiation.

The consistency of the models outlined can be tested with present and future sub-mm, gamma-ray and neutrino observations (LLAMA, IceCube, Fermi, CTA…).

MQs can be sources of comic rays up to energies of the order of the knee (Auger infield array).

25

Thank you

Particle losses

Romero & Vila, A&A, 494, L33 (2009)

Spectral energy distributions

Magnetic field effects on neutrinoproduction

Reynoso & Romero A&A, 493, 1 (2009)

29

Internal absorption (Vila & Romero, 2010)

Absoption effects: annihilation (Vila & Romero 2011)

Log10

(z /cm)

Lo

g 10(E

/eV

)

9.5 10 10.5 11 11.5 12 12.5 13

-8

-6

-4

-2

0

2

4

6

8

10

Lo

g10 (N

/ erg-1 cm

-3)

-15

-10

-5

0

5

10

15

20

25

30

Log10

(z /cm)

Lo

g 10(E

/eV

)

9.5 10 10.5 11 11.5 12 12.5 13-6

-4

-2

0

2

4

6

8

10

12

14

exp

(-)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Log10

(z /cm)

Lo

g 10(E

/eV

)

9.5 10 10.5 11 11.5 12 12.5 13

-8

-6

-4

-2

0

2

4

6

8

10

Lo

g10 (N

/ erg-1 cm

-3)

-15

-10

-5

0

5

10

15

20

25

30

35

Log10

(z /cm)

Lo

g 10(E

/eV

)

9.5 10 10.5 11 11.5 12 12.5 13-6

-4

-2

0

2

4

6

8

10

12

14

exp

(- )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

High-mass donor star

Bosch-Ramon, Romero, Paredes, 2006, A&A 447, 263

High-mass donor star: Cygnus X-1

Romero, del Valle, & Orellana, 2010, A&A 518, A12; see also

Bosch-Ramon, Khangulyan & Aharonian, 2008, A&A, 489, L21

External absorption

33

Z>1012 cm

A microquasar with a clumped wind

34

Araudo, Bosch-Ramon & Romero A&A, 503, 673 (2009),

Owocki et al. 2009, ApJ, 696, 690 (2009)

35

MA

GIC

HE

SS

Cygnus X-1

LSI+61303

LS 5039

Flaring TeV emission?

Season I + Season II

If the wind has a clumpy structure,

then jet-clump interactions can

produce rapid flares of gamma-rays

Romero et al. 2007, astro-ph/0708.1525

Effects of the stellar wind

36Owocki et al. 2009, ApJ, 696, 690

A microquasar with a clumped wind

37Araudo, Bosch-Ramon & Romero A&A, 503, 673 (2009)

A microquasar with a clumped wind

38Araudo, Bosch-Ramon & Romero A&A, 503, 673 (2009)

Local particle re-acceleration

A microquasar with a clumped wind

39Araudo, Bosch-Ramon & Romero A&A, 503, 673 (2009)

Average 2D GRMHD Results

Mościbrodzka, Gammie, Dolence et al. (2009)