INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio...

180
UNIVERSIDAD PONTIFICIA COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) INGENIERÍA INDUSTRIAL PROYECTO FIN DE CARRERA INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS GUILLERMO SUÁREZ VIDAL MADRID, junio de 2007

Transcript of INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio...

Page 1: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERÍA INDUSTRIAL

PROYECTO FIN DE CARRERA

INSTALACIÓN DE TRIGENERACIÓN

MEDIANTE MOTORES DE GAS

GUILLERMO SUÁREZ VIDAL

MADRID, junio de 2007

Page 2: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Autorizada la entrega del proyecto al alumno:

D. Guillermo Suárez Vidal

EL DIRECTOR DEL PROYECTO

D. Francisco González Hierro

Fdo: Fecha:

Vº Bº del Coordinador de Proyectos

D. Tomás Gómez San Román

Fdo: Fecha:

Page 3: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

ESTE PROYECTO CONTIENE LOS SIGUIENTES DOCUMENTOS: DOCUMENTO Nº1: MEMORIA 1.1 Memoria pág 14 a 63 1.2 Cálculos pág 65 a 95 1.3 Estudio Económico pág 101 a 115 1.4 Análisis Medioambiental pág 117 a 120 1.5 Anexos pág 123 DOCUMENTO Nº2: PLANOS 2.1 Planos pág 1 a 4 DOCUMENTO Nº3: PLIEGO DE CONDICIONES 3.1 Generales y Económicas pág 4 a 31 3.2 Técnicas y Particulares pág 32 a 45 DOCUMENTO Nº4: PRESUPUESTO 4.1 Mediciones pág 2 4.2 Precios Unitarios pág 3 4.3 Sumas Parciales pág 4 4.4 Presupuesto General pág 4

Page 4: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas iii

Resumen

El proyecto final de carrera trata sobre la trigeneración, que consiste en la

producción conjunta de calor, frío y electricidad. El objetivo del proyecto, es implantar

un sistema de poligeneración en un hospital que actualmente compra electricidad a la

red para abastecerse de alumbrado, fuerza, y compresores eléctricos para

climatización, y gas para calefacción y calderas auxiliares. Gracias a la nueva

tecnología, únicamente será necesario comprar gas para alimentar a los motores, que

generaran electricidad, parte destinada al autoconsumo, parte al mercado eléctrico. El

calor desprendido por los motores en su circuito de camisas y en los gases de escape

será aprovechado, en invierno por medio de unos intercambiadores de calor para

calefacción, y en verano gracias a una máquina de absorción, para producir frío.

Todo esto es posible gracias a la refrigeración por absorción, que aprovecha las

propiedades de ciertas sustancias que son capaces de absorber calor al cambiar de

estado líquido a gaseoso.

Típicamente se usa agua-bromuro de litio. En este caso, el agua, que actuará como

refrigerante, se mueve por un circuito de baja presión, es evaporada en un

intercambiador de calor (evaporador), donde enfría a otro fluido, que utilizaremos

para climatización fría de habitaciones por ejemplo.

Page 5: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas iv

Posteriormente, este vapor de agua, será absorbido por el absorbente, en este caso,

bromuro de litio, en el absorbedor, dando lugar a una solución. Dicha solución, se hace

pasar al calentador y se separan disolvente y soluto, por medio de calor procedente de

fuente externa. El agua vuelve al evaporador, y el bromuro al absorbedor,

reiniciándose así el ciclo.

La máquina de absorción, es una alternativa, al ya conocido sistema de refrigeración

por compresión, con la ventaja de que en el primer caso, prescindimos del compresor,

en detrimento del rendimiento (COP). Ésta pérdida de rendimiento, compensa siempre

que la energía provenga de una fuente calorífica de bajo coste, o como ocurre en este

tipo de aplicaciones, energía residual (aprovechamos los gases calientes procedentes de

la salida de la turbina/motor).

Los resultados de implantar este tipo de tecnologías en hospitales, hoteles, torres

residenciales, y en general cualquier edificio en el cual la utilización sea bastante

elevada son muy positivos, tanto desde el punto de vista energético, como desde el

económico. Económicamente, el periodo de retorno de la inversión es del orden de

cuatro años, es decir, a partir del quinto año se empiezan a notar los beneficios, y al

cabo de diez años se obtiene un ahorro acumulado de 800.000 €. Energéticamente la

trigeneración posee enormes ventajas, ya que al aprovechar los calores residuales, éstos

no son vertidos a la atmósfera a elevadas temperaturas. Por otra parte, este tipo de

instalaciones fomentan la generación distribuida, es decir, se consume donde se

genera, lo cual ayuda a no sobrecargar las líneas eléctricas, y dan gran seguridad en el

suministro, pudiendo trabajar tanto en isla como en paralelo con la red.

Page 6: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas v

Summary

The final degree project deals with “trigeneration”, which consists of the joint

production of heat, cold and electricity. The main objective is to carry out a new

generation system at a hospital which at the moment buys electricity to supply itself of

lighting, power and electrical compressors for air conditioning, and also gas for

heating and boilers. By using the new technology, it will only be necessary to buy gas

to feed the engines that will generate electricity. The heat given off by the engines in its

circuit of shirts and high temperatures from the exhaust gases will be used for heating

in winter passing through a heat exchanger and cooling in summer thanks to an

absorption machine.

This machine uses the properties of certain substances that are able to absorb heat

when changing from liquid to gaseous state. Typically lithium water-bromide is used.

In this case the water which will act like coolant is driven through a circuit of low

pressure is evaporated in a heat exchanger (evaporator), where it cools another fluid,

that will be used for cooling rooms. Later, this water steam will be absorbed by the

absorbent, in this case lithium bromide, in the absorbent area forming a solution. This

solution is conduced to the heater where dissolvent and solute are separated by means

of heat coming from outside. The water returns to the evaporator, and the bromide to

the absorbent area.

Page 7: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas vi

The absorption machine is an alternative to the already known compression

refrigeration system, with the advantage that we do not use the compressor in damage

of the performance (COP). This loss of performance is worth whenever the energy

comes from a low cost calorific source or as it happens in this type of applications,

residual energy.

The results of implanting this kind of technologies in hospitals, hotels, towers, and

in general any building in which the use is elevated enough are very positive, not only

from the power point of view but also from the economic one. Economically, the

period of return of the investment is about four years reaching a net profit of €800,000

at the end of the 10th year.

All in all, trigeneration has enormous advantages since the residual heats are not

spilled to the atmosphere at high temperature. On the other hand, this kind of

generation promotes the distributed generation. Electricity is consumed where it is

generated, which helps not to overload the electrical lines and gives great security in

the provision.

Page 8: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas viii

Índice

RESUMEN ...............................................................................................................................................III

SUMMARY .............................................................................................................................................. V

ÍNDICE..................................................................................................................................................VIII

1. MEMORIA DESCRIPTIVA

1 INTRODUCCIÓN ............................................................................................................................ 14

1.1 Objetivos del proyecto ..................................................................................... 14

1.2 Generalidades sobre la cogeneración ............................................................ 14

1.2.1 Definición de cogeneración 14 1.2.2 Ventajas 14

1.3 Tecnologías aplicables en cogeneración........................................................ 15

1.3.1 Cogeneración con motor alternativo 16 1.3.2 Cogeneración con turbina de gas 16 1.3.3 Cogeneración con turbina de vapor 17 1.3.4 Cogeneración con microturbinas 17

1.4 Criterios de elección de la tecnología ............................................................ 18

1.5 Requisitos de una instalación de cogeneración ........................................... 19

1.5.1 Requisitos técnicos de la instalación 19 1.5.2 Requisitos legales de la instalación 19

1.6 Trigeneración .................................................................................................... 20

1.6.1 Introducción 20 1.6.2 Refrigeración por absorción 21 1.6.3 Variables de diseño de los sistemas de refrigeración por absorción 23 1.6.4 Aspectos económicos de la trigeneración 23

2 DATOS DEL HOSPITAL................................................................................................................ 24

2.1 Datos generales ................................................................................................. 24

2.2 Consumos .......................................................................................................... 24

2.2.1 Demanda eléctrica 24 2.2.2 Demanda térmica 26

2.2.2.1 Demanda térmica para calefacción ....................................................................................... 26

Page 9: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas ix

2.2.2.2 Demanda térmica para climatización ................................................................................... 26 2.2.2.3 Tabla de datos.......................................................................................................................... 27

2.2.3 Demanda diarias de calor, frío y electricidad 27

3 DESCRIPCIÓN DE LA INSTALACIÓN ..................................................................................... 41

3.1 Elección de los equipos.................................................................................... 41

3.1.1 Elección del tipo de fuente de energía primaria 41 3.1.2 Elección del sistema de recuperación de calor 42 3.1.3 Tipos de combustibles 42 3.1.4 Solución adecuada 43

3.2 Funcionamiento de la instalación .................................................................. 45

3.2.1 Funcionamiento del equipo eléctrico 45 3.2.2 Funcionamiento del equipo térmico 46

3.2.2.1 Sistema de recuperación de calor.......................................................................................... 46 3.2.2.2 Demanda de potencia térmica recuperada .......................................................................... 46

3.2.3 Sistemas de control 47 3.2.3.1 Control de Temperaturas ....................................................................................................... 47 3.2.3.2 Control de la velocidad de los motores................................................................................ 48 3.2.3.3 Control de la presión de los circuitos ................................................................................... 48

3.2.4 Mantenimiento 48 3.2.4.1 Mantenimiento de los motores.............................................................................................. 48 3.2.4.2 Mantenimiento de la instalación de recuperación de calor ............................................... 49

3.3 Equipos instalados ........................................................................................... 49

3.3.1 Equipos motor-generador 50 3.3.1.1 Datos constructivos................................................................................................................. 50 3.3.1.2 Equipo de recuperación de calor........................................................................................... 51 3.3.1.3 Aeroenfriador .......................................................................................................................... 51 3.3.1.4 Recuperación de gases de escape.......................................................................................... 52

3.3.2 Intercambiador de calor para calefacción 52 3.3.2.1 Calderas auxiliares para calefacción..................................................................................... 52 3.3.2.2 Acumuladores de calor para agua caliente sanitaria.......................................................... 53

3.3.3 Equipo de absorción 53 3.3.3.1 Torre de refrigeración............................................................................................................. 54

3.3.4 Grupo de bombas 54 3.3.5 Instalación eléctrica 55

3.3.5.1 Centro de transformación ...................................................................................................... 56 3.3.5.2 Servicios auxiliares.................................................................................................................. 56 3.3.5.3 Distribución ............................................................................................................................. 56 3.3.5.4 Protecciones ............................................................................................................................. 57

3.4 Obra civil ........................................................................................................... 57

Page 10: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas x

3.4.1 Recinto destinado a los motogeneradores 58 3.4.2 Recinto de los recuperadores de calor 59 3.4.3 Recinto auxiliar 59 3.4.4 Recinto de instalaciones eléctricas 59 3.4.5 Sala de control 60 3.4.6 Cimentación 60 3.4.7 Acabados 61

3.4.7.1 Motogeneradores .................................................................................................................... 61 3.4.7.2 Máquinas de absorción........................................................................................................... 62 3.4.7.3 Recinto auxiliar........................................................................................................................ 62 3.4.7.4 Instalaciones eléctricas ........................................................................................................... 62 3.4.7.5 Sala de control ......................................................................................................................... 63

4 RESUMEN DEL PRESUPUESTO FINAL .................................................................................... 63

2. CÁLCULOS

1 ELECCIÓN DEL MOTOR .............................................................................................................. 65

1.1 Elección del número de motores y de la potencia ....................................... 65

1.2 Régimen horario de funcionamiento ............................................................. 65

1.3 Cumplimiento del régimen especial.............................................................. 66

1.3.1 Condición de autogenerador 67 1.3.2 Rendimiento eléctrico equivalente 68

2 CÁLCULO DE LA CALDERA DE RECUPERACIÓN............................................................... 70

2.1 Cálculo del caudal del circuito de camisas ................................................... 70

2.2 Calor aprovechable de los gases de escape .................................................. 70

2.3 Cálculo del circuito de refrigeración ............................................................. 71

3 CÁLCULO DE LA MÁQUINA DE ABSORCIÓN ..................................................................... 72

3.1 Cálculo de la potencia frigorífica ................................................................... 73

3.2 Cálculo de la carga del generador.................................................................. 74

3.3 Cálculo de la carga del condensador ............................................................. 74

3.4 Cálculo de la carga del evaporador ............................................................... 75

3.5 Características de la máquina de absorción ................................................. 75

4 CÁLCULO DEL SISTEMA DE CALEFACCIÓN ....................................................................... 76

4.1 Cálculo de la potencia de calefacción ............................................................ 76

Page 11: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas xi

4.2 Cálculo del circuito secundario de calefacción ............................................ 76

5 ACUMULADORES DE AGUA CALIENTE SANITARIA ....................................................... 77

5.1 Cálculo de los acumuladores .......................................................................... 77

5.2 Cálculo del circuito secundario de los acumuladores ................................ 77

6 CÁLCULO DE LOS EQUIPOS AUXILIARES ............................................................................ 78

6.1 Aeroenfriadores ................................................................................................ 78

7 TABLAS DE CARGA HORARIA.................................................................................................. 78

8 GRÁFICAS DE CARGA HORARIA DE LA INSTALACIÓN................................................. 91

8.1 Demanda eléctrica frente a producción en cada día tipo ........................... 91

8.2 Demanda térmica anual, frente a potencia térmica disponible ................. 95

3. ESTUDIO ECONÓMICO

1 INTRODUCCIÓN .......................................................................................................................... 101

2 SITUACIÓN SIN COGENERACIÓN ........................................................................................ 101

2.1 Factura eléctrica .............................................................................................. 102

2.2 Factura de gas ................................................................................................. 103

2.3 Gasto total sin trigeneración ......................................................................... 105

3 PREVISIONES CON TRIGENERACIÓN ................................................................................. 105

3.1 Factura de gas ................................................................................................. 105

3.2 Factura eléctrica .............................................................................................. 108

3.2.1 Compra de electricidad de la red eléctrica 108 3.2.2 Ingresos por venta de electricidad a la red 109

3.3 Gasto total con trigeneración ........................................................................ 111

4 COMPARACIÓN DE AMBOS MODOS DE FUNCIONAMIENTO ................................... 111

5 ESTUDIO DE VIABILIDAD ........................................................................................................ 112

5.1 Periodo de retorno de la inversión .............................................................. 113

5.2 Valor Actual Neto (VAN) y Tasa Interna de Rentabilidad (T.I.R.) ......... 114

6 CONCLUSIONES........................................................................................................................... 115

Page 12: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas xii

4. ANÁLISIS MEDIOAMBIENTAL

1 INTRODUCCIÓN .......................................................................................................................... 117

2 EMISIONES ATMOSFÉRICAS................................................................................................... 117

2.1 Monóxido de carbono .................................................................................... 117

2.2 Óxidos de nitrógeno....................................................................................... 118

2.2.1 EGR 118 2.2.2 Convertidores catalíticos 118 2.2.3 Lean Burn 119

3 RESIDUOS SÓLIDOS................................................................................................................... 119

4 CONTAMINACIÓN ACÚSTICA ............................................................................................... 119

4.1 Conducto de gases de escape ....................................................................... 119

4.2 Motores de gas natural .................................................................................. 120

5 VIBRACIONES............................................................................................................................... 120

ANEXOS

A BIBLIOGRAFÍA.............................................................................................................................. 123

Page 13: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

1Memoria Descriptiva

Page 14: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 14

1 Introducción

1.1 Objetivos del proyecto

La mayor parte de las instalaciones, demandan de manera simultánea calor, frío y

electricidad. Las posibilidades de aprovechar el calor procedente de un sistema de

generación de electricidad, es un método muy eficiente desde el punto de vista

energético, y por tanto económicamente atractivo.

Éste interés por el aprovechamiento de la energía calorífica, se ha visto

incrementado debido a la gran diferencia existente entre los precios de la electricidad y

de los combustibles.

Este proyecto, tiene como objetivo el cálculo de los equipos necesarios para el

funcionamiento de una instalación de trigeneración, y la realización de un estudio

técnico-económico.

1.2 Generalidades sobre la cogeneración

1.2.1 Definición de cogeneración

Es un sistema alternativo de generación de energía, basado en el aprovechamiento

de los gases de escape de una turbina o motor, que poseen un elevado poder calorífico.

Dicho poder calorífico es fácilmente aprovechable por medio de un fluido portador de

calor como puede ser el agua.

Básicamente consiste en la generación simultánea de energía eléctrica y energía

térmica, que puede ser utilizada para producir vapor, agua caliente para calefacción,

etc.

1.2.2 Ventajas

Las principales ventajas que ofrece la cogeneración son las siguientes:

• Elevados rendimientos.

Page 15: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 15

• La energía se produce y se consume en el mismo sitio; esto favorece la no

saturación de las líneas eléctricas, y el evitar las pérdidas producidas en la

transformación y en el posterior transporte de la energía eléctrica.

• Diversificación del sector eléctrico.

• Autoconsumo: producimos independientemente del suministro eléctrico, lo

cual evita paradas por corte del suministro.

• Venta de energía eléctrica sobrante, que se traduce en beneficios económicos.

• Diversificación en el consumo de energía primaria y menor dependencia del

petróleo, al usar típicamente gas natural.

• No supone la contaminación térmica de ríos y lagos, al consumir calores

residuales.

1.3 Tecnologías aplicables en cogeneración

Existen dos posibilidades, según la forma de energía de los eslabones de la

cadena:

• Ciclo de cabecera: Es con diferencia el más utilizado en cogeneración. En el

primer escalón se genera energía mecánica, que a su vez es transformada a

energía eléctrica por medio de un alternador, a partir de la energía química

de un combustible, y el residuo de esta operación es una energía térmica,

que constituye el segundo escalón.

• Ciclo de cola: La energía térmica residual de un proceso es utilizada para

producir electricidad. Estos ciclos están típicamente asociados con procesos

industriales en los que se presentan altas temperaturas, y por tanto resultan

calores residuales del orden de 900 º C que pueden ser utilizados

eficazmente para producir vapor y electricidad.

El principal inconveniente que presentan estos ciclos es el elevado coste de

los intercambiadores de calor, ya que además de soportar temperaturas

elevadísimas, tienen que estar fabricados con materiales que resistan

efluentes corrosivos.

Page 16: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 16

1.3.1 Cogeneración con motor alternativo

El motor alternativo genera la mayor cantidad de energía eléctrica por unidad de

combustible consumido, del 34 al 41%, aunque los gases residuales son a baja

temperatura, entre 200 y 250 °C. Sin embargo, en aquellos procesos en los que se puede

adaptar, la eficiencia de cogeneración alcanza valores similares a los de las turbinas de

gas (85%). Con los gases residuales se puede producir vapor de baja presión (de 10 a 15

kg/cm2) o agua caliente de 80 a 100 °C.

1.3.2 Cogeneración con turbina de gas

En este arreglo un compresor alimenta aire a alta presión a una cámara de

combustión en la que se inyecta el combustible, que al quemarse generará gases a alta

temperatura y presión, que a su vez, alimentan a la turbina donde se expanden

generando energía mecánica que se transforma en energía eléctrica a través de un

generador acoplado a la flecha de la turbina.

Los gases de escape tienen una temperatura que va de 500 a 650 °C. Estos gases son

relativamente limpios y por lo tanto se pueden aplicar directamente a procesos de

secado, o pueden ser aprovechados para procesos de combustión posteriores, ya que

tienen un contenido de oxígeno de alrededor del 15%. Debido a su alta temperatura,

estos gases suelen ser empleados a su vez, para producir vapor, que se utiliza en los

procesos industriales e inclusive, como veremos más adelante para generar más

energía eléctrica por medio de una turbina de vapor.

La cogeneración con turbina de gas resulta muy adecuada para los procesos en los

que se requiere de una gran cantidad de energía térmica, o en relaciones de

calor/electricidad mayores a 2.

Page 17: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 17

1.3.3 Cogeneración con turbina de vapor

En esta configuración la energía mecánica es producida en una turbina, acoplada a

un generador eléctrico, mediante la expansión de vapor de alta presión generado en

una caldera convencional. En este sistema la eficiencia global es del orden del 85 al 90%

y la eléctrica del 20 al 25%.

Las turbinas de vapor se dividen en tres tipos: a contrapresión, a extracción y a

condensación. En las turbinas de contrapresión la principal característica es que el

vapor, cuando sale de la turbina, se envía directamente al proceso sin necesidad de

contar con un condensador y equipo periférico, como torres de enfriamiento. En la

turbina de extracción/condensación, una parte del vapor puede extraerse en uno o

varios puntos de la turbina antes de la salida al condensador, obteniendo así, vapor a

proceso a varias presiones, mientras que el resto del vapor se expande hasta la salida al

condensador.

Estos sistemas se aplican principalmente en aquellas instalaciones en las que la

necesidad de energía térmica respecto a la eléctrica es de 4 a 1 o mayor.

1.3.4 Cogeneración con microturbinas

Las microturbinas difieren substancialmente de la mayoría de los métodos

tradicionales de generación de energía eléctrica usados en la industria, con emisiones

sumamente bajas, y que resultan particularmente útiles en muchísimas aplicaciones

industriales y comerciales.

Una microturbina es esencialmente una planta de poder miniatura, autocontenida,

que genera energía eléctrica y calorífica en rangos desde 30kW hasta 1.2MW en

paquetes múltiples (multipacks). Tiene una sola parte móvil, sin cajas de engranes,

bombas u otros subsistemas, y no utiliza lubricantes, aceites o líquidos enfriantes. Estos

equipos pueden usar varios tipos de combustibles tanto líquidos como gasesos,

incluyendo gas amargo de pozos petroleros con un contenido amargo de hasta 7%, gas

Page 18: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 18

metano, gases de bajo poder calorífico (tan bajo como 350 Btu) emanados de digestores

de rellenos sanitarios.

Uno de los usos más prácticos y eficientes de la microturbina está en la

cogeneración. Cogeneración, utilizando ambas formas de energía simultáneamente,

energía eléctrica y calor, implica precisamente maximizar el uso del combustible con

eficiencias del sistema entre 70-80%. Empresas comerciales, pequeñas industrias,

hoteles, restaurantes, clínicas, centros de salud, y una multitud de otras aplicaciones

pueden combinar sus necesidades de electricidad y energía térmica mediante el uso de

microturbinas como sistemas de cogeneración que anteriormente era difícil de lograr.

1.4 Criterios de elección de la tecnología

En la tabla anterior se ven las las eficiencias energéticas, tanto eléctricas como

térmicas, de las diferentes alternativas existentes en el mercado. Dependiendo de la

naturaleza de la instalación a diseñar se seleccionará una u otra. Además, entran en

juego otros factores como los costes de capital, costes de operación y mantenimiento,

combustible a utilizar, el funcionamiento a cargas parciales, tamaño, disponibilidad,

factores ambientales, … que serán analizados posteriormente.

Page 19: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 19

1.5 Requisitos de una instalación de cogeneración

Se deben de cumplir una serie de requisitos, tanto legales como técnicos. Los

primeros para actuar dentro del reglamento de instalaciones de cogeneración y operar

en condiciones ventajosas desde el punto de vista económico; los segundos para

obtener el máximo rendimiento de la instalación.

1.5.1 Requisitos técnicos de la instalación

• Utilizar en cada punto del proceso energía de la menor calidad posible.

• Sustituir los consumos directos de gas por consumos de vapor o agua

caliente procedente de la cogeneración.

• Racionalizar el consumo de frío, utilizando máquinas de absorción que se

accionan mediante energía térmica (calor).

• Utilizar combustible barato y abundante.

• Trabajar el mayor número posible de horas al año (se recomienda más de

5000).

• Seguridad en el suministro de energía térmica y eléctrica.

• Facilidad para amoldarse a variaciones de consumo energético sin pérdida

de beneficios.

1.5.2 Requisitos legales de la instalación

Actualmente existen dos requisitos que debe cumplir toda instalación de

poligeneración. El primero de ellos hace referencia al autoconsumo de energía eléctrica,

que para este tipo de instalaciones ha de ser superior al 10%. Está previsto un nuevo

RD que no imponga ningún límite en cuanto al autoconsumo, pero aún no ha sido

aprobado. La otra restricción legal trata sobre el rendimiento eléctrico equivalente, que

Page 20: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 20

es un indicador de la bondad de la instalación de cogeneración y se calcula de la

siguiente manera:

9.0VQ

EREE−

=

Donde Q es el consumo de energía primaria con referencia al poder calorífico

inferior del combustible utilizado, V es el número de unidades térmicas de calor útil

demandado por el hospital y E es la energía eléctrica generada, medida en bornes del

alternador. Para la definición, se ha tenido en cuenta un rendimiento para la

producción útil del 90%.

Las instalaciones acogidas al régimen especial poseen una serie de derechos en las

relaciones con las empresas distribuidoras. Deben de garantizar la conexión en paralelo

de la instalación y facilitar la incorporación de su energía excedentaria al precio de

mayorista incluyendo la prima. También deben recibir la energía eléctrica necesaria

para el correcto funcionamiento de la instalación a la tarifa regulada.

1.6 Trigeneración

1.6.1 Introducción

Existen muchas formas de realizar la cogeneración, pero, en la mayoría de los casos,

las proporciones o ratios no son los adecuados en una determinada aplicación,

generalmente porque la demanda térmica durante los meses estivales se reduce

notablemente, y la demanda eléctrica por su parte aumenta debido al empleo de

compresores eléctricos para refrigeración.

Combinando la cogeneración con la refrigeración por absorción (trigeneración), ese

problema queda solventado, ya que los consumos eléctricos de los compresores se

verán sustituidos por consumos térmicos de las máquinas de absorción, contribuyendo

a aplanar tanto la curva eléctrica como la térmica, logrando un ratio calor/electricidad

mucho más constante.

Page 21: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 21

1.6.2 Refrigeración por absorción

El principio de absorción está basado en la solubilidad de un gas en una solución a

baja temperatura y en la propiedad de estas soluciones de eliminar el gas cuando

aumenta su temperatura. La absorción va acompañada de un desprendimiento de

calor.

En lugar de una compresión del vapor entre el evaporador y el condensador, en un

ciclo de absorción el refrigerante es absorbido por una sustancia secundaria llamada

absorbente para formar una solución líquida. Dicha solución se comprime hasta alta

presión con unas bombas. Al ser el volumen específico de esta solución mucho menor

que el del vapor refrigerante, el trabajo realizado por las bombas será

significativamente menor, luego necesitará menos potencia para la compresión que los

sistemas tradicionales.

La otra diferencia principal, es que en los sistemas de absorción debe introducirse

un medio para recuperar el refrigerante vapor a partir de la solución líquida antes de

que el refrigerante entre en el condensador, lo cual suponer transferir calor desde una

fuente a una temperatura relativamente alta. Para ello se utilizan los vapores y calores

residuales de la planta, que de otra manera serían evacuados al ambiente sin

aprovecharse.

El ciclo básico de absorción se realiza con cuatro componentes fundamentales:

generador, condensador, evaporador y absorbedor, trabajando los dos primeros en la

zona de alta presión y el resto a baja presión. Entre ambas zonas suele haber una

relación de presiones 10:1.

Page 22: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 22

En el generador, una disolución diluida de refrigerante en absorbente es

continuamente concentrada por acción de un fluido térmico. Los vapores de

refrigerante generados en el generador pasan al condensador, donde condensan

mediante agua de refrigeración, quedando en el generador una disolución concentrada

que será enviada al absorbedor para completar el ciclo del absorbente. Una vez en

estado líquido, el refrigerante pasa de la zona de alta presión a la de baja, donde se

produce una evaporación súbita, dando como resultado que el resto del refrigerante

líquido no evaporado se enfríe hasta la temperatura de saturación correspondiente a la

presión dentro del evaporador. Este refrigerante enfriado es el que se pone en contacto

con el sistema de fluido externo a enfriar (generalmente agua) produciéndose el efecto

refrigerante. Los vapores de refrigerante abandonan el evaporador y van hacia el

absorbedor, donde son absorbidos por la disolución concentrada, disminuyendo esta

su concentración, para dirigirse de nuevo al generador y así comenzar el ciclo

completo.

En el absorbedor es necesario enfriar con agua de refrigeración para disipar el calor

producido en el proceso de absorción. Típicamente se suele usar el mismo circuito que

el que condensa el vapor en el condensador.

Page 23: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 23

1.6.3 Variables de diseño de los sistemas de refrigeración por absorción

Las variables primarias para este diseño son:

• Temperatura y caudal requerido de agua fría.

• Temperatura de entrada del agua o fluido de proceso.

• Presión de vapor o temperatura equivalente del agua caliente o de los gases

calientes disponibles.

El rendimiento de la máquina de absorción aumentará cuanto más elevada sea la

temperatura del fluido de salida, y además la capacidad de la máquina será mayor.

1.6.4 Aspectos económicos de la trigeneración

La cogeneración con absorción se plantea como una alternativa económica a los

sistemas convencionales de refrigeración. En una instalación de este tipo, el coste del

sistema de absorción completo puede suponer un 25% del coste total.

El sector que más partido puede sacarle a este sistema es el sector de servicios, ya

que la demanda es muy adecuada, especialmente para cubrir los picos de climatización

enverado.

Para edificios ya construidos, la sustitución del sistema convencional por uno con

absorción no es rentable por debajo de los 10.000 m2, salvo que tengan algún consumo

especial de calor o frío, como es el caso que nos ocupa.

Para edificios nuevos, los sistemas de trigeneración pueden ser rentables para

superficies superiores a 5000 m2 para utilizaciones de más de un 80% de los días del

año. La trigeneración constituye una alternativa muy atractiva desde el punto de vista

económico pero la mayor importancia de ello lo va a constituir el ahorro energético que

supone para una nación, ya que los rendimientos obtenidos son muy elevados y

superan notablemente a los sistemas convencionales.

Page 24: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 24

2 Datos del hospital

2.1 Datos generales

La instalación donde se va a implantar el sistema de trigeneración es un hospital

público con una capacidad de 735 camas, con una ocupación media anual de un 85%.

El complejo hospitalario consta de un solo edificio principal de 11 plantas con dos

sótanos.

Dado el tipo de edificio, presentará una gran demanda de energía térmica y eléctrica

a lo largo de todo el día. La energía térmica es debida a las demandas de calefacción y

ACS, mientras que la demanda eléctrica se debe a factores como alumbrado, fuerza o

refrigeración (que pasará a formar parte del consumo térmico una vez implantado el

sistema).

El hospital se haya ubicado en la costa levantina, por lo que la demanda frigorífica

durante los meses de verano es considerable.

Los datos de partida del hospital se obtienen a partir de las facturas mensuales tanto

de la compañía eléctrica como de la empresa suministradora de combustible para

calefacción.

2.2 Consumos

2.2.1 Demanda eléctrica

Se han tomado los datos de la factura eléctrica del hospital a lo largo del año 2005,

durante el cual la energía eléctrica se suministró a 20 KV, transformándola a 380 V

según distintos usos (alumbrado, fuerza, compresores, etc.), ascendiendo la potencia

contratada a 2600 KW. Un dato a señalar, es el factor de potencia de la instalación, de

un 0,95.

Page 25: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 25

Como se muestra en la siguiente gráfica, el consumo total del hospital permanece

constante a lo largo de todo el año, salvo durante los meses veraniegos, que presenta

picos correspondiéndose con el funcionamiento de los compresores.

Es necesario separar el consumo de dichos compresores del resto del consumo

eléctrico, ya que serán sustituidos por las máquinas de absorción. Se tomarán las

siguientes hipótesis:

- El consumo de fuerza y de alumbrado se mantiene constante a lo largo de todo

el año.

- El consumo de los compresores es lo que hace diferente el consumo en los

meses de verano.

Representando de forma gráfica observamos que los picos de demanda se

corresponden con el funcionamiento de los compresores, por lo que una vez

implantado el sistema de poligeneración la demanda presentará una forma totalmente

plana, lo cual favorece enormemente el funcionamiento de los motores para que

funcionen a un rendimiento máximo.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Enero Abril Julio Octubre

Frío (KWh)Alumbrado+ Fuerza (KWh)

Page 26: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 26

2.2.2 Demanda térmica

El consumo térmico del hospital comprende el consumo de calefacción, ACS y

climatización, ya que al usar las máquinas de absorción se sustituyen los consumos

eléctricos de climatización por consumos térmicos, sustituyendo a los compresores.

2.2.2.1 Demanda térmica para calefacción

El consumo térmico del hospital será obtenido a partir de los consumos diarios de

gas natural de las calderas existentes, teniendo en cuenta el rendimiento de éstas y el

poder calorífico del combustible utilizado.

En las instalaciones actuales se utilizan calderas de gas natural y calderas de gasoil,

estas últimas para la producción de vapor a alta presión para lavandería y centro de

esterilización. Con la nueva instalación de trigeneración, este servicio será

subcontratado.

Partiendo de los datos de consumo mensual se puede estimar que la demanda para

la instalación de calefacción y ACS. Esta última permanece casi constante a lo largo de

todo el año, descendiendo ligeramente en los meses estivales. Los consumos de

lavandería y esterilización no son contemplados en las tablas al tener que ser

subcontratados.

2.2.2.2 Demanda térmica para climatización

La demanda frigorífica del hospital debe cubrir las habitaciones y las zonas

comunes de éste. Para ello se están utilizando unos compresores cuyo consumo

eléctrico se ha estimado anteriormente. A partir de ellos y tomando como base el

rendimiento COP = 2.5 y los rendimientos de las máquinas de absorción del 70% se

puede estimar una demanda frigorífica mensual de la siguiente forma:

Dte=Dts/0.7

Dts=COP·W

Page 27: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 27

Donde:

- Dte: demanda térmica de entrada a la máquina de absorción.

- Dts: demanda térmica de salida de la máquina de absorción.

- W: consumo eléctrico de frío.

Para estimar la potencia de los equipos es necesario calcularla con la punta de la

demanda del año, correspondiendo ésta a la del mes de agosto, debido a que el

hospital no puede perder servicio de climatización en ningún momento.

2.2.2.3 Tabla de datos

Mes

Consumo electrico (KWh)

Frio (KWh)

Calefacción (KWh) Dts (KWh) Dte (KWh)

ACS (KWh)

Enero 1130599 0 1945749 0 0 194707 Febrero 1032759 0 1657675 0 0 175866 Marzo 1130599 0 1140401 0 0 194707 Abril 1027322 0 974284 0 0 188428 Mayo 1149613 116499 0 308722 441032 194707 Junio 1319096 262124 0 694629 992327 183429 Julio 1442605 436872 0 1157711 1653873 144571

Agosto 1609817 582496 0 1543614 2205163 147598 Septiembre 1287329 291248 0 771807 1102582 225472

Octubre 1036059 87375 281193 231544 330777 194707 Noviembre 1006395 0 627886 0 0 188428 Diciembre 1050152 0 1453857 0 0 194706

2.2.3 Demanda diarias de calor, frío y electricidad

Además de las demandas mensuales de climatización, electricidad y térmicas, es

necesario tener en cuenta las fluctuaciones diarias. Para ello se toman anteriores

estudios de hospitales similares para la demanda eléctrica, y estudios de fluctuaciones

diarias de temperatura en la zona de construcción del hospital. Teniendo en cuenta

ello, se han elaborado doce días tipo, uno por cada mes del año, que permitirán simular

el funcionamiento de la instalación. Para ello se han tenido en cuenta las siguientes

premisas:

Page 28: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 28

- No se incluyen demandas de vapor a alta presión para lavandería y

esterilización. Serán servicios subcontratados dada la imposibilidad de obtener

vapor a esas temperaturas con cogeneración.

- Se considera el consumo de ACS constante, dado que es posible su acumulación

con la nueva instalación.

- Las necesidades de calefacción y de refrigeración siguen una curva inversa a la

de las temperaturas de la zona, teniendo todos los meses una forma similar

pero con diferentes valores absolutos.

Page 29: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 29

ENERO Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1177 2342 0

2 1110 2214 0

3 1038 2078 0

4 996 1999 0

5 974 1854 0

6 947 1806 0

7 944 1799 0

8 960 1792 0

9 1211 2308 0

10 1645 3134 0

11 1956 3499 0

12 2079 3961 0

13 2182 4158 0

14 2252 4291 0

15 2247 4282 0

16 2208 4206 0

17 2043 3896 0

18 1941 3501 0

19 1455 2774 0

20 1426 2716 0

21 1442 2748 0

22 1453 2770 0

23 1458 2778 0

24 1324 2523 0

Page 30: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 30

FEBRERO Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1191 2168 0

2 1124 1857 0

3 1050 1735 0

4 1009 1666 0

5 984 1624 0

6 961 1587 0

7 956 1638 0

8 971 1655 0

9 1225 2071 0

10 1664 2750 0

11 1978 3269 0

12 2102 3354 0

13 2209 3379 0

14 2279 3391 0

15 2273 3457 0

16 2234 3493 0

17 2069 3417 0

18 1967 3249 0

19 1474 2637 0

20 1420 2546 0

21 1458 2561 0

22 1470 2579 0

23 1477 2550 0

24 1341 2316 0

Page 31: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 31

MARZO Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1215 1436 0

2 1147 1353 0

3 1073 1266 0

4 1030 1216 0

5 1006 1188 0

6 980 1157 0

7 974 1151 0

8 991 1172 0

9 1252 1478 0

10 1700 2008 0

11 2022 1506 0

12 2147 2537 0

13 2255 2663 0

14 2327 2748 0

15 2323 2743 0

16 2282 2693 0

17 2113 2495 0

18 2008 2370 0

19 1504 1776 0

20 1473 1739 0

21 1490 1760 0

22 1503 1773 0

23 1506 1779 0

24 1368 1616 0

Page 32: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 32

ABRIL Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1213 1373 0

2 1147 1298 0

3 1075 1216 0

4 1031 1167 0

5 1006 1137 0

6 980 1110 0

7 975 1105 0

8 1217 1122 0

9 1126 1274 0

10 1610 1822 0

11 1898 2148 0

12 1947 2204 0

13 2033 2300 0

14 2022 2289 0

15 1820 2059 0

16 1667 1888 0

17 1416 1602 0

18 1391 1574 0

19 1451 1641 0

20 1499 1697 0

21 1525 1725 0

22 1546 1749 0

23 1509 1706 0

24 1370 1551 0

Page 33: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 33

MAYO Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1369 91 525

2 1289 91 492

3 1209 91 457

4 1158 91 436

5 1131 91 423

6 1137 91 426

7 1098 91 410

8 1116 456 162

9 987 456 107

10 1534 456 342

11 1856 456 481

12 1806 364 523

13 1902 364 565

14 1890 274 623

15 1662 274 525

16 1448 274 433

17 1163 274 310

18 1223 274 336

19 1292 364 300

20 1344 364 323

21 1371 364 336

22 1525 274 466

23 1484 182 511

24 1328 182 445

Page 34: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 34

JUNIO Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1717 88 1275

2 1618 88 1199

3 1519 88 1121

4 1455 88 1070

5 1420 88 1044

6 1386 88 1017

7 1379 88 1011

8 1402 442 782

9 1255 442 667

10 1556 442 902

11 1962 442 1218

12 1758 354 1121

13 1876 354 1213

14 1863 266 1265

15 1577 266 1042

16 1252 266 789

17 894 266 509

18 1083 266 656

19 1167 354 659

20 1236 354 714

21 1268 354 740

22 1631 266 1084

23 1579 177 1106

24 1382 177 952

Page 35: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 35

JULIO Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1401 68 1706

2 1272 68 1446

3 1137 68 1376

4 1274 68 1347

5 1226 68 1388

6 1179 68 1329

7 1171 68 1418

8 1204 338 1271

9 1314 338 1388

10 1594 338 1759

11 2135 338 2205

12 1680 270 1914

13 1838 270 2111

14 1819 203 2135

15 1442 203 1662

16 988 203 1294

17 769 203 1019

18 857 203 1031

19 970 270 1076

20 1058 270 1176

21 1106 270 1205

22 1803 203 2116

23 1734 135 2076

24 1473 135 1749

Page 36: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 36

AGOSTO Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1479 68 2210

2 1351 68 2118

3 1213 68 1895

4 1229 68 1920

5 1178 68 1941

6 1132 68 1765

7 1124 68 1852

8 1157 344 1714

9 949 344 1691

10 1475 344 2123

11 2022 344 2120

12 1922 276 2688

13 2081 276 2945

14 2064 207 2964

15 1681 207 2449

16 1390 207 2084

17 908 207 1511

18 864 207 1540

19 980 276 1577

20 1068 276 1659

21 1116 276 1696

22 1721 207 2213

23 1650 138 1998

24 1386 138 2203

Page 37: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 37

SEPT. Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1338 108 1173

2 1235 108 1076

3 1127 108 974

4 1182 108 1028

5 1147 108 994

6 1108 108 959

7 1100 108 950

8 1129 544 672

9 894 544 453

10 1629 544 1137

11 2062 544 1544

12 1827 436 1401

13 1954 436 1519

14 1940 327 1582

15 1635 327 1298

16 1279 327 965

17 902 327 613

18 1110 327 807

19 1199 436 815

20 1272 436 883

21 1308 436 917

22 1716 327 1372

23 1659 217 1397

24 1449 217 1200

Page 38: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 38

OCTUBRE Hora Demanda Eléctrica (kW) Demanda Térmica (kW) Frio(KW)

1 1121 432 364

2 1059 411 343

3 991 387 319

4 950 373 305

5 928 366 296

6 903 358 288

7 899 357 286

8 916 568 147

9 933 649 100

10 1348 790 250

11 1643 890 354

12 1675 878 382

13 1776 912 418

14 1841 883 478

15 1836 881 477

16 1764 867 442

17 1608 816 386

18 1579 783 393

19 1116 677 191

20 1087 668 180

21 1101 672 185

22 1214 624 286

23 1220 575 324

24 1094 530 279

Page 39: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 39

NOVIEMBRE Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1083 755 0

2 1023 712 0

3 956 666 0

4 916 638 0

5 896 624 0

6 873 608 0

7 867 606 0

8 883 616 0

9 1114 777 0

10 1514 1055 0

11 1800 1255 0

12 1912 1334 0

13 2007 1400 0

14 2071 1445 0

15 2066 1442 0

16 2030 1415 0

17 1880 1311 0

18 1788 1246 0

19 1340 935 0

20 1313 916 0

21 1327 925 0

22 1335 931 0

23 1343 937 0

24 1218 849 0

Page 40: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 40

DICIEMBRE Hora Demanda Electrica (kW) Demanda Térmica (kW) Frio(KW)

1 1094 1717 0

2 1031 1618 0

3 964 1514 0

4 925 1452 0

5 907 1423 0

6 881 1383 0

7 877 1376 0

8 893 1402 0

9 1126 1767 0

10 1530 2401 0

11 1818 2853 0

12 1931 3030 0

13 2028 3182 0

14 2092 3283 0

15 2085 3273 0

16 2051 3219 0

17 1898 2980 0

18 1804 2832 0

19 1351 2122 0

20 1324 2078 0

21 1338 2100 0

22 1349 2118 0

23 1353 2126 0

24 1230 1930 0

Page 41: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 41

3 Descripción de la instalación

3.1 Elección de los equipos

3.1.1 Elección del tipo de fuente de energía primaria

Como se vio anteriormente, existen tres tipos de tecnologías existentes en el

mercado, y será vital realizar una buena elección, ya que ésta limitará las posibilidades

de la instalación de cogeneración. Para este tipo de instalaciones, la decisión se centra

entre motores alternativos de combustión interna y turbinas de gas. Las principales

diferencias entre ambos, son las siguientes:

Motores alternativos:

• Rendimiento eléctrico elevado, aunque influenciado en pequeña proporción

por el funcionamiento a cargas parciales (para ello se fracciona la potencia total

en varias unidades).

• El fluido portador no necesita una temperatura muy elevada.

• Favorable cuando la relación calor electricidad es cercana a la unidad.

• Es importante diseñar correctamente los conductores para evitar pérdidas de

carga.

• Independencia de condiciones atmosféricas.

Turbinas de gas:

• Rango de potencias: 15 KW- 275MW

• Compuesta por compresor de aire, cámara de combustión y turbina de

potencia. Ausencia de partes móviles.

• Dependencia de condiciones atmosféricas. Aproximadamente, cada 100m de

altura, se pierde un 1% de potencia.

Page 42: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 42

• También se producen pérdidas en la admisión y en el escape, aunque el calor

aprovechado en las turbinas es mayor, ya que es sencillo de recuperar al estar

todo confinado en un mismo lugar.

Finalmente, y atendiendo sobre todo a la magnitud de potencia necesaria (unos

pocos MW), se decidió instalar motores de combustión interna.

3.1.2 Elección del sistema de recuperación de calor

La recuperación de calor en los motores, se realiza en dos etapas, lo que permite

obtener dos temperaturas diferentes de agua de proceso. En la mayoría de las

instalaciones, se utiliza agua caliente, o vapor a presión de 1bar, el problema aparece

cuando se necesita vapor a alta presión, que es necesario utilizar compresores a la

salida de la caldera de baja presión, únicamente factible si es la única solución posible.

3.1.3 Tipos de combustibles

La implantación de un sistema de cogeneración, implica sustituir los consumos

eléctricos por consumos de gas, por lo que ahora el combustible será utilizado tanto

para el funcionamiento de las calderas auxiliares, como por los motores alternativos.

El tipo de combustible elegido ha sido el gas natural por los siguientes motivos:

• El índice de octanos del gas natural es superior al de la gasolina, por lo que se

puede aumentar el grado de compresión, mejorando el rendimiento,

especialmente notable si trabajamos a cargas parciales.

• Menor concentración de NOx y CO.

• Posibilidad de realizar mezclas muy homogéneas, disminuyendo el consumo

específico, debido a la fácil difusión del gas en el aire.

Otras posibles alternativas podrían haber sido la gasolina, el gasoil, o el biogás,

generado mediante la fermentación anaerobia de los residuos orgánicos en

Page 43: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 43

explotaciones agropecuarias, plantas de tratamiento de aguas residuales urbanas,

vertederos, etc.

3.1.4 Solución adecuada

La instalación constará de tres motores alternativos de gas natural, que

proporcionan una potencia total de 3x958 KWe. La instalación está prevista de un

equipo de recuperación de calor residual, formado por un circuito que se hace pasar

por la refrigeración de camisas, y posteriormente por el sistema de recuperación de

calor de los gases de escape, donde éstos son enfriados hasta 120ºC. La potencia total

recuperada asciende a 3x1168 KW, el fluido portador es agua a 1 bar, la temperatura

del agua de proceso se obtiene a 106,65ºC, y debe regresar al circuito de camisas a 82ºC,

como se observa en esquema.

La instalación descrita consta además de varios intercambiadores de calor para

calefacción de manera que se adecue la temperatura a la necesaria para calefacción,

entrada de la máquina de absorción, o agua caliente secundaria.

Page 44: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 44

Motor

Equipo de

Absorción

Recuperador

para calefacción

Equipos de aire

acondicionado

Sist. Distr. del

agua caliente

ACS

Agua Caliente

Sanitaria

106,65ºC

80ºC 70ºC

50ºC 10ºC

12,2ºC

6,7ºC

84,3C º

82ºC

106,65ºC

84,3ºC

Page 45: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 45

3.2 Funcionamiento de la instalación

3.2.1 Funcionamiento del equipo eléctrico

El funcionamiento eléctrico del hospital, está basado en tres motores de gas natural

DEUTZ TGB 620 V12, de manera que podamos contar con tres escalones de potencia

para poder realizar una mejor regulación. Se instalará para cada uno de los motores un

sistema compuesto por un alternador síncrono, de marca Stamford, modelo HCI 734 E2

con una tensión de salida de 380 V y 50Hz de frecuencia.

El modo de funcionamiento normal del sistema será conectado a la red eléctrica,

pero debe ser capaz de funcionar aislado de la misma, cuando se produzcan cortes, y

por tanto habrá de aguantar cargas de cortocircuito durante breves períodos de

tiempo.

Los mecanismos eléctricos de control deberán detectar los cortes de suministro en

red para desconectarse de ésta y seguir funcionando en régimen aislado. Resumiendo,

los modos de funcionamiento son los siguientes:

1. Régimen paralelo con la red

Los motores son arrancados con la tensión de ésta, y una vez arrancados se

realiza la conexión en paralelo, bien sea de forma manual o automática. En este tipo

de régimen, la instalación demanda de los motores la potencia necesaria sin

sobrepasar la nominal. Si en algún momento faltara potencia, se tomaría energía

directamente de la red. Los motores siempre funcionarán a plena carga, para

maximizar el rendimiento, de forma que si en algún momento sobra energía, ésta

será vendida a la red.

2. Régimen aislado de red

Situación anormal que únicamente se dará cuando se produzca un corte en el

suministro eléctrico. El corte hará saltar al equipo eléctrico para que la instalación se

desconecte de red. La demanda del hospital será cubierta hasta la potencia máxima

Page 46: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 46

de los motores. Las variaciones de carga deberán ser absorbidas por el equipo, por

lo que será necesario un variador de velocidad en los motores.

El grado de carga de los motores se establecerá en función de la demanda, pero

procurando el máximo número de horas de funcionamiento. Se intentará, siempre

que sea posible, tener los motores a máxima potencia para evitar disminuciones de

rendimiento.

Los equipos han sido elegidos de manera que cubran el máximo anual de

potencia eléctrica, y funcionen de la manera más económicamente rentable, siempre

respetando la normativa vigente.

3.2.2 Funcionamiento del equipo térmico

3.2.2.1 Sistema de recuperación de calor

La potencia térmica disponible para la instalación, depende directamente de la

potencia eléctrica generada, ya que el sistema utilizado para recuperar la energía

térmica se basa en un circuito cerrado de agua de presión 1 bar que se hace pasar por el

equipo de refrigeración del circuito de camisas y por la salida de los gases de escape.

La recuperación de calor se realiza en dos etapas: en el circuito de refrigeración de

camisas de los pistones, donde recuperamos una potencia de 474 KW por motor,

entrando el agua de refrigeración a 82ºC y abandonando el circuito a 92ºC. La otra

etapa consiste en la recuperación de calor generado por los gases de la combustión,

donde son recuperados 694 KW. La temperatura final del agua será de 106,65ºC, que

será posteriormente utilizada para calefacción/refrigeración, y generación de agua

caliente sanitaria.

3.2.2.2 Demanda de potencia térmica recuperada

La principal demanda de energía térmica se produce en el equipo de

refrigeración/calefacción. Dichos equipos funcionan en paralelo, refrigeración durante

los meses estivales, y calefacción en los meses más fríos.

Page 47: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 47

El sistema de refrigeración está compuesto únicamente por una máquina de

absorción, mientras que el equipo de calefacción está compuesto por un simple

intercambiador de calor, en el cual entra el agua a 106,65 ºC abandonándolo a 84,3 ºC.

La demanda de temperatura de calefacción es de 80 ºC y ésta es recuperada en un

circuito cerrado a 70 ºC.

Por su parte, el consumo térmico de agua caliente sanitaria del hospital, se

encuentra situado en serie con los dos descritos anteriormente, llegándole todo el

caudal de agua disponible a una temperatura de 84,3 ºC, y teniendo que abandonar el

intercambiador de calor a 82 ºC. Gracias a éste sistema es posible suministrar a cada

cama de un caudal de 250 litros/día a 50 ºC.

3.2.3 Sistemas de control

En la instalación descrita deben utilizarse para su correcto funcionamiento los

siguiente sistemas de control, que llevan asociados un sistema de recogida de datos.

3.2.3.1 Control de Temperaturas

Las temperaturas del circuito de agua caliente serás controladas por sensores en los

siguientes puntos:

• Temperatura de entrada y salida de agua caliente sanitaria.

• Temperatura de agua intercambiada en la calefacción.

• Temperatura de entrada y salida de la torre de refrigeración de la máquina de

absorción, para mantener la evacuación de calor adecuada.

• Temperatura de salida del circuito de recuperación de calor, que entrará en los

equipos de absorción y calefacción, dependiendo de la época del año.

• Temperatura de gases de escape: deberá ser superior siempre a la temperatura

de rocío.

Page 48: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 48

• Temperatura de entrada y de salida en el intercambiador de recuperación del

circuito de recuperación de camisas, para favorecer una correcta refrigeración.

Cuando dicho sistema falle, deberán darse órdenes a los Aeroenfriadores.

3.2.3.2 Control de la velocidad de los motores

La velocidad de los motores deberá ser constante e igual a 1500 rpm, debido a la

frecuencia de la instalación y al número de polos de la máquina síncrona, por lo que se

ha de utilizar un equipo capaz de controlar la frecuencia del motor, y otro que regule la

admisión del combustible en los motores.

3.2.3.3 Control de la presión de los circuitos

La presión deberá ser controlada en todas las entradas y salidas de bombas para que

éstas estén funcionando correctamente. Así mismo deberá ser controlada a la entrada y

salida de cualquier equipo que funcione a presión, como por ejemplo la máquina de

absorción, o la admisión de combustible en los motores.

3.2.4 Mantenimiento

3.2.4.1 Mantenimiento de los motores

Los motores instalados aseguran un funcionamiento de 48.000 horas antes de un

reacondicionamiento general, aunque deben realizarse una serie de controles, según el

fabricante, que ordenados según frecuencia son los siguientes:

• Diariamente: control de lubricante, nivel de agua de refrigeración,

estanqueidad del motor, control de ruidos, de desagües, etc. Control

realizado por el usuario.

• 1500 horas de trabajo: inspección realizada por el fabricante, que incluye

válvulas, bujías, baterías, cables de encendido, aceite, filtros de aceite, filtro

Page 49: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 49

de aire, punto de encendido, regulador de velocidad, sistemas de gases de

escape y además las operaciones diarias.

• 3000 horas de trabajo: además de las operaciones anteriores se controlan los

límites de mezcla aire/combustible.

• 12000 horas de trabajo: incluye todas las operaciones anteriores más cambiar

dispositivo pick-up, cojinetes, turbocompresor y limpiar el refrigerador de

aire de sobrealimentación, así como controlar el intercambiador de calor de

agua de refrigeración y gases de escape.

• 24000 horas de trabajo: reacondicionamiento intermedio ampliado, realizado

por la empresa.

• 48000 horas de trabajo: reacondicionamiento general.

3.2.4.2 Mantenimiento de la instalación de recuperación de calor

Deberá realizarse un control de limpieza del agua en circuito cerrado para evitar la

acumulación de suciedad, limpieza de filtros, etc. Se realizará en los meses de verano la

revisión del equipo de calefacción y en los meses de invierno el mantenimiento de los

equipos de absorción, en los que el cuidado más relevante es la cristalización.

Periódicamente se revisarán los acumuladores de ACS para evitar que se acumule

suciedad.

3.3 Equipos instalados

A continuación se realiza una breve descripción de los equipos utilizados en la

instalación, tanto de recuperación de calor como de producción de frío y elementos

auxiliares.

Page 50: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 50

3.3.1 Equipos motor-generador

3.3.1.1 Datos constructivos

El equipo motor-generador está constituido por tres unidades DEUTZ, modelo TGB

620 V12, con 968 KW de potencia nominal y calor útil de 1168 KW por unidad, con

gases hasta 120 ºC.

Los datos constructivos del motor son los siguientes:

• Disposición: en ‘V’ a 90º;

• Sentido de giro: antihorario mirando al volante de inercia;

• Ciclo d trabajo: Otto, cuatro tiempos;

• Sistema de arranque: eléctrico;

• Diámetro de cilindros: 170 mm;

• Carrera del pistón: 195 mm;

• Cilindrada unitaria: 4,426 l;

• Cilindrada total: 53,11 l;

• Relación de compresión: 12;

• Presión media efectiva: 7 a 17 bar;

• Nº metano: >70.

El equipo puede utilizar gas natural, gas de vertedero o gas de depuradora. En la

presente instalación se alimentará con gas natural.

El generador utilizado es un generador síncrono de marca Stamford, modelo HCI

734 E2 con una tensión de salida de 380 V y 50Hz de frecuencia.

El sistema de formación de mezcla y admisión está formado por un filtro limpiador

de aire seco situado antes del compresor, un turbo compresor accionado por gases de

escape, un enfriador de mezcla aire-gas de dos etapas, un mezclador multigás DEUTZ

Page 51: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 51

MWM tipo Ventura y un sistema de control electrónico de mezcla que controla la

proporción gas/aire.

3.3.1.2 Equipo de recuperación de calor

Está constituido de dos tramos, el primero que pasa por el circuito de refrigeración

de camisas, y el segundo por la salida de los gases de escape. Obtenemos un caudal

total de 11,33 Kg/s por cada motor. El sistema de refrigeración posee una válvula de

tres vías que permite realizar un bypass del circuito que se dirige al intercambiador de

calor, de tal forma que si éste no funciona o no puede recuperar el calor, entra en

funcionamiento el aeroenfriador, cuya descripción sigue a continuación.

3.3.1.3 Aeroenfriador

Cada motor dispone de su propio aeroenfriador, cuya finalidad es evacuar el calor

producido en las camisas de los pistones. En situación normal no funcionan a plena

carga, ya que es el propio circuito de refrigeración el que evacua el calor, por lo que

para el dimensionamiento de los Aeroenfriadores, se debe tomar el caso más

desfavorable, es decir, 474 KW a disipar, considerando una temperatura de entrada de

92 ºC y 82 ºC de salida.

Cada aeroenfriador está compuesto por:

• Un haz tubular aleteado de cobre con aletas continuas. La alimentación se

realiza con bridas PN16, que van soldadas a los colectores de distribución de

cobre.

• Paneles laterales de acero que incorporan orejetas para izado de haces.

• Cajas de conexiones de motores.

• Ventiladores

• Planchas de acero galvanizado remachadas para caja de aire y estructura

soporte.

Page 52: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 52

• Motores eléctricos con protección IP-55 y carcasa de aluminio.

3.3.1.4 Recuperación de gases de escape

La recuperación de gases de escape se realiza en un intercambiador de calor de

tubos y carcasa. Por el interior de los tubos circula el agua y por la carcasa los gases

procedentes de la combustión. Los gases abandonan el escape a 516 ºC y se enfrían

hasta 120 ºC. El caudal seco de gases de escape es de 5623 Kg/h.

Para cuando no sea necesario aprovechar la salida de los gases de escape a la salida,

se dispondrá de una válvula que permitirá el paso de los gases de escape por fuera del

intercambiador, y se expulsarán directamente a la atmósfera.

3.3.2 Intercambiador de calor para calefacción

A la salida del circuito intercambiador de calor de gases de escape el caudal de agua

a 106,65 ºC se llevará durante los periodos invernales al intercambiador de agua para

calefacción. La demanda de ésta se realiza a 80 ºC, y el retorno a la instalación a 70 ºC.

La potencia térmica por unidad motor-generador de la instalación asciende a 1168

KW, por lo que el caudal por el circuito primario del intercambiador es de 11,33 Kg/s.

En el circuito secundario se obtiene un caudal de agua a 80 ºC para calefacción de 25,3

Kg/s por cada motor conectado.

3.3.2.1 Calderas auxiliares para calefacción

En situaciones donde la demanda térmica de la instalación sea superior a la potencia

proporcionada por el equipo cogenerador se instalará, a modo de servicio de auxiliar,

calderas de calefacción a gas natural. Se realizará en paralelo con el circuito anterior, y

su potencia será igual a la requerida por la instalación en condiciones de no

funcionamiento de la cogeneración, debido al posible fallo de ésta.

Page 53: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 53

3.3.2.2 Acumuladores de calor para agua caliente sanitaria

La demanda de agua caliente sanitaria se supone constante a lo largo de todo el año.

Para ello se dispondrá de una bomba de alimentación de agua que sale del

intercambiador de agua para calefacción, o del equipo de absorción en invierno, cuyo

caudal es de 11,33 Kg/s por cada motor funcionando; su temperatura de entrada será

de 84,3 ºC y ha de volver al circuito de camisas a 82 ºC. El agua de suministro procede

de una red a una temperatura media anual de 10 ºC, y considerando que la demanda se

produce a 50 ºC, se obtiene un caudal medio de 250 litros de agua caliente por día y por

habitación, que es más que suficiente para satisfacer las necesidades.

Se instalarán en paralelo con el intercambiador de ACS dos acumuladores de ACS

por motor, para amortiguar las demandas diarias.

3.3.3 Equipo de absorción

Se procederá a instalar una única máquina de absorción (Bromuro de Litio / agua)

de simple efecto para toda la instalación, de una potencia frigorífica de 2221 Kw. La

alimentación de dicha máquina será de agua caliente a 106,65 ºC, el caudal será el

mismo que para el sistema de calefacción, ya que se encuentran en paralelo.

La capacidad frigorífica de la máquina le permite proporcionar un caudal de agua

fría a 6,7 ºC de 96,6 Kg/s que abastecerá la demanda del hospital. En funcionamiento

normal, el agua de refrigeración actúa en circuito cerrado regresando a la máquina de

absorción a una temperatura de 12,2 ºC.

Los circuitos del evaporador, absorbedor y condensador serán del tipo de

intercambiadores de calor con tubos de borde recto y envolvente. Todos los tubos irán

mandrinados en los alojamientos de las placas de tubos.

Las bombas de solución y de refrigerante serán del tipo autónomo hermético sin

sellos. La lubricación y refrigeración de la bomba de solución se realizarán por la

solución de bromuro de litio. La bomba de refrigerante será lubricada y refrigerada por

el mismo refrigerante. Las tuberías de agua de la red urbana no se aceptan para

refrigeración, lubricación o funcionamiento de la máquina. Los conjuntos moto bombas

Page 54: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 54

se diseñarán para un mínimo de cinco años o 20.000 horas de funcionamiento normal

entre inspecciones. Los motores de las bombas deberán funcionar con corriente

trifásica, 50 Hz y 200 V con un error máximo del 10%.

3.3.3.1 Torre de refrigeración

Será necesaria la instalación de una torre de refrigeración, ya que durante el proceso

de absorción se genera calor que es necesario evacuar para el correcto funcionamiento

del equipo. La torre proporciona un caudal de 147,6 Kg/s de agua de refrigeración a

29,4 ºC, el cual es devuelto a la torre a 38,4 ºC.

El agua a refrigerar circula a través de los tubos de batería de intercambio sin que

exista contacto directo con el ambiente exterior, consiguiendo así preservar el fluido

del circuito primario de cualquier ensuciamiento o contaminación. El calor se trasmite

desde l fluido, a través de las paredes de los tubos hacia el agua que es continuamente

rociada sobre la batería. El ventilador situado en la parte superior de la torre aspira el

aire que es conducido a contra corriente del agua, evaporando una pequeña cantidad

de la misma, absorbiendo así el calor latente de evaporación y descargándolo en la

atmósfera. El resto del agua es recirculada mediante una bomba que impulsa el agua

desde la bandeja hasta los pulverizadores. Una pequeña cantidad de calor es

transmitida directamente al aire exterior por convección, como si se tratara de un aero-

refrigerante.

3.3.4 Grupo de bombas

En la instalación se usarán motobombas de rotor húmedo para circulación de agua

caliente, que girarán a un régimen de 1450 rpm.

El equipo de bombas necesarias está compuesto por:

• Una bomba de circulación que permite hacer pasar agua a través del

aeroenfriador o intercambiador de recuperación de baja temperatura. Se

instalará una por cada equipo motor.

Page 55: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 55

• Una bomba para circulación a la salida del circuito secundario del

intercambiador de baja temperatura.

• Una bomba para alimentación de agua fría a la instalación a la salida de la

máquina de absorción.

• Una bomba de alimentación para los equipos de calefacción y ACS. Se instalará

una bomba por cada equipo motor.

• Seis bombas para alimentación de agua para los intercambiadores de

calefacción.

• Tres bombas de circulación para el circuito primario del intercambiador de

ACS.

• Tres bombas principales de alimentación de agua caliente situadas en el

secundario del intercambiador para ACS.

• Una bomba de circulación para la torre de refrigeración.

• Una bomba de circulación del agua caliente a la salida de la máquina de

absorción.

• Una bomba por cada equipo auxiliar, ya sea caldera de calefacción o compresor

para producir frío.

3.3.5 Instalación eléctrica

La instalación eléctrica de la planta a diseñar, consta de tres motores síncronos en

paralelo, cuya tensión en bornes del alternador será de 380 V, y que posteriormente se

elevará a 20 KV mediante tres transformadores de 1500 KVA.

Dado que la instalación puede exportar electricidad a la red será necesario equipar

con contadores de potencia para cada sentido de la energía, así como taxímetros

integradores de la energía reactiva.

Page 56: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 56

La instalación está compuesta por centro de transformación, servicios auxiliares,

distribución y protecciones.

3.3.5.1 Centro de transformación

Los transformadores elevadores se situarán en la subestación de 20 KV y a ellos se

llegará mediante una línea de cable aislado situado en la bandeja por el rack existente.

3.3.5.2 Servicios auxiliares

Para la alimentación de los equipos auxiliares que requieran los motogeneradores

para su arranque y durante su funcionamiento, se ha previsto un cuadro de servicios

auxiliares, cuya alimentación se realizará desde un transformador exterior. Este cuadro

alimentará a su vez a los respectivos cuadros de maniobra correspondientes a los

equipos, bombas, etc.

3.3.5.3 Distribución

La distribución de alumbrado se realizará con luminarias fluorescentes estancas de

AC, protección IP-55 para interior; en las zonas exteriores se montarán luminarias

apropiadas, previéndose luminarias autónomas de emergencia con la disposición

oportuna.

La distribución de la malla de tierra se realizará con una red enterrada mediante

picas cobreadas de 1,5 m de longitud y cable de cobre de 70 mm2 de sección. Los

alternadores irán convenientemente puestos a tierra a través de una pica con las

características anteriormente mencionadas. Cada equipo y armario se conectará a tierra

mediante cable de cobre de 35 mm2 de sección.

Page 57: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 57

3.3.5.4 Protecciones

En este apartado se recogen las protecciones mínimas en el punto de conexión para

garantizar la desconexión de la red en caso de falta, bien en la red, bien en la

instalación de autogeneración:

• Tres relés de mínima tensión (27)

• Un relé de máxima tensión con disparo temporizado en tiempo fijo regulable

entre 0,11 y 1 segundo.

• Un relé de máxima tensión para desconexión del generador en caso de que se

produzca una tensión superior en un 7% a la nominal, que dispondrá de un

disparo temporizado en un tiempo fijo regulable entre 1 y 300 segundos.

• Un relé de máxima tensión homopolar para detectar faltas a tierra en la red.

• Teledisparo, es decir, desconexión del interruptor del acoplamiento por

apertura del interruptor en cabecera de línea.

• Relés de máxima y mínima frecuencia para regular funcionamiento en red

aislada.

3.4 Obra civil

La planta de cogeneración contará con un recinto en el exterior al hospital de

reciente construcción donde se albergarán los diferentes equipos. El recinto destinado a

ello estará divido de la siguiente manera:

• Recinto de motogeneradores con estructura para el apoyo de un puente grúa:

720 m2.

• Recinto para recuperadores de calor: 120 m2.

• Recinto máquina de absorción: 320 m2.

• Sala de instalaciones eléctricas: 115 m2.

Page 58: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 58

• Sala de control: 115 m2.

• Recinto auxiliar: 115 m2.

• Obras complementarias:

- Drenaje de aguas resultantes de la purga de la caldera y tanque de

descalcificación.

- Estructura para el apoyo de la torre de refrigeración.

- Estructura para el apoyo de los filtros de aire de los motores.

- Estructura para el apoyo de los depósitos del aceite.

- Cimentación equipos, principalmente de la caldera y de los motores.

- Canaletas de cables y tuberías.

- Drenaje de goteos de calderas, condensadores y aguas de baldeo.

3.4.1 Recinto destinado a los motogeneradores

El recinto está formado por muros de bloque macizos armados de 0,20 metros de

espesor, con una altura libre cercana a los 9 metros. Estos muros deben garantizar la

insonorización del recinto. Longitudinalmente el área está recorrida por un puente

grúa de aproximadamente 13 metros de luz y una carga de servicio de 2 toneladas,

cuya viga carril va apoyada en pilares metálicos embebidos en los muros del recinto y

arriostrados en cabeza, por las cerchas intermedias de sustentación del forjado acústico

y los perfiles de los muros de los extremos.

El techo está formado por planchas insonorizantes, y la solera de hormigón

ligeramente armado de 15 cm de espesor lleva a los encajes necesarios que comunican

con la sala de instalaciones eléctricas, sala de control y recinto auxiliar.

Page 59: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 59

3.4.2 Recinto de los recuperadores de calor

De acuerdo a la legislación ITC MIE-API, los muros serán de hormigón armado de

20 cm de espesor. En ellos se dispondrán los huecos de entrada de ventilación de al

menos 1 m2.

La salida de aire se ha resuelto separando la cubierta metálica ligera con

cerramiento de la chapa metálica prelacrada en los bordes superiores de los muros.

La parte central del recinto está ocupada por la cimentación de las máquinas que

sustentará en elevación a la misma y a la chimenea. En la planta también habrá algunas

cimentaciones de bombas y posiblemente un depósito de condensados con sus

respectivas cimentaciones. La solera será del mismo tipo que en el recinto de los

motogeneradores.

Los goteos del condensador y de la caldera se llevarán al drenaje previsto.

3.4.3 Recinto auxiliar

Está situado entres los dos recintos auxiliares, siendo las otras dos fachadas de

bloques huecos armados de 20 cm de espesor, que garantizan una resistencia al fuego

de RF = 180 minutos.

La solera de hormigón será análoga a las descritas anteriormente y sobre ella, según

cargas o en cimentaciones propias se situarán intercambiadores y compresores,

elementos complementarios en el proceso de cogeración.

El techo estará formado por un forjado de viguetas metálicas y bovedillas cerámicas.

Esta cubierta es de uso y apoyo de los equipos de recuperación y condensación. Posee

acceso desde el distribuidor de entrada mediante una escalera metálica.

3.4.4 Recinto de instalaciones eléctricas

Está formado por muros de bloques armados de 20 cm de espesor con una altura

libre aproximada de 3,20 m.

Page 60: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 60

El techo del recinto está formado por un forjado de viguetas metálicas y bovedillas

cerámicas, mientras que la superficie de la cubierta será accesible y ocupada

funcionalmente por los mismos equipos descritos para el recinto auxiliar.

Se dispondrá de las canaletas necesarias en hormigón armado y de los elementos

metálicos de soporte y sustentación de los armarios eléctricos. Si en algún caso y por el

sistema de tendido de cables se cree oportuno el uso de tapas en el sitio donde no haya

armario eléctrico, se dispondrá de una tapa lagrimada 7/5 sobre el pavimento para

tapar el hueco.

3.4.5 Sala de control

Está formada por muros de bloques arados de 20 cm de espesor con una altura libre

aproximada de 3,20 m.

El recinto es de techo plano formado por forjado de viguetas metálicas y bovedillas

cerámicas, y la cubierta tiene el mismo uso que el descrito en los dos apartados

anteriores.

La solera apoyará un falso suelo flotante para una carga de 250 Kg/cm2. El hueco

del falso suelo comunica con el recinto auxiliar y con el recinto de motogeneradores a

través de conductos con las canaletas de la sala de instalaciones eléctricas.

3.4.6 Cimentación

La cimentación se ha concebido superficial, con cimentaciones aisladas, y zapatas

también aisladas con vigas de atado de apoyo de fachada para el edificio, salvo recinto

de la caldera, que por estar constituido por muros de hormigón tendrá cimentación

corrida.

Para la formación de las diversas cajas de cimentación se procederá a la realización

de la excavación sobre el terreno natural. Las paredes del cajeado se realizarán de tal

forma que garanticen el equilibrio, en cualquier fase de la realización de la cimentación

y que a su vez no provoque una sobreexcavación exagerada.

Page 61: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 61

La tensión admisible del terreno se estima en 1.5 Kg/cm2 para profundidad de

excavación de -1,60 m.

Para las cimentaciones corridas o de equipos en los que la tensión media sea de poca

entidad (inferior a 0.5 Kg/cm2), la cimentación se hará superficialmente sobre la

zahorra compactada.

3.4.7 Acabados

3.4.7.1 Motogeneradores

- Piso: Solera de hormigón armado con acabado fratasado y con

tratamiento antipolvo. Parte del suelo lleva terminación en rejilla

galvanizada tipo 30.30.30.3 para tapar las canaletas.

- Muros: Enfoscado y pintado en ambas caras. Cabe reseñar que para

bloques rugosos (sin enfoscar) de 20 cm de espesor queda garantizado

un amortiguamiento acústico de 43 dB.

- Techo flotante.

- Cubierta: Chapa metálica frecada y prelacada.

- Puertas: Una puerta exterior metálica de dos hojas, insonorizadas y con

cerramiento antipático con muelle. Otra del recinto auxiliar, de una hoja.

- Ventanas: Una ventana insonorizada de inspección ocular situada en el

muro lindante con la sala de control.

- Otras disposiciones: Se realizarán los huecos necesarios de entrada y

salida de aire con dispositivo antirruido.

- Los huecos de ventilación se dispondrán de acuerdo a la ITC MIE-API.

Page 62: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 62

3.4.7.2 Máquinas de absorción

- Piso: Solera de hormigón armada con acabado fratasado y con

tratamiento antipolvo.

- Muros: Se dispondrán muros cara vista de hormigón armado de 25 cm

de espesor.

- Techos: No se dispone ninguno.

- Cubierta: Chapa metálica grecada y prelacada.

- Puertas: Se dispondrán tres puertas metálicas macizas de una hoja con

cerramiento antipático y muelle (según ITC MIE-API). Una hacia el

exterior, otra hacia el recinto auxiliar, y la tercera hacia el distribuidor

de entrada.

3.4.7.3 Recinto auxiliar

- Piso: Solera de hormigón con acabado fratasado.

- Muros: Todos los muros de bloques llevan ambas caras enfoscadas y

pintadas.

- El muro de hormigón se quedará a la vista y en caras exteriores llevará

unos berenjenos.

- Techo: Enfoscado y pintado en su cara interior.

- Puertas: Una al exterior, metálica de una hoja con cerramiento antipático

y muelle.

3.4.7.4 Instalaciones eléctricas

- Piso: Lámina de acabado en PVC sobre la solera (superficie antichispa).

Page 63: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 63

- Muros: Enfoscados y pintados en cara exterior, enlucidos y pintados en

la cara interior.

- Techo: Enlucido y pintado.

- Puertas: Una al distribuidor de entrada, metálica de dos hojas con

cerramiento antipático y muelle.

3.4.7.5 Sala de control

- Piso: Solera con falso suelo flotante desmontable para una carga de 250

Kg/cm2.

- Muros: Enfoscados y pintados en cara exterior, enlucidos y pintados en

cara interior.

- Techo: Enlucido y pintado.

- Puertas: Una al recinto auxiliar, metálica de una hoja. Otra al

distribuidor de entrada, metálica de dos hojas con cerradura antipático y

muelle.

- Ventanas: Ver recinto de motogeneradores.

4 Resumen del presupuesto final

El presupuesto total de la instalación de suministro de calefacción, refrigeración y

agua caliente sanitaria mediante trigeneración asciende a 2.651.955 €.

Madrid, Junio 2007

Guillermo Suárez

Page 64: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

2Cálculos

Page 65: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 65

1 Elección del motor

1.1 Elección del número de motores y de la potencia

Como ya se analizó en la memoria descriptiva del presente proyecto, la solución

óptima para cubrir las demandas térmica y eléctrica del hospital es la instalación de

tres motores de gas natural. Al poner tres motores, optimizamos las labores de

mantenimiento, permaneciendo dos motores en marcha, mientras el tercero se haya en

revisión.

Analizando los picos de demanda eléctrica y térmica que se muestran en la gráfica

siguiente, se observa que la demanda eléctrica permanece prácticamente constante a lo

largo del año, mientras que la demanda térmica presenta grandes oscilaciones, por lo

que se tratará de seguir a la demanda eléctrica, sobredimensionando los equipos para

poder vender excedente de energía a la red, y a la vez cubrir los grandes picos de

energía térmica.

La solución adecuada a la instalación consiste en tres motores de la marca DEUTZ,

modelo TGB 620 V8, con 968 KW de potencia nominal cada unidad.

1.2 Régimen horario de funcionamiento

Criterios a la hora de considerar las horas de funcionamiento de los motores:

• Rendimiento eléctrico equivalente superior al 55% como exige el reglamento

para este tipo de instalaciones.

• Los motores funcionarán a plena carga, para maximizar el rendimiento de la

instalación. Así mismo, se tratará de que funcionen el número máximo de

horas posibles, para procurar una rápida amortización de la instalación.

• Para obtener una elevada rentabilidad económica, se trabajará con los tres

motores en los periodos en los que la energía eléctrica es más cara, para tener

la posibilidad de vender excedentes.

Page 66: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 66

Partiendo de esos criterios, las horas de funcionamiento elegidas para la instalación

se recogen en la tabla siguiente:

Mes

días

horas

día tipo

Horas

mes

Enero 31 64 1984

Febrero 28 64 1792

Marzo 31 58 1798

Abril 30 56 1680

Mayo 31 48 1488

Junio 30 48 1440

Julio 31 64 1984

Agosto 31 72 2232

Septiembre 30 56 1680

Octubre 31 56 1736

Noviembre 30 64 1920

Diciembre 31 64 1984

Alcanzamos un funcionamiento de la instalación de 21718 horas, que frente a las 3 x

8760 horas posibles, suponen una disponibilidad de la instalación del 82,64%.

1.3 Cumplimiento del régimen especial

Se tienen que cumplir las dos condiciones siguientes:

Page 67: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 67

1.3.1 Condición de autogenerador

En instalaciones de baja potencia, como es este caso, es necesario consumir al menos

un 10% de la energía eléctrica generada.

Para la producción se tiene en cuenta que un motor en plena carga produce 968

KWe en una hora, por lo que se multiplica por el número de horas calculado

anteriormente para cada mes y posteriormente lo comparamos con la energía

demandada, resultando lo expuesto en la siguiente tabla.

Mes

Consumo eléctrico

(Kwh.)

Producción

(Kwh.)

Enero 1130599 1900672

Febrero 1032759 1716736

Marzo 1130599 1722484

Abril 1027322 1609440

Mayo 1149613 1425504

Junio 1319096 1379520

Julio 1442605 1900672

Agosto 1609817 2138256

Septiembre 1287329 1609440

Octubre 1036059 1663088

Noviembre 1006395 1839360

Diciembre 1050152 1900672

14222345 21023024

Autoconsumo 68,35%

Page 68: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 68

1.3.2 Rendimiento eléctrico equivalente

El Rendimiento Eléctrico Equivalente (R.E.E.) mínimo exigido para la instalación

por ley es del 55%. Dicho rendimiento se calcula aplicando la fórmula siguiente

9,0VQEREE

−=

Donde:

Q es el consumo de energía primaria con referencia al poder calorífico inferior del

combustible utilizado

E es la energía eléctrica generada medida en bornes del alternador

V son las unidades térmicas de calor demandadas por la industria, la empresa de

servicios o el consumidor final para sus necesidades. Se considera para la evaluación

de la demanda de calor útil, los equipos consumidores de energía térmica, a los que

abastecerá la instalación.

Nota: Para la determinación del R.E.E. en el momento de extender el Acta de Puesta

en Marcha, se contabilizarán los parámetros E, V y Q durante un período

ininterrumpido de dos horas de funcionamiento a carga nominal, pero a los efectos de

justificar el cumplimiento de la legislación en la declaración anual, se utilizarán los

parámetros acumulados durante dicho periodo.

Page 69: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 69

Mes

Producción

Eléctrica

(Kwh.)

Consumo

combustible

(Kwh.)

Potencia

Térmica

Utilizada

(Kwh.)

Enero 1920512 4989760 2153247

Febrero 1734656 4506880 1706464

Marzo 1740464 4521970 1352257

Abril 1626240 4225200 1162696

Mayo 1440384 3742320 503711

Junio 1393920 3621600 877810

Julio 1920512 4989760 1302325

Agosto 2160576 5613480 1663565

Septiembre 1626240 4225200 997038

Octubre 1680448 4366040 707409

Noviembre 1858560 4828800 725311

Diciembre 1920512 4989760 1648527

21023024 54620770 14800360

Calculamos el R.E.E. como

%06,559,0

148003605462077021023024

=−

=REE

Cabe destacar, que un rendimiento eléctrico equivalente muy elevado, supone

rendimientos energéticos muy altos, en detrimento del rendimiento económico,

mientras que si el rendimiento eléctrico lo fijamos en el mínimo exigido por ley (55%),

la producción eléctrica será la máxima posible, por lo que podremos vender energía a

Page 70: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 70

la red, a costa de verter energía térmica a la atmósfera en los momentos en los que no

podamos aprovecharla.

2 Cálculo de la caldera de recuperación

El sistema de recuperación de calor residual procedente de cada una de las tres

máquinas se basa en dos circuitos, uno que refrigera las camisas de los pistones, del

cual obtenemos una potencia de 474 KW por motor, y otro que aprovecha la alta

temperatura de los gases de escape, enfriándolos hasta los 120 ºC, recuperando así una

potencia térmica de 694 KW.

El sistema de recuperación de calor está basado en una corriente de agua, que

hacemos pasar por cada uno de los circuitos anteriores.

2.1 Cálculo del caudal del circuito de camisas

Cada unidad necesita evacuar 474 KW en el circuito de camisas para su correcto

funcionamiento. Considerando un intercambiador de calor de rendimiento 100% y los

datos técnicos del motor:

• Calor a disipar: 474 KW

• Temperatura de entrada: 82 ºC

• Temperatura de salida: 92 ºC

Podemos calcular el caudal necesario:

sKgTCp

Qm 33,11)8292·(18,4

474·

=−

=∆

=

2.2 Calor aprovechable de los gases de escape

Las condiciones de salida de los gases de escape del motor son:

• Temperatura de entrada: 516 ºC

Page 71: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 71

• Caudal: 5623 Kg/h

Considerando los gases de escape como aire, podemos calcular la entalpía de éstos a

la salida del motor:

Cp_aire (516 ºC) = 1,098 KJ/Kg ºK

KWTCmQ p 1,1353)273516·(098,1·36005623·· 11 =+==

A la salida de la caldera de recuperación de los gases de escape tenemos una

temperatura fijada por diseño, que no se puede bajar más debido a la temperatura de

rocío de los gases de escape. Operando de manera análoga al caso anterior obtenemos:

• Temperatura de salida: 120 ºC

• Caudal: 5623 Kg/h

Cp_aire (120 ºC) = 1,0123 KJ/KgºK

KWTCmQ p 39,621)273120·(0123,1·36005623·· 22 =+==

Con estos datos podemos calcular la energía aprovechada en los gases de escape

cuando éstos son expulsados a 120 ºC como

KWQQ 7,73121 =−

Dicho valor difiere del mostrado en las especificaciones técnicas del motor, pero su

error es del orden del 5%, por lo que consideramos el cálculo como bueno, aunque para

las siguientes operaciones tomemos el valor del fabricante.

2.3 Cálculo del circuito de refrigeración

El circuito de refrigeración se hace pasar primero por el circuito de refrigeración de

camisas y después por la caldera de recuperación de los gases de escape, ascendiendo

el calor aprovechado a:

Page 72: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 72

KWtotalCalor 1168694474_ =+=

El agua procedente de la instalación se hace pasar por el circuito de refrigeración de

camisas donde ya vimos anteriormente que el caudal de agua necesario para refrigerar

era de 11,33 Kg/s. Este flujo de agua se hace pasar por la caldera de recuperación de

los gases de escape, produciéndose un aumento de temperatura, para posteriormente

utilizar el agua para calefacción, ACS o refrigeración.

• Caudal de agua: 11,33 Kg/s

• Temperatura de entrada: 92 ºC

• Calor aprovechable: 694 KW

Aplicando el primer principio de la termodinámica obtenemos un incremento de

temperatura del agua de refrigeración de:

CCmQT

p

º65,1418,4·33,11

694·

===∆

Por lo que se obtiene una temperatura de agua para proceso de:

CT º65,106º65,14º92 =+=

3 Cálculo de la máquina de absorción

La refrigeración del agua en el sistema de refrigeración corre a cargo de una

máquina de absorción de simple efecto, marca Ibersolar, modelo LWM-W067, de 2221

KW de poder de enfriamiento.

Para la elección de la máquina de absorción se han tenido en cuenta los siguientes

aspectos:

Page 73: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 73

• La potencia frigorífica de la máquina deberá cubrir en la medida de lo

posible la demanda frigorífica del hospital.

• Únicamente se implantará una máquina de absorción debido al alto coste de

la tecnología, que hace que resulte mucho más barato comprar una de gran

potencia antes que tres de potencias inferiores, por lo cual perderemos

modularidad en la instalación.

3.1 Cálculo de la potencia frigorífica

Para elegir la potencia frigorífica de la máquina de absorción, se analiza como se

distribuye la energía térmica en los meses en los cuales se requiere refrigeración. En la

siguiente tabla se muestra la partición de la demanda térmica en esos meses.

Mes Dem. El

Dem.

Term Calefacc ACS

Frió

(Dte)

Mayo 1149613 635739 0 194707 441032

Junio 1319096 1175756 0 183429 992327

Julio 1442605 1798444 0 144571 1653873

Agosto 1609817 2352761 0 147598 2205163

Septiembre 1287329 1328054 0 225472 1102582

Octubre 1036059 806677 281193 194707 330777

TOTAL 7844519 8097430 281193 1090484 6725753

A continuación se calcula el porcentaje de la demanda de frío en la demanda

térmica y se multiplica dicho porcentaje por el total de energía térmica útil cuando los

tres equipos funcionan a plena carga, obteniendo la potencia frigorífica de la que

dispondremos.

Page 74: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 74

%06,8380974306725753(%)__ ==friodeDemanda

La potencia térmica útil de la que disponemos es de 1168 KW por motor, lo que hace

un total de 3504 KW, de los cuales están disponibles para la máquina de absorción 2910

KW.

Además se ha de tener en cuenta que la máquina de absorción posee un

rendimiento del 70%, por lo que la potencia que tendremos para satisfacer la demanda

será de 2037 KW.

3.2 Cálculo de la carga del generador

Conocidas la temperatura de entrada a la máquina de absorción, el caudal y la

potencia frigorífica, es posible calcular a que temperatura abandona el agua la

máquina:

• Caudal: 34Kg/s

• Temperatura de entrada: 106,65ºC

• Potencia frigorífica: 3172 KW

CCmQT

p

º32,2218,4·34

3172·

===∆

Luego el agua abandonará la máquina de absorción a 84,3ºC

3.3 Cálculo de la carga del condensador

El circuito del condensador es refrigerado mediante el agua procedente de una torre

de refrigeración. Típicamente, la potencia de dicha torre, es 2.5 la potencia nominal

frigorífica:

Page 75: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 75

KWtorrePot 55522221·5,2_ ==

Para calcular el caudal másico de la torre de refrigeración, se tienen en cuenta los

siguientes datos de diseño:

• Temperatura de agua a la entrada: 29,4ºC

• Temperatura de agua a la salida: 38,4ºC

sKgTC

Qmp

/6,147)4,294,38·(18,4

5552·

=−

=∆

=

3.4 Cálculo de la carga del evaporador

En el evaporador, se produce el agua fría que será utilizada más adelante en el

sistema de climatización. Nuevamente, a partir de los datos de diseño, se calcula el

caudal másico:

• Temperatura de agua a la entrada: 12,2ºC

• Temperatura de agua a la salida: 6,7ºC

• Potencia frigorífica: 2221KW

sKgTC

Qmp

/6,96)7,62,12·(18,4

2221·

=−

=∆

=

3.5 Características de la máquina de absorción

A continuación se muestra una tabla resumen de todos los caudales y temperaturas

de los diferentes elementos de la máquina de absorción.

Generador Condensador Evaporador Tº Entrada (ºC) 106,65 29,4 12,2 Tº Salida (ºC) 84,3 38,4 6,7 Potencia (KW) 3172 5552 2221 Caudal (KG/s) 34 147,6 96,6

Page 76: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 76

4 Cálculo del sistema de calefacción

El intercambiador de calor destinado a calefacción, se encuentra colocado en

paralelo con la máquina de absorción, ya que ambos trabajan en distintos momentos.

4.1 Cálculo de la potencia de calefacción

Teniendo en cuenta las consideraciones tomadas anteriormente, y tomando como

datos de partida los mismos que quedaron fijos al diseñar la máquina de absorción:

• Temperatura de entrada: 106,65ºC

• Temperatura de salida: 84,3ºC

• Caudal de agua: 34Kg/s

Aplicando el primer principio de la termodinámica se obtiene:

KWTCmQ p 3176)3,8465,106·(18,4·34·· =−=∆=

Esta potencia será aprovechada para calentar el agua que circula por los radiadores

mediante el circuito secundario que se detalla a continuación.

4.2 Cálculo del circuito secundario de calefacción

• Temperatura de entrada al radiador: 80ºC

• Temperatura de salida del radiador: 70ºC

• Potencia térmica: 3176KW

sKgTC

Qmp

/98,75)7080·(18,4

3176·

=−

=∆

=

Page 77: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 77

5 Acumuladores de Agua Caliente Sanitaria

5.1 Cálculo de los acumuladores

El agua se calienta con el calor residual procedente de la salida de la máquina de

absorción, o del sistema de calefacción, dependiendo de la temporada del año.

Como datos de diseño, se tienen del esquema general de funcionamiento los

siguientes:

• Temperatura de entrada del agua: 84,3ºC

• Temperatura de salida: 82ºC

• Caudal: 34Kg/s

KWTCmQ p 9,326)823,84·(18,4·34·· =−=∆=

5.2 Cálculo del circuito secundario de los acumuladores

Datos del circuito secundario:

• Temperatura entrada: 10ºC

• Temperatura de salida: 50ºC

• Potencia térmica: 326,9KW

sKgTC

Qmp

/6,2)1040·(18,4

9,326·

=−

=∆

=

Teniendo en cuenta, que de media funcionan 2,5 motores y que el hospital tiene 735

camas, obtenemos un caudal medio por cama y por día de:

díacamalitrosdíahh

ss

l

·69,254

35,2·

735

24·3600·6,2=

Page 78: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 78

6 Cálculo de los equipos auxiliares

6.1 Aeroenfriadores

Cada motor debe ir previsto de un aeroenfriador, cuya misión es evacuar la

potencia térmica no aprovechada. Cada aeroenfriador debe ser capaz, pues, de evacuar

la potencia térmica total de cada motor (condición más desfavorable), es decir,

1168KW.

7 Tablas de carga horaria

En las siguientes tablas se recogen los resultados de la instalación en los diferentes

meses del año, así como de las cantidades de energía eléctrica y térmica que sobran o

faltan en cada momento.

Ha de tenerse en cuenta que durante los meses de verano, la energía térmica que la

instalación no es capaz de suministrar, tendrá que ser compensada con energía

eléctrica comprada al exterior, que alimente los compresores de los equipos de aire

acondicionada. Por motivos económicos, el excedente de energía eléctrica, irá

destinado única y exclusivamente a la venta en el mercado eléctrico, nunca a abastecer

a los compresores de aire acondicionado.

Page 79: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 79

ENERO Hora Dem. Elec(KW)

Dem. Térm(KW)

Gen. Elec(KW)

Gen. Term(KW)

Exc. Ele(KW)

Exc. Term(KW) nºmot

1 1177 2342 1936 2336 759 -6 2

2 1110 2214 1936 2336 826 122 2

3 1038 2078 1936 2336 898 258 2

4 996 1999 1936 2336 940 337 2

5 974 1854 1936 2336 962 482 2

6 947 1806 1936 2336 989 530 2

7 944 1799 1936 2336 992 537 2

8 960 1792 1936 2336 976 544 2

9 1211 2308 2904 3504 1693 1196 3

10 1645 3134 2904 3504 1259 370 3

11 1956 3499 2904 3504 948 5 3

12 2079 3961 2904 3504 825 -457 3

13 2182 4158 2904 3504 722 -654 3

14 2252 4291 2904 3504 652 -787 3

15 2247 4282 2904 3504 657 -778 3

16 2208 4206 2904 3504 696 -702 3

17 2043 3896 2904 3504 861 -392 3

18 1941 3501 2904 3504 963 3 3

19 1455 2774 2904 3504 1449 730 3

20 1426 2716 2904 3504 1478 788 3

21 1442 2748 2904 3504 1462 756 3

22 1453 2770 2904 3504 1451 734 3

23 1458 2778 2904 3504 1446 726 3

24 1324 2523 2904 3504 1580 981 3

Page 80: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 80

FEBR. Hora Dem. Elec(KW)

Dem. Térm(KW)

Gen. Elec(KW)

Gen. Term(KW)

Exc. Ele(KW)

Exc. Term(KW) nºmot

1 1191 2168 1936 2336 745 168 2

2 1124 1857 1936 2336 813 479 2

3 1050 1735 1936 2336 886 601 2

4 1009 1666 1936 2336 927 670 2

5 984 1624 1936 2336 952 712 2

6 961 1587 1936 2336 975 749 2

7 956 1638 1936 2336 981 698 2

8 971 1655 1936 2336 965 681 2

9 1225 2071 2904 3504 1679 1433 3

10 1664 2750 2904 3504 1240 754 3

11 1978 3269 2904 3504 926 235 3

12 2102 3354 2904 3504 802 150 3

13 2209 3379 2904 3504 695 125 3

14 2279 3391 2904 3504 626 113 3

15 2273 3457 2904 3504 631 47 3

16 2234 3493 2904 3504 670 11 3

17 2069 3417 2904 3504 836 87 3

18 1967 3249 2904 3504 937 255 3

19 1474 2637 2904 3504 1430 867 3

20 1420 2546 2904 3504 1484 958 3

21 1458 2561 2904 3504 1446 943 3

22 1470 2579 2904 3504 1434 925 3

23 1477 2550 2904 3504 1427 954 3

24 1341 2316 2904 3504 1563 1188 3

Page 81: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 81

MARZO Hora Dem. Elec(KW)

Dem. Térm(KW)

Gen. Elec(KW)

Gen. Term(KW)

Exc. Ele(KW)

Exc. Term(KW) nºmot

1 1215 1436 1936 2336 721 900 2

2 1147 1353 1936 2336 789 983 2

3 1073 1266 1936 2336 863 1070 2

4 1030 1216 1936 2336 906 1120 2

5 1006 1188 1936 2336 930 1148 2

6 980 1157 1936 2336 956 1179 2

7 974 1151 1936 2336 962 1185 2

8 991 1172 1936 2336 945 1164 2

9 1252 1478 2904 3504 1652 2026 3

10 1700 2008 2904 3504 1204 1496 3

11 2022 1506 2904 3504 882 1998 3

12 2147 2537 2904 3504 757 967 3

13 2255 2663 2904 3504 649 841 3

14 2327 2748 2904 3504 577 756 3

15 2323 2743 2904 3504 581 761 3

16 2282 2693 2904 3504 622 811 3

17 2113 2495 2904 3504 791 1009 3

18 2008 2370 1936 2336 -72 -34 2

19 1504 1776 1936 2336 432 560 2

20 1473 1739 1936 2336 463 597 2

21 1490 1760 1936 2336 446 576 2

22 1503 1773 1936 2336 433 563 2

23 1506 1779 1936 2336 430 557 2

24 1368 1616 1936 2336 568 720 2

Page 82: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 82

ABRIL Hora Dem. Elec(KW)

Dem. Térm(KW)

Gen. Elec(KW)

Gen. Term(KW)

Exc. Ele(KW)

Exc. Term(KW) nºmot

1 1213 1373 1936 2336 723 963 2

2 1147 1298 1936 2336 789 1038 2

3 1075 1216 1936 2336 861 1120 2

4 1031 1167 1936 2336 905 1169 2

5 1006 1137 1936 2336 930 1199 2

6 980 1110 1936 2336 956 1226 2

7 975 1105 1936 2336 961 1231 2

8 1217 1122 1936 2336 719 1214 2

9 1126 1274 2904 3504 1778 2230 3

10 1610 1822 2904 3504 1294 1682 3

11 1898 2148 2904 3504 1006 1356 3

12 1947 2204 2904 3504 957 1300 3

13 2033 2300 2904 3504 871 1205 3

14 2022 2289 2904 3504 882 1215 3

15 1820 2059 1936 2336 116 277 2

16 1667 1888 1936 2336 269 448 2

17 1416 1602 1936 2336 520 734 2

18 1391 1574 1936 2336 545 762 2

19 1451 1641 1936 2336 485 695 2

20 1499 1697 1936 2336 437 639 2

21 1525 1725 1936 2336 411 611 2

22 1546 1749 1936 2336 390 587 2

23 1509 1706 1936 2336 427 630 2

24 1370 1551 1936 2336 566 785 2

Page 83: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 83

NOV. Hora Dem. Elec(KW)

Dem. Térm(KW)

Gen. Elec(KW)

Gen. Term(KW)

Exc. Ele(KW)

Exc. Term(KW) nºmot

1 1083 755 1936 2336 853 1581 2

2 1023 712 1936 2336 913 1624 2

3 956 666 1936 2336 981 1670 2

4 916 638 1936 2336 1020 1698 2

5 896 624 1936 2336 1040 1712 2

6 873 608 1936 2336 1063 1728 2

7 867 606 1936 2336 1069 1730 2

8 883 616 1936 2336 1053 1720 2

9 1114 777 2904 3504 1790 2727 3

10 1514 1055 2904 3504 1390 2449 3

11 1800 1255 2904 3504 1104 2249 3

12 1912 1334 2904 3504 992 2171 3

13 2007 1400 2904 3504 897 2104 3

14 2071 1445 2904 3504 833 2059 3

15 2066 1442 2904 3504 838 2062 3

16 2030 1415 2904 3504 874 2089 3

17 1880 1311 2904 3504 1025 2193 3

18 1788 1246 2904 3504 1116 2258 3

19 1340 935 2904 3504 1564 2570 3

20 1313 916 2904 3504 1592 2588 3

21 1327 925 2904 3504 1577 2579 3

22 1335 931 2904 3504 1569 2573 3

23 1343 937 2904 3504 1561 2567 3

24 1218 849 2904 3504 1686 2655 3

Page 84: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 84

DIC. Hora Dem. Elec(KW)

Dem. Térm(KW)

Gen. Elec(KW)

Gen. Term(KW)

Exc. Ele(KW)

Exc. Term(KW) nºmot

1 1094 1717 1936 2336 842 619 2

2 1031 1618 1936 2336 905 718 2

3 964 1514 1936 2336 972 822 2

4 925 1452 1936 2336 1011 884 2

5 907 1423 1936 2336 1029 913 2

6 881 1383 1936 2336 1055 953 2

7 877 1376 1936 2336 1059 961 2

8 893 1402 1936 2336 1044 934 2

9 1126 1767 2904 3504 1778 1737 3

10 1530 2401 2904 3504 1374 1103 3

11 1818 2853 2904 3504 1086 651 3

12 1931 3030 2904 3504 973 474 3

13 2028 3182 2904 3504 876 323 3

14 2092 3283 2904 3504 812 221 3

15 2085 3273 2904 3504 819 231 3

16 2051 3219 2904 3504 853 285 3

17 1898 2980 2904 3504 1006 524 3

18 1804 2832 2904 3504 1100 672 3

19 1351 2122 2904 3504 1553 1382 3

20 1324 2078 2904 3504 1580 1426 3

21 1338 2100 2904 3504 1566 1404 3

22 1349 2118 2904 3504 1555 1386 3

23 1353 2126 2904 3504 1551 1378 3

24 1230 1930 2904 3504 1674 1574 3

Page 85: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 85

MAY Hora

Dem. Elec

.(KW) Dem frio

(KW)

Dem. Térm (KW)

Dem term motor (KW)

Gen Elec. (KW)

Gen Term (KW)

Exc Elec.(KW)

Exc.Term (KW) nºm

1 1369 525 91 841 1936 2336 567 1495 2

2 1289 492 91 795 1936 2336 647 1541 2

3 1209 457 91 744 1936 2336 727 1592 2

4 1158 436 91 714 1936 2336 778 1622 2

5 1131 423 91 696 1936 2336 805 1640 2

6 1137 426 91 700 1936 2336 799 1636 2

7 1098 410 91 676 1936 2336 838 1660 2

8 1116 162 456 687 1936 2336 820 1649 2

9 987 107 456 609 1936 2336 949 1727 2

10 1534 342 456 945 1936 2336 402 1391 2

11 1856 481 456 1143 1936 2336 80 1193 2

12 1806 523 364 1111 1936 2336 130 1225 2

13 1902 565 364 1171 1936 2336 34 1165 2

14 1890 623 274 1164 1936 2336 46 1172 2

15 1662 525 274 1024 1936 2336 274 1312 2

16 1448 433 274 892 1936 2336 488 1444 2

17 1163 310 274 717 1936 2336 773 1619 2

18 1223 336 274 754 1936 2336 713 1582 2

19 1292 300 364 793 1936 2336 645 1543 2

20 1344 323 364 826 1936 2336 592 1510 2

21 1371 336 364 844 1936 2336 565 1492 2

22 1525 466 274 940 1936 2336 411 1396 2

23 1484 511 182 912 1936 2336 452 1424 2

24 1328 445 182 818 1936 2336 608 1518 2

Page 86: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 86

JUN. Hora

Dem. Elec

.(KW) Dem frio

(KW)

Dem. Térm (KW)

Dem term motor (KW)

Gen Elec. (KW)

Gen Term (KW)

Exc Elec.(KW)

Exc.Term (KW) nºm

1 1717 1275 88 1909 1936 2336 219 427 2

2 1618 1199 88 1801 1936 2336 318 535 2

3 1519 1121 88 1690 1936 2336 417 646 2

4 1455 1070 88 1617 1936 2336 481 719 2

5 1420 1044 88 1579 1936 2336 516 757 2

6 1386 1017 88 1542 1936 2336 550 794 2

7 1379 1011 88 1533 1936 2336 557 803 2

8 1402 782 442 1560 1936 2336 534 776 2

9 1255 667 442 1395 1936 2336 681 941 2

10 1556 902 442 1731 1936 2336 380 605 2

11 1962 1218 442 2182 1936 2336 -26 154 2

12 1758 1121 354 1956 1936 2336 178 380 2

13 1876 1213 354 2086 1936 2336 60 250 2

14 1863 1265 266 2073 1936 2336 73 263 2

15 1577 1042 266 1754 1936 2336 359 582 2

16 1252 789 266 1392 1936 2336 684 944 2

17 894 509 266 993 1936 2336 1042 1343 2

18 1083 656 266 1203 1936 2336 853 1133 2

19 1167 659 354 1296 1936 2336 769 1040 2

20 1236 714 354 1374 1936 2336 700 962 2

21 1268 740 354 1411 1936 2336 668 925 2

22 1631 1084 266 1814 1936 2336 305 522 2

23 1579 1106 177 1757 1936 2336 357 579 2

24 1382 952 177 1538 1936 2336 554 798 2

Page 87: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 87

JUL Hora

Dem. Elec

.(KW) Dem frio

(KW)

Dem. Térm (KW)

Dem term motor (KW)

Gen Elec. (KW)

Gen Term (KW)

Exc Elec.(KW)

Exc.Term (KW) nºm

1 1401 1706 68 2506 2904 3504 1503 998 3

2 1272 1446 68 2133 1936 2336 664 203 2

3 1137 1376 68 2033 1936 2336 799 303 2

4 1274 1347 68 1992 1936 2336 662 344 2

5 1226 1388 68 2051 1936 2336 710 285 2

6 1179 1329 68 1967 1936 2336 757 369 2

7 1171 1418 68 2093 1936 2336 765 243 2

8 1204 1271 338 2153 1936 2336 732 183 2

9 1314 1388 338 2321 1936 2336 622 15 2

10 1594 1759 338 2851 2904 3504 1310 653 3

11 2135 2205 338 3488 2904 3504 769 16 3

12 1680 1914 270 3004 2904 3504 1224 500 3

13 1838 2111 270 3285 2904 3504 1067 219 3

14 1819 2135 203 3252 2904 3504 1085 252 3

15 1442 1662 203 2577 2904 3504 1462 927 3

16 988 1294 203 2051 2904 3504 1916 1453 3

17 769 1019 203 1658 2904 3504 2135 1846 3

18 857 1031 203 1676 2904 3504 2047 1828 3

19 970 1076 270 1807 2904 3504 1934 1697 3

20 1058 1176 270 1950 2904 3504 1846 1554 3

21 1106 1205 270 1991 2904 3504 1798 1513 3

22 1803 2116 203 3225 2904 3504 1101 279 3

23 1734 2076 135 3101 2904 3504 1170 403 3

24 1473 1749 135 2634 2904 3504 1431 870 3

Page 88: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 88

AGOS Hora

Dem. Elec

.(KW) Dem frio

(KW)

Dem. Térm (KW)

Dem term motor (KW)

Gen Elec. (KW)

Gen Term (KW)

Exc Elec.(KW)

Exc.Term (KW) nºm

1 1479 2210 68 3225 2904 3504 1425 279 3

2 1351 2118 68 3094 2904 3504 1553 410 3

3 1213 1895 68 2776 2904 3504 1691 728 3

4 1229 1920 68 2812 2904 3504 1676 692 3

5 1178 1941 68 2841 2904 3504 1726 663 3

6 1132 1765 68 2590 2904 3504 1772 914 3

7 1124 1852 68 2714 2904 3504 1781 790 3

8 1157 1714 344 2793 2904 3504 1747 711 3

9 949 1691 344 2760 2904 3504 1955 744 3

10 1475 2123 344 3377 2904 3504 1429 127 3

11 2022 2120 344 3373 2904 3504 882 131 3

12 1922 2688 276 4116 2904 3504 983 -612 3

13 2081 2945 276 4483 2904 3504 823 -979 3

14 2064 2964 207 4441 2904 3504 840 -937 3

15 1681 2449 207 3705 2904 3504 1223 -201 3

16 1390 2084 207 3184 2904 3504 1514 320 3

17 908 1511 207 2365 2904 3504 1996 1139 3

18 864 1540 207 2407 2904 3504 2040 1097 3

19 980 1577 276 2529 2904 3504 1924 975 3

20 1068 1659 276 2646 2904 3504 1836 858 3

21 1116 1696 276 2699 2904 3504 1788 805 3

22 1721 2213 207 3368 2904 3504 1183 136 3

23 1650 1998 138 2992 2904 3504 1254 512 3

24 1386 2203 138 3285 2904 3504 1518 219 3

Page 89: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 89

SEPT Hora

Dem. Elec

.(KW) Dem frio

(KW)

Dem. Térm (KW)

Dem term motor (KW)

Gen Elec. (KW)

Gen Term (KW)

Exc Elec.(KW)

Exc.Term (KW) nºm

1 1338 1173 108 1784 1936 2336 598 552 2

2 1235 1076 108 1646 1936 2336 701 690 2

3 1127 974 108 1500 1936 2336 809 836 2

4 1182 1028 108 1577 1936 2336 754 759 2

5 1147 994 108 1529 1936 2336 789 807 2

6 1108 959 108 1478 1936 2336 828 858 2

7 1100 950 108 1466 1936 2336 836 870 2

8 1129 672 544 1504 1936 2336 807 832 2

9 894 453 544 1190 2904 3504 2010 2314 3

10 1629 1137 544 2168 2904 3504 1275 1336 3

11 2062 1544 544 2749 2904 3504 842 755 3

12 1827 1401 436 2437 2904 3504 1077 1067 3

13 1954 1519 436 2606 2904 3504 950 898 3

14 1940 1582 327 2587 2904 3504 964 917 3

15 1635 1298 327 2181 2904 3504 1269 1323 3

16 1279 965 327 1705 2904 3504 1625 1799 3

17 902 613 327 1203 1936 2336 1034 1133 2

18 1110 807 327 1480 1936 2336 826 856 2

19 1199 815 436 1600 1936 2336 737 736 2

20 1272 883 436 1697 1936 2336 664 639 2

21 1308 917 436 1745 1936 2336 628 591 2

22 1716 1372 327 2287 1936 2336 220 49 2

23 1659 1397 217 2212 1936 2336 277 124 2

24 1449 1200 217 1932 1936 2336 487 404 2

Page 90: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 90

OCT Hora

Dem. Elec

.(KW) Dem frio

(KW)

Dem. Térm (KW)

Dem term motor (KW)

Gen Elec. (KW)

Gen Term (KW)

Exc Elec.(KW)

Exc.Term (KW) nºm

1 1121 364 432 952 1936 2336 815 1384 2

2 1059 343 411 901 1936 2336 877 1435 2

3 991 319 387 843 1936 2336 945 1493 2

4 950 305 373 808 1936 2336 986 1528 2

5 928 296 366 789 1936 2336 1008 1547 2

6 903 288 358 769 1936 2336 1033 1567 2

7 899 286 357 765 1936 2336 1037 1571 2

8 916 147 568 778 1936 2336 1020 1558 2

9 933 100 649 791 2904 3504 1971 2713 3

10 1348 250 790 1147 2904 3504 1556 2357 3

11 1643 354 890 1396 2904 3504 1261 2108 3

12 1675 382 878 1424 2904 3504 1229 2080 3

13 1776 418 912 1509 2904 3504 1128 1995 3

14 1841 478 883 1566 2904 3504 1063 1938 3

15 1836 477 881 1562 2904 3504 1068 1942 3

16 1764 442 867 1499 2904 3504 1140 2005 3

17 1608 386 816 1368 1936 2336 328 968 2

18 1579 393 783 1344 1936 2336 357 992 2

19 1116 191 677 950 1936 2336 820 1386 2

20 1087 180 668 924 1936 2336 849 1412 2

21 1101 185 672 936 1936 2336 835 1400 2

22 1214 286 624 1032 1936 2336 722 1304 2

23 1220 324 575 1039 1936 2336 716 1297 2

24 1094 279 530 929 1936 2336 842 1407 2

Page 91: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 91

8 Gráficas de carga horaria de la instalación

8.1 Demanda eléctrica frente a producción en cada día tipo

ENERO

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

FEBRERO

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Dem. ElecGen Elec

Page 92: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 92

MARZO

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

ABRIL

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

MAYO

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

Page 93: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 93

JUNIO

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

JULIO

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

AGOSTO

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

Page 94: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 94

SEPTIEMBRE

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

OCTUBRE

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

NOVIEMBRE

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

Page 95: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 95

DICIEMBRE

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. ElecGen Elec

8.2 Demanda térmica anual, frente a potencia térmica disponible

ENERO

0500

100015002000250030003500400045005000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. TérmGen Term

FEBRERO

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Dem. TérmGen Term

Page 96: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 96

MARZO

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. TérmGen Term

ABRIL

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. TérmGen Term

MAYO

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23

Dem term motorGen Term

Page 97: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 97

JUNIO

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23

Dem term motorGen Term

JULIO

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23

Dem term motorGen Term

AGOSTO

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23

Dem term motorGen Term

Page 98: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 98

SEPTIEMBRE

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23

Dem term motorGen Term

OCTUBRE

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23

Dem term motorGen Term

NOVIEMBRE

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. TérmGen Term

Page 99: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 99

DICIEMBRE

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dem. TérmGen Term

Page 100: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 100

3Estudio económico

Page 101: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 101

1 Introducción

Uno de los aspectos claves en un proyecto de cogeneración es el estudio de la

viabilidad económica de la planta a instalar. Las grandes ventajas que ofrecen en

principio este tipo de plantas podrían verse empañadas debido a la fuerte inversión

inicial que suponen. Por ello es importante analizar los beneficios, que a corto plazo

suelen ser ya notables.

La principal ventaja de este tipo de instalaciones es el importante ahorro económico

que supone. Es por tanto imprescindible realizar unos cálculos acerca de la ventaja

económica que supone realizar este tipo de instalación en un hospital. En el presente

capítulo se realizará, a partir de la demanda inicial considerada para diseñar la

instalación, un cálculo del gasto que supone el funcionamiento de la instalación sin

cogeneración y otro del gasto que supondría el funcionamiento de la nueva instalación.

Además de comprobar el ahorro económico de una instalación frente a la otra, se

realizarán los cálculos típicos de rentabilidad sobre este tipo de proyectos, para

comprobar de esta manera la rápida recuperación de la inversión.

2 Situación sin cogeneración

En la situación actual de consumo del hospital los gastos más elevados se

corresponden con la tarifa eléctrica. Existe una tarifa de factura eléctrica con la

compañía suministradora de electricidad y otra tarifa de gas para consumo de las

calderas de calefacción y ACS. Los sistemas de aire acondicionado funcionan mediante

compresores eléctricos.

Page 102: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 102

2.1 Factura eléctrica

Con la electricidad comprada se satisfacen las demandas de alumbrado, fuerza y la

de frío a través de unos compresores eléctricos, con un COP de 2,65.

La instalación actual eléctrica del hospital posee una potencia contratada de 2600

KW, y se abastece a una tensión de 20 KV. EL sistema de tarifa eléctrica del hospital se

corresponde con un tipo de tarifa general de larga utilización, con una tensión no

superior a 36 KV; ésta es la tarifa 3.1.

Para el presente año, según el Real Decreto 1634/2006 de 29 de Diciembre (BOE

30/12/06), se establece la tarifa eléctrica:

Tipo de tarifa eléctrica Térmico de potencia

(€/KW·mes)

Término de energía

(€/KWh)

3.1 12,532584 0,059690

Como se puede apreciar, hay dos costes a los que hay que hacer frente, uno fijo y

otro variable. El coste fijo es el término de potencia, que se aplica sobre la potencia

instalada para cada mes, que en el caso de estudio es de 2600 KW. El coste variable

hace referencia a la energía mensual consumida.

En la siguiente tabla se muestran todos los consumos mensuales con sus costes fijos

y variables correspondientes:

Page 103: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 103

Mes

Consumo de alumbrado + fuerza (KWh)

Consumo Compresores

(KWh) Consumo

total (KWh) Coste

variable (€) Coste fijo

(€)

Enero 1130599 0 1130599 67485,45 32584,72

Febrero 1032759 0 1032759 61645,38 32584,72

Marzo 1130599 0 1130599 67485,45 32584,72

Abril 1027322 0 1027322 61320,85 32584,72

Mayo 1033114 116499 1149613 68620,40 32584,72

Junio 1056972 262124 1319096 78736,84 32584,72

Julio 1005733 436872 1442605 86109,09 32584,72

Agosto 1027321 582496 1609817 96089,98 32584,72

Septiembre 996081 291248 1287329 76840,67 32584,72

Octubre 948684 87375 1036059 61842,36 32584,72

Noviembre 1006395 0 1006395 60071,72 32584,72

Diciembre 1050152 0 1050152 62683,57 32584,72

TOTAL 12445731 1776614 14222345 848931,77 391016,6

Coste total de electricidad sin trigeneración 1.239.948,39 €/año

2.2 Factura de gas

El gasto de gas natural era destinado a las calderas de calefacción y calentadores de

ACS. La tarifa para suministros de gas natural para su utilización exclusiva como

materia prima. El Real Decreto 949/2001 del 3 de Agosto, y la Orden ITC/3992/2006

del 29 de Diciembre de 2006 establece:

Page 104: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 104

Tipo de tarifa de gas Térmico fijo

(€/MWh/dia/mes)

Término variable (€/MWh)

2.3 50,298 21,346

Válido para instalaciones cuyo consumo se encuentre entre 5 y 30 GWh/año, a una

presión entre 4 y 60 bares.

El caudal de gas contratado por el hospital para satisfacer su demanda es de 12.000

Nm3/día, que equivalen a 103,2 MWh/día. En la siguiente tabla se muestran los

consumos en cada mes con sus gastos correspondientes:

Mes

Consumo de gas

(MWh/día) Gasto Fijo

(€) Gasto

variable (€) Gasto total (€)

Enero 104,07 5.190,75 66641,46 71832,22

Febrero 94,53 5.190,75 60536,08 65726,84

Marzo 73,50 5.190,75 47067,93 52258,68

Abril 68,43 5.190,75 43820,24 49011,00

Mayo 35,03 5.190,75 22431,23 27621,98

Junio 34,83 5.190,75 22303,47 27494,23

Julio 33,13 5.190,75 21214,19 26404,94

Agosto 33,24 5.190,75 21288,15 26478,91

Septiembre 36,48 5.190,75 23359,14 28549,89

Octubre 40,90 5.190,75 26189,94 31380,69

Noviembre 54,84 5.190,75 35119,40 40310,15

Diciembre 85,40 5.190,75 54686,21 59876,96

TOTAL 694,365 62.289,04 444657,46 506946,50

Page 105: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 105

El gasto total de gas natural sin implantar poligeneración asciende a 506.946,50 €.

2.3 Gasto total sin trigeneración

Es posible en este momento realizar una estimación del gasto total sin realizar

trigeneración como la adición del gasto eléctrico y el gasto en el consumo de gas

natural.

Gas natural (€) Electricidad (€) Gasto total sin

trigeneración (€)

506946,50 1.239.948,39 1.746.894,89

3 Previsiones con trigeneración

El gasto con la instalación de cogeneración para la misma demanda se desplaza

hacia un mayor consumo de gas natural. El consumo eléctrico por su parte

permanecerá prácticamente inalterado, mientras que se obtendrán grandes ingresos

por ventas de energía eléctrica a la red.

3.1 Factura de gas

Al ser la fuente de energía primaria, en esta instalación el consumo de gas natural es

muy importante y significativo. En esta ocasión, la tarifa a aplicar no será la 2.3, sino la

2.4, ya que el consumo ahora es superior a 30 GWh/año e inferior a 100 GWh/año.

Page 106: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 106

Tipo de tarifa de gas Térmico fijo

(€/MWh/dia/mes)

Término variable (€/MWh)

2.4 47,504 21,248

Consumo de gas en los motores

Ahora el gasto de gas contratado del hospital asciende a 185 MWh/día.

En la siguiente tabla se muestran los consumos en cada mes con sus gastos

correspondientes.

Mes Gasto fijo (€) Consumo de

gas (KWh/mes)Horas

motores/mesGasto variable

(€) Gasto total (€)

Enero 8788,24 4989760,00 1984,00 106022,42 114810,66

Febrero 8788,24 4506880,00 1792,00 95762,19 104550,43

Marzo 8788,24 4521970,00 1798,00 96082,82 104871,06

Abril 8788,24 4225200,00 1680,00 89777,05 98565,29

Mayo 8788,24 3742320,00 1488,00 79516,82 88305,06

Junio 8788,24 3621600,00 1440,00 76951,76 85740,00

Julio 8788,24 4989760,00 1984,00 106022,42 114810,66

Agosto 8788,24 5613480,00 2232,00 119275,22 128063,46

Septiembre 8788,24 4225200,00 1680,00 89777,05 98565,29

Octubre 8788,24 4366040,00 1736,00 92769,62 101557,86

Noviembre 8788,24 4828800,00 1920,00 102602,34 111390,58

Diciembre 8788,24 4989760,00 1984,00 106022,42 114810,66

TOTAL 105458,88 54620770,00 21718,00 1160582,12 1266041,00

Page 107: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 107

Consumo de gas en las calderas auxiliares

Las calderas auxiliares entrarán en funcionamiento cuando la demanda térmica para

agua de calefacción o agua caliente sanitaria supera la capacidad máxima de los

motores. Estos equipos funcionarán en paralelo con el sistema de cogeneración.

El funcionamiento de las calderas supondrá el siguiente gasto:

Mes Consumo de calderas

auxiliares (KWh) Gasto variable (€)

Enero 117045 2487

Febrero 0 0

Marzo 1049 22

Abril 0 0

Mayo 0 0

Junio 0 0

Julio 0 0

Agosto 0 0

Septiembre 0 0

Octubre 0 0

Noviembre 0 0

Diciembre 0 0

TOTAL 118094 2509

Page 108: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 108

3.2 Factura eléctrica

3.2.1 Compra de electricidad de la red eléctrica

A la hora de tener en cuenta los gastos incurridos se procede de manera análoga a la

expuesta en los apartados anteriores cuando no existía planta de cogeneración.

Tipo de tarifa eléctrica Térmico de potencia

(€/KW·mes)

Término de energía

(€/KWh)

3.1 12,532584 0,059690

El COP de los compresores se estima en 2,65, diferencia entre la potencia frigorífica

que se le exige a éstos y la demanda eléctrica que consumen para generar dicha

potencia frigorífica.

En la siguiente tabla se muestra la electricidad prevista comprar en los diferentes

meses, teniendo en cuenta que, según la ley actual, se exige un 10% de autoconsumo

eléctrico, por lo que se comprará toda la electricidad necesaria menos un 10% de la

electricidad generada, que se consumirá en el hospital.

La potencia que se tiene instalada en el hospital para la planta de cogeneración es de

2600 KW, de manera que si los tres motores fallasen a la vez, se podría suplir la

demanda de fuerza y alumbrado a partir de la electricidad comprada a la red.

Page 109: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 109

Mes

Compra de electricidad

(KWh) Gasto

Variable (€) Gasto fijo (€) Gasto total (€)

Enero 938548 56022 32585 88607

Febrero 859293 51291 32585 83876

Marzo 961785 57409 32585 89994

Abril 870506 51961 32585 84545

Mayo 889076 53069 32585 85654

Junio 918360 54817 32585 87402

Julio 813682 48569 32585 81153

Agosto 843199 50331 32585 82915

Septiembre 833457 49749 32585 82334

Octubre 780639 46596 32585 79181

Noviembre 820539 48978 32585 81563

Diciembre 858101 51220 32585 83805

TOTAL 10387185 620011 391017 1011028

Por lo que el gasto total anual por la compra de electricidad resulta ser de

1.011.028€.

3.2.2 Ingresos por venta de electricidad a la red

Existen dos maneras de vender electricidad a la red: yendo a mercado, para lo cual

se exigen una serie de requisitos, y por precio fijo, que será la opción elegida debido a

la limitada cantidad de energía destinada a la venta y al tipo de instalación a estudiar.

Page 110: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 110

El Real Decreto del 28 de Julio de 2006, en el artículo 32 establece una tarifa para

régimen especial de 7,72 c€/KWh. En instalaciones con más de 1MW de potencia

instalada, el precio que el sistema pagará por la electricidad es del 80% de la tarifa

durante los diez primeros años.

La electricidad vendida en cada mes así como el precio que se espera recibir por ella

se muestra en la siguiente tabla:

Mes

Electricidad vendida (KWh) Ingresos (€)

Enero 1728461 106750

Febrero 1561190 96419

Marzo 1539410 95074

Abril 1411344 87165

Mayo 1296346 80062

Junio 1254528 77479

Julio 1728461 106750

Agosto 1944518 120093

Septiembre 1463616 90393

Octubre 1512403 93406

Noviembre 1672704 103307

Diciembre 1728461 106750

TOTAL 18841442 1163648

La instalación en cuestión tiene un factor de potencia de 0,95 por lo que según el

Real Decreto 1634/2006 no presenta ningún recargo ni descuento por energía reactiva.

Page 111: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 111

3.3 Gasto total con trigeneración

Para evaluar el gasto total o neto con trigeneración se agrupan los gastos en la

compra de electricidad, los gastos en el suministro de gas natural, tanto para los

motores como para las calderas auxiliares, y a esa cantidad se le descuenta los ingresos

por venta de electricidad a la red. El resultado final se muestra en la siguiente tabla:

Compra

electricidad

Compra gas

natural

motores

Compra gas

natural

calderas

Venta

electricidad

Gasto total

Resultado 1.011.128 1.266.041 2.509 1.163.648 1.116.030

4 Comparación de ambos modos de funcionamiento

A continuación se muestran los gráficos comparativos de ambas formas de

operación. En ellos se muestran los porcentajes de cada gasto/ingreso. Se puede

apreciar que, antes de instalar la planta el mayor gasto era el de la compra de

electricidad, mientras que una vez instalada el mayor gasto corre a cargo de la factura

del gas. También cabe mencionar que los ingresos por venta de electricidad son muy

elevados.

Page 112: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 112

Sin trigeneración

29%

71%

Gas NaturalElectricidad

Con trigeneración

34%

31%

35%

Gas NaturalCompra ElectricidadVenta Electricidad

5 Estudio de viabilidad

A continuación se procederá al cálculo del estudio de viabilidad de la instalación,

para comprobar la rentabilidad del proyecto. Se realizará de forma aproximada al

cálculo del periodo de retorno de la inversión y del Valor Actual Neto (VAN).

Page 113: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 113

5.1 Periodo de retorno de la inversión

El periodo de retorno de la inversión (payback) es un dato fundamental para la

empresa que invierte el capital. La recuperación de la inversión es un valor indicativo

del tipo de proyecto que se realiza y constituye uno de los principales criterios para

decidir si el proyecto se llevará a cabo o no. Es necesario destacar que el payback no

tiene en cuenta el valor temporal del dinero.

Para su cálculo se han tenido en cuenta los siguientes flujos de caja, los cuales han

sido calculados anteriormente:

- Inversión inicial: 2.651.955 €.

- Gastos de energía eléctrica consumida de la red: 1.011.128 €

- Ingresos por venta de energía eléctrica: 1.163.648 €

- Gasto de gas natural por año de funcionamiento: 1.268.550 €

- Gastos de operación y mantenimiento:: 49.778,21 €.

- Gastos de la situación sin cogeneración: 1.746.894,89€

El ahorro ha sido calculado como la diferencia que supone la instalación de

cogeneración frente a la instalación actual, suponiendo constantes los gastos

anteriormente señalados.

Para el cálculo del periodo de retorno de la inversión se han supuesto constantes los

flujos de caja anteriores para un periodo de cinco años. Los únicos gastos que se

actualizan anualmente son los de mantenimiento a lo que se les aplica una inflación

constante del 2,5%. Los flujos utilizados para realizar los estudios serán la diferencia

entre los gastos reales con trigeneración y los que se producirían sin ésta, es decir, el

ahorro conseguido. El periodo de explotación considerado es de diez años. En la

siguiente tabla se puede observar que al cuarto año se ha recuperado la inversión

inicial, por lo que el periodo de retorno de la inversión es de cuatro años y medio.

Page 114: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 114

5.2 Valor Actual Neto (VAN) y Tasa Interna de Rentabilidad (T.I.R.)

El cálculo del valor actual neto es un dato que nos informa sobre el valor del dinero

en el tiempo, según el cual es preferible una cantidad de dinero ahora que la misma

cantidad en el futuro.

El VAN se calcula como la diferencia entre los flujos de caja (FC) ya sean positivos o

negativos, y la inversión Io del proyecto. La expresión del VAN viene dada por:

∑ ++−= i

i

tFC

IVAN)1(0

El cálculo de este valor se realizará cada año del periodo de diez años considerado,

de tal forma que se pueda dar una orientación al inversor de la rentabilidad.

El valor tomado de referencia para t es del 10%. Esta tasa es tomada por decisión de

la empresa, y establece el límite a partir del cual está dispuesta a invertir.

En la siguiente gráfica se muestra el VAN a lo largo de los próximos diez años.

Page 115: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 115

Valor Actual Neto

-3.000.000,00 €

-2.500.000,00 €

-2.000.000,00 €

-1.500.000,00 €

-1.000.000,00 €

-500.000,00 €

0,00 €

500.000,00 €

1.000.000,00 €

0 2 4 6 8 10 12

Años

V.A.

N.

Series1

Obteniéndose un VAN final de 807.532 €. Siempre que el VAN de un proyecto de

cogeneración resulte positivo, es interesante efectuar la inversión. Esta condición se

satisface en teoría solamente, es decir, si no hubiera limitaciones de presupuesto.

La Tasa Interna de Rentabilidad, se define como la tasa de interés que hace cero el

VAN para un determinado periodo. Este valor ha de ser superior a la oportunidad de

costes del capital. En este caso, calculado mediante el comando IRR de excel, se obtiene

un valor de 17,36%.

6 Conclusiones

A partir de los valores obtenidos en esta sección se puede comprobar la elevada

rentabilidad de este proyecto. El gran ahorro en la factura eléctrica permite recuperar

la inversión inicial que requiere la planta en un periodo menor de cuatro años.

El valor positivo del VAN pone de manifiesto esta rentabilidad, por lo que, una vez

realizados todos estos análisis podemos concluir que el proyecto para la planta de

trigeneración de este hospital es viable.

A todo ello hay que añadirle que actualmente existe un borrador que pretende

eliminar la restricción del 10% de autoconsumo, lo que haría aumentar el beneficio

ligeramente.

Page 116: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 116

4Análisis Medioambiental

Page 117: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 117

1 Introducción

Las instalaciones de cogeneración constituyen una de las alternativas actuales para

la reducción de emisiones a la atmósfera. El impacto medioambiental de este tipo de

instalaciones cumple con las normativas europeas sobre emisiones de motores

alternativos de combustión interna.

En el presente documento se analizarán las repercusiones medioambientales del

proyecto. Los equipos sobre los que se centra el análisis son los tres motores DEUTZ

funcionando con gas natural.

2 Emisiones atmosféricas

Los motores en su funcionamiento normal expulsan una serie de gases

contaminantes a la atmósfera. Estos gases contienen fundamentalmente nitrógeno,

dióxido de carbono y vapor de agua, pero también producen algunos contaminantes.

Los principales gases expulsados son los siguientes:

2.1 Monóxido de carbono

La reacción química:

CO2 CO + ½ O2

Se caracteriza porque a presiones y temperaturas elevadas, el equilibrio de la

ecuación se desplaza hacia la derecha, mientras que con el descenso de la temperatura

que tiene lugar en el escape se desplaza hacia la izquierda, es decir, formando dióxido

de carbono. Se produce especialmente cuando hay escasez de oxígeno durante la fase

de combustión o por defecto en la mezcla aire/combustible.

Page 118: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 118

2.2 Óxidos de nitrógeno

La forma en que se emiten es mayoritariamente como monóxido de nitrógeno (NO),

que una vez en la atmósfera se oxida rápidamente a NO2. La formación de los óxidos

de nitrógeno se debe fundamentalmente a la reacción entre radicales de oxígeno

procedentes de la disociación térmica y moléculas de nitrógeno del aire comburente. El

NO formado de esta manera es el térmico, que se forma mientras los productos de la

combustión están a elevadas temperaturas.

Existen también otros mecanismos de formación de NO. En el caso de que el

combustible tenga nitrógeno, este nitrógeno combinado es susceptible de reaccionar

con el oxígeno a temperaturas más bajas que en el caso anterior. Este NO es

denominado “del combustible”, pero apenas tiene incidencia ya que los combustibles

comerciales están exentos de nitrógeno en su composición.

Con el fin de reducir las emisiones contaminantes de los motores se han

desarrollado varios sistemas entre los que destacan los siguientes:

2.2.1 EGR

Consiste en reconducir parte de los gases de escape nuevamente a la admisión.

Mediante este sistema, durante la fase de combustión hay una mayor presencia de

gases inertes que no entran a formar parte de la combustión y por lo tanto hacen de

colchón de temperatura en la cámara de combustión, lo que conlleva a reducir la

concentración de NOx en el escape. Este sistema, aparte de las complicaciones técnicas

de implantación de los circuitos de reconducción de gases tiene la desventaja de

penalizar en aproximadamente un 3% el consumo de combustible.

2.2.2 Convertidores catalíticos

Como su nombre indica son catalizadores que si instalan a la salida de los gases de

escape del motor con la función de transferir el oxígeno presente en los compuestos de

tipo NOx a los hidrocarburos no quemados (HCx) y al monóxido de carbono. Para que

Page 119: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 119

funcionen correctamente es necesario controlar la concentración de oxígeno en el

escape, lo cual se consigue mediante una sonda de medición de concentración de

oxígeno llamada sonda Lambda y de mecanismos electrónicos de regulación de la

carburación.

2.2.3 Lean Burn

Los motores de combustión avanzada o con mezcla pobre pueden ralizar una

carburación con gran exceso de aire, logrando suficiente oxígeno en la combustión

desapareciendo los hidrocarburos no quemados y el CO. Adicionalmente disminuye la

temperatura de combustión produciéndose la correspondiente reducción de óxidos de

nitrógeno. El principal inconveniente de retrasar el encendido es la pérdida de

potencia, ya que gran parte de la combustión se realiza en fase de expansión.

3 Residuos sólidos

Esta planta no genera ningún tipo de residuo sólido. Los gases que se vierten a la

atmósfera sin filtrados con el fin de eliminar las partículas sólidas antes de su paso a la

chimenea de expulsión.

4 Contaminación acústica

Existen dos puntos en los que se genera ruido en la instalación:

4.1 Conducto de gases de escape

La presión acústica presente a un metro del conducto de los gases de escape es de

120 dB aunque el motor incorpora un silenciador diseñado para un nivl sonoro de 75

dB a una distancia de 10 metros.

Page 120: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 120

4.2 Motores de gas natural

El nivel de presión sonora de los motores alcanza los 100 dB en su valor energético

medio a un metro de distancia. El grupo de generación debe contar con un equipo de

insonorización que garantice que el entorno se va a mantener por debajo de los 85 dB

de presión sonora.

5 Vibraciones

Provocadas principalmente por los motores, los generadores síncronos y los

transformadores de potencia. Por ello han de ser montados sobre bancadas elásticas

con el fin de no transmitir sus vibraciones a la cimentación. El motor incluye un

amortiguador viscoso que no necesita mantenimiento.

Page 121: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Anexos

Page 122: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

ABibliografía

Page 123: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

A Bibliografía 123

A Bibliografía

[CEPC01]: “Costes Externos de una planta de cogeneración”. Autores: A. González

González, I. Flores Abascal, J.M. Sala Lizarraga. Editorial: RBI

[SCAE06]: “Sistemas de Cogeneración de Alta Eficiencia“. Autor: Jeff Bell, Andrés

Cabanillas, Ludovic Lacrosse. Editorial: Montané Comunicación.

[AEMT97]: “Ahorro energético mediante trigeneración”. Autor: Francisco García Bru.

Editorial: RBI.

[ATEN07]: “Apuntes de Tecnologías Energéticas”. Autores: Luis Enrique Herranz, José

Ignacio Linares, Beatriz Yolanda Moratilla. Editorial: ICAI.

[AEPC96]: “Ahorro energético en plantas de cogeneración”. Autor: S. Franco Trigueros,

Editorial: RBI.

[TERM03]: “Termodinámica”. Autores: Cengel, Yunus A. & Boles, Michel. Editorial:

McGraw-Hill.

Page 124: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

DOCUMENTO 2:

PLANOS

Page 125: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Índice planos:

• Esquema Unificar Eléctrico

• Esquema de Funcionamiento

• Esquema Equipo Recuperador de Calor

• Esquema Máquina de Absorción

Page 126: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 1

Page 127: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 2

Page 128: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 3

Page 129: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 4

Page 130: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

DOCUMENTO 3:

PLIEGO CONDICIONES

Page 131: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas i

Índice

ÍNDICE........................................................................................................................................................I

PLIEGO DE CONDICIONES GENERALES

1 ELEMENTOS TÉCNICOS DEL CONTRATO .............................................................................. 4

1.1 Objeto ................................................................................................................... 4

1.2 Memoria justificativa ......................................................................................... 5

1.2.1 Propuesta técnica de obras 5 1.2.2 Modelo de operación de la CTE 6 1.2.3 Mantenimiento de instalaciones de climatización y frío industrial 7

1.3 Valoración del contrato ................................................................................... 10

1.4 Definición y alcance de las instalaciones de la CTE .................................... 11

1.4.1 Sala de calderas 11 1.4.2 Sala de producción de agua enfriada 12 1.4.3 Planta de cogeneración 13 1.4.4 Aljibe 13 1.4.5 Torre de refrigeración 13

1.5 Alcance de mantenimiento en instalaciones de climatización y frío

industrial del hospital...................................................................................... 14

1.6 Memoria técnica de mantenimiento y operación ........................................ 14

1.6.1 Medida de consumos y aporte de energía 14 1.6.2 Propuesta de plan de funcionamiento: Revisiones periódicas 16 1.6.3 Propuesta de plan de funcionamiento: Avisos de incidencias 17 1.6.4 Garantía de suministro 17 1.6.5 Estudio económico 17

2 CONDICIONES Y CARACTERÍSTICAS SUPLEMENTARIAS............................................. 18

2.1 Personal adscrito al contrato........................................................................... 18

2.1.1 Organigrama funcional 18 2.1.2 Turnos, jornada laboral y vacaciones 19 2.1.3 Seguridad del personal 19 2.1.4 Medios adscritos al contrato 20

2.2 Códigos y normas aplicables .......................................................................... 20

2.3 Proyecto de ejecución....................................................................................... 23

2.4 Ejecución de las obras ...................................................................................... 23

Page 132: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

2.5 Obligaciones del contratista............................................................................ 24

2.6 Reconocimiento previo .................................................................................... 25

2.7 Normas de trabajo ............................................................................................ 26

2.8 Recepción y puesta en servicio ....................................................................... 26

2.8.1 Generalidades 26

2.9 Garantías y penalidades .................................................................................. 27

2.10 Representantes.................................................................................................. 28

3 MEJORAS .......................................................................................................................................... 28

4 PROCEDIMIENTOS DE EVALUACIÓN Y CALIFICACIÓN ................................................ 29

5 AMORTIZACIÓN DE LAS INSTALACIONES......................................................................... 30

5.1 Importe de la inversión de obras ................................................................... 30

5.2 Plan de amortización ....................................................................................... 30

5.3 Subrogación de la deuda ................................................................................. 31

PLIEGO DE CONDICIONES PARTICULARES

1 EQUIPOS INSTALADOS............................................................................................................... 32

1.1 Equipos motor-generador ............................................................................... 32

1.1.1 Datos constructivos 32 1.1.2 Equipo de recuperación de calor 33 1.1.3 Aeroenfriador 33 1.1.4 Recuperación de gases de escape 34

1.2 Intercambiador de calor para calefacción ..................................................... 34

1.2.1 Calderas auxiliares para calefacción 35 1.2.2 Acumuladores de calor para agua caliente sanitaria 35

1.3 Equipo de absorción......................................................................................... 35

1.3.1 Torre de refrigeración 36

1.4 Grupo de bombas ............................................................................................. 37

1.5 Instalación eléctrica .......................................................................................... 38

1.5.1 Centro de transformación 38 1.5.2 Servicios auxiliares 38 1.5.3 Distribución 38 1.5.4 Protecciones 39

2 OBRA CIVIL...................................................................................................................................... 39

2.1 Recinto destinado a los motogeneradores .................................................... 40

Page 133: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas iii

2.2 Recinto de los recuperadores de calor........................................................... 41

2.3 Recinto auxiliar ................................................................................................. 41

2.4 Recinto de instalaciones eléctricas ................................................................. 42

2.5 Sala de control................................................................................................... 42

2.6 Cimentación ...................................................................................................... 42

2.7 Acabados ........................................................................................................... 43 2.7.1.1 Motogeneradores .................................................................................................................... 43

2.7.2 Máquinas de absorción 44 2.7.3 Recinto auxiliar 44 2.7.4 Instalaciones eléctricas 45 2.7.5 Sala de control 45

Page 134: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 4

1 ELEMENTOS TÉCNICOS DEL CONTRATO

1.1 Objeto

El presente Pliego de Prescripciones Técnicas (en adelante PPT) tiene por objeto:

1. Describir las condiciones técnicas que regirán las obras de modificación de las

instalaciones de la Central de Transformación Energética (en adelante CTE) del

Consorcio del Hospital de Valencia (en adelante el CHV).

2. Describir las condiciones técnicas que regirán el contrato de operación,

gestión y mantenimiento de la CTE.

3. Describir las condiciones técnicas para la prestación del servicio de

mantenimiento preventivo, correctivo y conductivo de las instalaciones de

climatización y frío industrial del CHV.

La finalidad del contrato es, por un lado, la de optimizar la generación de fluidos

energéticos consumidos en el Hospital para calefacción, refrigeración, agua caliente

sanitaria, vapor y energía eléctrica, manteniendo en todo caso la fiabilidad y calidad

del suministro. La empresa contratista que asume el compromiso de operación y

mantenimiento de las instalaciones de transformación energética (en adelante el

Contratista) tiene que garantizar que el CHV recibe en condiciones óptimas los

siguientes fluidos:

- Agua caliente para calefacción

- Agua enfriada para climatización

- Agua Caliente Sanitaria

- Energía eléctrica auto generada

Y por otro lado, el contrato tiene como finalidad

- La seguridad integral de la Central de Transformación Energética en lo que se refiere

a aspectos técnicos y del personal afectado

- el desarrollo de las operaciones de control y mantenimiento necesarias que aseguren

el funcionamiento continuado de las instalaciones de climatización y frío industrial

- El cumplimiento de la normativa referente a las instalaciones objeto del contrato

El PPT tiene por objeto regular y definir el alcance y condiciones que regirán el

contrato, junto a lo estipulado en el Pliego de Cláusulas Administrativas Particulares

Page 135: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 5

(en adelante PCAP), de los que se derivarán los derechos y obligaciones de las partes

contratantes.

En caso de discrepancia entre el Pliego de Prescripciones Técnicas y el Pliego de

Cláusulas Administrativas Particulares y cualquiera del resto de los documentos

contractuales, prevalecerá lo establecido en el Pliego de Cláusulas Administrativas

Particulares.

1.2 Memoria justificativa

1.2.1 Propuesta técnica de obras

Con el fin de asegurar el nivel de calidad de los fluidos consumidos por el CHV y

mejorar la eficiencia de transformación energética, el Contratista debe modificar las

instalaciones existentes en la actualidad.

A la presentación de la oferta se presentará una propuesta técnica de obras, según lo

descrito en el PCAP, para mejoras técnicas de las instalaciones existentes.

La inversión en modificaciones o la instalación de nuevos equipos será asumida en su

totalidad por el propio contratista.

Se valorará especialmente propuestas que potencien los siguientes criterios:

- Disponibilidad y calidad de suministro

- Calidad de equipos

- Eficiencia energética

- Aspectos medioambientales.

La propuesta técnica de obras debe incorporar mediciones con descripción técnica y

precios unitarios de los equipos a instalar y de las modificaciones previstas. Dicha

propuesta técnica deberá adecuarse a los requisitos mínimos (apartado 3.1 del presente

pliego), pudiendo plantear alternativas técnicas no contempladas en dicho anexo si así

lo considera oportuno. La dirección técnica del CHV podrá descartar o aceptar dichas

propuestas en función de las necesidades reales del hospital.

Page 136: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 6

1.2.2 Modelo de operación de la CTE

A la terminación de las obras de modificación de las instalaciones de la Central de

Transformación Energética el Contratista entrará en la fase de operación y

mantenimiento de la CTE, asegurando al CHV una transformación de fluidos

energéticos con totales garantías de disponibilidad y calidad, y con las condiciones de

coste contractualmente acordadas.

Este modelo tendrá las siguientes características:

- Suministro de energía primaria

En los contratos de compra - venta de energía eléctrica y en la compra de gas natural, el

CHV figura como titular del contrato, y el Contratista actúa como asesor para las

gestiones de compra – venta de energía.

El Hospital asume las facturas de suministro de energía primaria, pero se descontarán

íntegramente las partes proporcionales de consumos de energía eléctrica y gas natural

en la CTE (motores de cogeneración y sala de calderas) de la factura mensual que

presenta la empresa contratista para el servicio de operación y mantenimiento al CHV.

- Operación y Mantenimiento de la CTE

El Contratista se hace cargo de la Central de Transformación Energética, la que incluye

las instalaciones siguientes:

- Sala de calderas

- Sala de producción de frío

- Planta de cogeneración.

- Aljibe.

- Torres de refrigeración.

- Sala de bombeos.

- Válvulas, tuberías y accesorios.

- Contadores, aparatos de medida.

- Control centralizado, incluso hardware y software necesarios

En sus obligaciones están incluidas todas las labores de mantenimiento y de operación

de las instalaciones.

El contrato incorpora el concepto de garantía total sobre las instalaciones de

transformación energética, lo que significa que el contratista correrá a cargo de todos

los gastos y labores de mantenimiento predictivo, preventivo y correctivo incluyendo

la renovación de equipos, la sustitución de equipos por averías, etc.

Page 137: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 7

El Contratista asume además todos los riesgos técnicos y desviaciones de eficiencia en

la transformación energética.

- Disponibilidad de fluidos energéticos para el Hospital. El Contratista asumirá la

responsabilidad de garantizar la disponibilidad de los siguientes fluidos energéticos al

Hospital, en la cantidad y calidad requeridas:

- Agua caliente para calefacción

- Agua enfriada para refrigeración

- Agua Caliente Sanitaria

El Contratista garantiza la disponibilidad de estos fluidos, asumiendo penalizaciones

en el caso de incumplimiento según los parámetros de disponibilidad fijados.

Adicionalmente el CTE podrá producir energía eléctrica durante el horario de

funcionamiento de los motores de gas. El plan de funcionamiento de los

motogeneradores lo determinará la empresa Contratista en función de las necesidades

energéticas (consumos de calor y frío) y de la rentabilidad que en cada momento se

pueda obtener mediante la autogeneración, además del plan de mantenimiento de

motores y componentes de la instalación, siempre en consonancia con los criterios y

necesidades establecidas por los responsables del CHV.

El consumo de los fluidos energéticos en el Hospital quedará contabilizado mediante la

instalación de equipos de medida adecuados.

Cada licitador presentará un plan de mantenimiento y calibración de los equipos de

medida, que formará parte del contrato una vez que sea aprobado por el CHV.

1.2.3 Mantenimiento de instalaciones de climatización y frío industrial

El mantenimiento de las instalaciones de climatización y frío industrial incluye los

siguientes trabajos:

OPERACIÓN DE INSTALACIONES

MANTENIMIENTO PREVENTIVO PROGRAMADO

MANTENIMIENTO TECNICO LEGAL

MANTENIMIENTO CORRECTIVO

MANTENIMIENTO MODIFICATIVO

Page 138: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 8

OPERACIÓN DE INSTALACIONES: Entre las labores de mantenimiento se

encuentran la operación, que comprende todas las labores con relacionadas con la

puesta en marcha y la parada de las instalaciones, su supervisión y correcto

funcionamiento de las mismas. Del mismo modo se incluyen las maniobras de ajuste y

control a fin de restablecer los valores de funcionamiento dentro de los parámetros

normales.

MANTENIMIENTO PREVENTIVO PROGRAMADO: Las operaciones de

Mantenimiento Preventivo sobre los equipos permiten regular y conservar las

instalaciones para su óptimo y seguro funcionamiento, detectando cualquier avería o

eventual defecto en las instalaciones, fallos evidentes, ocultos o potenciales. El

Mantenimiento Preventivo programado se realizará sobre todos los equipos e

instalaciones objeto de la instalación considerada, y por lo tanto requiere de la

realización de un inventario de las instalaciones donde que de reflejado al menos:

- Código

- Instalación a la que pertenece y localización

- Grupo funcional

- Subgrupo

- Marca

- Modelo

- Fecha de fabricación e instalación.

- Emplazamiento

Dicho inventario deberá de estar disponible en un plazo de 60 días a contar desde la

fecha de comienzo de las labores de mantenimiento. Durante el período de vigencia del

contrato la empresa Contratista se verá obligada a la actualización permanente de

dicho inventario.

El mantenimiento preventivo-programado se fundamenta en el cumplimiento de las

GAMAS DE MANTENIMIENTO, recopilación del conjunto de tareas a realizar y su

periodicidad.

TECNICO – LEGAL: Se refiere al cumplimiento de la normativa en lo referente a los

reglamentos de obligado cumplimiento en vigor o que puedan promulgarse durante el

período de vigencia del contrato, estando la empresa adjudicataria en la obligación de

informar en tiempo y forma de las actualizaciones pertinentes.

Page 139: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 9

La empresa adjudicataria ostentará la titularidad de los libros de mantenimiento,

siendo responsable de los mismos.

La empresa adjudicataria tendrá satisfechos los libros en los siguientes apartados:

- Titularidad de los libros de mantenimiento.

- Anotación de los resultados de las operaciones periódicas de mantenimiento.

- Relación de las tareas periódicas.

La normativa de obligado cumplimiento para las instalaciones de climatización es la

siguiente:

. INSTALACIONES DE CLIMATIZACION: R.D. 1751/1998 DE 31 DE JULIO Y

MODIFICACIONES CONTENIDAS EN EL R.D. 1218/2002, POR EL QUE SE

APRUEBA EL REGLAMENTO DE INSTALACIONES TÉRMICAS EN EDIFICIOS

(RITE) Y SUS INSTRUCCIONES TÉCNICAS COMPLEMENTARIAS (ITE) Y SE CREA

LA COMISIÓN ASESORA PARA LAS INSTALACIONES TÉRMICAS DE LOS

EDIFICIOS. EN PARTICULAR, INSTRUCCIÓN TÉCNICA COMPLEMENTARIA ITE

08.1.2, OBLIGATORIEDAD DEL MANTENIMIENTO:

Desde el momento en que se realiza la recepción provisional de la instalación, el titular

de esta debe realizar las funciones de mantenimiento, sin que éstas puedan ser

sustituídas por la garantía de la empresa instaladora.

El mantenimiento será efectuado por empresas mantenedoras o por mantenedores

debidamente autorizados por la correspondiente Comunidad Autónoma.

Además, en el caso de instalaciones cuya potencia total instalada sea mayor que 5.000

kW en calor y/o 1.000 kW en frío, existirá un Director Técnico de mantenimiento que

debe poseer, como mínimo, el título de grado medio de una especialidad competente.

Las instalaciones cuya potencia térmica instalada sea menor que 70 kW, deben ser

mantenidas de acuerdo con las instrucciones del fabricante de los equipos

componentes”.

CORRECTIVO: Se refiere a las actuaciones destinadas a solucionar fallos, averías o

anomalías que eventualmente pudieran producirse en los equipos e instalaciones.

La aparición de averías de cualquier naturaleza, quedará registrada en su

correspondiente parte y en el caso de que las averías surjan de la propia actividad de

inspección preventiva realizada se pondrá en marcha inmediatamente la

correspondiente actuación correctiva. En el caso de que la avería necesitase de medios

extraordinarios para su resolución, se aislaría para una subsiguiente reparación.

Page 140: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 10

En el caso de que la avería se produzca fuera del horario de permanencia, existirá un

servicio 24 horas, con atención permanente las 24 horas del día, los 365 días del año, y

con un tiempo de confirmación de recepción del aviso inferior a 4 horas.

MODIFICATIVO: Se refiere a todas las operaciones cuyo objeto sea la modificación o

reforma de instalaciones existentes, como consecuencia de las necesidades de

adaptación, ampliaciones o mejoras.

Cualquier actividad que derive en un mantenimiento modificativo tendrá antes un

estudio o proyecto valorado que serán presentados a la propiedad para su aprobación.

FRANQUICIA: La franquicia se aplicará a cualquier material que intervenga en los

trabajos que se realicen por parte de la contrata de mantenimiento, sea cual sea el

origen de estos, es decir correctivo, preventivo, mejora, ampliación, etc.

Si el precio unitario del material es igual o inferior a 300 euros se encuentra incluido en

la franquicia. En el caso de duda sobre precios unitarios se utilizará como referencia los

precios vigentes del Instituto Valenciano de la Edificación (I.V.E.).

1.3 Valoración del contrato

En lo referente a la Central de Transformación Energética (CTE), el Contratista asumirá

todos los gastos derivados de la operación y mantenimiento de la misma, asumirá

todas las inversiones necesarias para mejoras, renovación y sustitución de

instalaciones, tanto al inicio como durante la ejecución del contrato.

En cuanto a sus ingresos, el Contratista recibe:

1. Un pago mensual del término fijo, donde se incluye el coste fijo de

mantenimiento de las instalaciones de climatización y frío industrial y de la

CTE y los costes de amortización de la inversión realizada.

2. Un pago del término variable correspondiente a los costes de transformación

de fluidos energéticos, que se contabilizará mediante los contadores instalados

a tal efecto, en base a los consumos de fluidos energéticos reales del hospital

8agua caliente para calefacción, agua caliente sanitaria, agua fría para

climatización, según los precios pactados

3. Un pago por la producción de energía eléctrica que el hospital consume

directamente de los motores de gas, que se contabilizará mediante los

Page 141: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 11

contadores instalados a tal efecto, en base a los consumos de energía eléctrica

reales del hospital, según los precios pactados.

El Hospital descontará de la factura del Contratista los costes causados por el consumo

de energía primaria (antes de la transformación), esto es, de gas natural, así como la

energía eléctrica consumida en la planta de cogeneración y la energía consumida en las

maquinas de producción de frío. En el caso de funcionamiento de los motores este

consumo eléctrico se contabilizará al precio de venta de la venta de energía eléctrica

auto generada, y en caso de parada de motores se contabilizará a coste de compra

desde la Cia. Suministradora Eléctrica.

1.4 Definición y alcance de las instalaciones de la CTE

El límite de responsabilidad del Contratista en lo que se refiere a gestión, operación y

mantenimiento de la Central de Transformación Energética se define en los siguientes

elementos:

1.4.1 Sala de calderas

La sala de calderas incorpora todos los elementos necesarios para producir vapor, agua

caliente para calefacción, agua caliente sanitaria y todos los elementos necesarios para

su distribución y control.

Tubería y accesorios de gas natural:

Se incluye toda la tubería de distribución y equipos de regulación de gas a partir de la

ERM de la sala de caldera (incluyendo la propia ERM)

Sistema de producción de agua caliente sanitaria

Se incluye toda la instalación para el calentamiento del acs a partir de la entrada de la

tubería de agua potable a la sala de caldera. No se incluye la tubería de distribución de

ACS del hospital, pero si las válvulas mezcladoras para el control de temperatura de

impulsión y el, bombeo de recirculación ubicadas en la propia sala de calderas.

Sistema de producción de agua caliente para calefacción

Page 142: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 12

Se incluye todos los elementos de generación de agua caliente para calefacción, incluso

las tuberías de distribución. Se incluye el sistema de expansión del circuito y los

bombeos de distribución con sus cuadros de alimentación en BT asociados. Se incluye

el tratamiento de agua del circuito de distribución.

Tratamiento de agua de aporte a calderas y a la torre de refrigeración

El coste del aporte del agua potable a las instalaciones asume el hospital, y no significa

coste alguno para el Contratista. El tratamiento del agua para su uso en la caldera o en

la torre de refrigeración es tarea del Contratista. Se incluye una instalación de

descalcificación y tratamiento químico de agua de aporte a la torre de refrigeración y

calderas.

1.4.2 Sala de producción de agua enfriada

La sala de generación de agua enfriada, incluye todos los componentes para abastecer

al hospital con agua enfriada:

Máquinas enfriadoras

Se dispone de una máquina de absorción.

Depósitos de acumulación de hielo

Existen dos depósitos de acumulación de hielo con circuitos cerrados de agua glicolada

para la acumulación de hielo durante horas nocturnas y desacumulación durante horas

de consumo punta.

Bombeos de circulación y distribución de agua fría

Se incluye todos los bombeos de circulación y distribución de agua enfriada cuya

ubicación está dentro de la sala de frío, así como válvulas motorizadas y depósitos de

expansión, así como toda la red de distribución y retorno de agua enfriada.

Cuadros de control y distribución en baja tensión

Se incluye todos los cuadros de baja tensión para control y alimentación de los equipos

mencionados. No se incluye la línea de alimentación en BT entre la sala de frío y el

Page 143: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 13

Centro de Transformación, ni los equipos y elementos del Centro de Transformación

del Hospital.

1.4.3 Planta de cogeneración

La planta de cogeneración se ubica dentro de un edificio propio y contiene

principalmente los siguientes elementos:

- Tres grupos motogeneradores DEUTZ

- Tres Transformadores de potencia

- Celdas de Media Tensión para seccionamiento y sincronismo de motores

- Armarios de BT y de control

- ERM de gas natural, tubería y rampas de gas

- Bombeos y equipos auxiliares

- Sistema de recuperación de calor de gases de escape

- Intercambiadores de placas

- Ventilación de la sala

No se incluye en el alcance el Centro de transformación y seccionamiento del hospital,

ubicado en el edificio anexo.

1.4.4 Aljibe

El aljibe se alimenta desde un pozo con una motobomba, y otros tres bombeos sirven

para circular el agua entre aljibe y la sala de frío.

1.4.5 Torre de refrigeración

La torre de refrigeración en la cubierta del Hospital incluye tratamiento con biocida y

antiincrustante, así como una purga automática. La empresa contratista garantizará el

cumplimiento de la normativa y de las disposiciones legales nacionales y autonómicas

para prevención de legionella.

Page 144: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 14

1.5 Alcance de mantenimiento en instalaciones de climatización y frío industrial

del hospital

Las instalaciones correspondientes a los edificios o espacios a mantener objeto de este

contrato son a título general las que se enumeran a continuación:

- Instalaciones de climatización de habitaciones y despachos y zonas comunes.

- Instalaciones de climatización en zonas especiales.

- Cámaras mortuorias del servicio funerario.

- Cámaras de almacenamiento de análisis clínicos del servicio de microbiología.

- Cámaras de almacenamiento de medicamentos en Farmacia

- Arcones de ultracongelaión de –40 ºC y –80 ºC

- Neveras de tipo industrial ubicadas en zonas de servicio.

En un plazo máximo de 60 días a contar desde el inicio del contrato la empresa

adjudicataria presentará Informe del estado de las instalaciones de climatización y frío

industrial determinando de forma exacta las máquinas y equipos integrantes de las

instalaciones, con sus características, comprobando el funcionamiento de las mismas y

su capacidad para realizar las prestaciones previstas.

La totalidad de las instalaciones de climatización y frío industrial del HV quedan

incluidas en el presente Pliego, pudiendo los licitadores proceder a su visita para

comprobación de las mismas con la debida autorización.

1.6 Memoria técnica de mantenimiento y operación

El contratista entregará un plan de explotación para el periodo de duración del

contrato, detallando los resultados mensuales de compra – venta de energía eléctrica,

compra de combustible y consumo de fluidos energéticos por el Hospital.

1.6.1 Medida de consumos y aporte de energía

La medida de los fluidos energéticos consumidos por el CHV, se define a continuación:

Page 145: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 15

- La medida de Agua caliente para Calefacción

La unidad de medida para el consumo térmico del fluido Agua Caliente Calefacción se

define en [kWh]. Las mediciones a realizar son:

Caudal de agua caliente aportado al colector de impulsión de calefacción

Temperatura de colector de impulsión de calefacción

Temperatura de colector de retorno de calefacción

Resultado de la medida:

QCAL: [kWh] de energía térmica aportada

- La medida de Agua enfriada para Refrigeración

La unidad de medida para el consumo térmico del fluido agua enfriada se define en

[kWh]. Las mediciones a realizar son:

Caudal de agua enfriada aportado al colector de impulsión de frío

Temperatura de colector de impulsión de frío

Temperatura de colector de retorno de frío

Resultado de la medida:

QFRI: [kWh] de energía frigorífica

- La medida de Agua Caliente Sanitaria

La unidad de medida para el consumo térmico del fluido Agua Caliente Sanitaria se

define en [kWh]. Las mediciones a realizar son:

Caudal de agua potable aportada al sistema de distribución de ACS

Temperatura de entrada de agua potable

Temperatura de entrega de ACS

Resultado de la medida:

QACS: [kWh] de energía térmica aportada

La medida de Energía Eléctrica Autogenerada (EEA)

La unidad de medida para la energía eléctrica se define en [kWh], con medida en

barras de baja tensión de cada motogenerador (EGEN) multiplicado por un factor de

0,985 para reflejar las perdidas en los transformadores

Medida en baja tensión de los consumos eléctricos en la propia planta de cogeneración

(ECOG)

Medida de baja tensión de consumos eléctricos de las maquinas enfriadoras en la sala

de frío (EMF)

Page 146: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 16

Todas las medidas se realizan en [kWh] y para cada hora, con la finalidad de

contemplar las distintas tarifas eléctricas para compra y venta.

Resultado de la medida:

EEA = EGEN * 0,985 – ECOG – EMF si EEA > 0

Las medidas de los contadores se comunican al sistema SCADA, el que efectúa para

cada hora esta operación, y emite el resultado mensual de Energía autogenerada.

El cálculo de la EEC se hace mediante el sistema SCADA para cada hora, similar a la

EEA. El valor de EEC incrementará siempre y cuando el balance eléctrico de la CTE es

negativo, como puede ocurrir en caso de parada de motores o de insuficiencia de la

autoproducción.

La medida de consumo de Gas Natural en la planta de Cogeneración:

La planta de cogeneración dispone de una propia ERM, para regulación y medida de

consumos de gas en los motogeneradores.

La medida de consumo de Gas Natural en la sala de caldera .

La sala de caldera dispone de una propia ERM, para consumos de gas en calderas.

1.6.2 Propuesta de plan de funcionamiento: Revisiones periódicas

La empresa Adjudicataria debe de realizar las revisiones dentro de las fechas

propuestas en el cuadro de revisiones, indicando la fecha de realización de las mismas

y confirmando la realización de estas. La empresa adjudicataria, deberá remitir

después de cada revisión un informe al CHV junto con las fichas de revisión, en el que

se justifiquen los trabajos realizados.

La empresa adjudicataria deberá presentar en el plazo de 30 días naturales desde la

notificación de la adjudicación una colección de fichas de mantenimiento de acuerdo

con los modelos presentados GAMAS DE MANTENIMIENTO, que se consideran

como un mínimo a cumplimentar, debiendo ser aprobadas por el CHV. Tras la

aprobación de las fichas de mantenimiento la empresa adjudicataria deberá editar los

Libros de mantenimiento de las instalaciones donde se recoja de cada máquina la

codificación y conjunto de tareas de mantenimiento a realizar.

Page 147: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 17

1.6.3 Propuesta de plan de funcionamiento: Avisos de incidencias

En lo referente a las instalaciones de climatización y frío industrial, la empresa

adjudicataria recibirá por parte del Hospital, de forma diaria, unos Avisos de

Incidencia de las instalaciones, presentando de forma semanal un informe del estado

de los mismos.

Una vez realizado el trabajo, la empresa adjudicataria se pondrá en contacto con el

Hospital para su verificación.

1.6.4 Garantía de suministro

El Contratista garantiza el suministro de fluidos energéticos (Agua Caliente Sanitaria,

Agua caliente Calefacción, Agua enfriada) en cantidad y calidad requerida para

abastecer en cualquier momento la demanda del Hospital. Siempre y cuando la

demanda este dentro de los límites máximos especificados y no se produce ninguna

anomalía en el suministro de energía primaria.

Siendo la disponibilidad mínima a obtener del suministro de fluidos energéticos (Agua

Caliente Sanitaria, Agua caliente Calefacción, Agua enfriada) con exclusión de la

energía eléctrica autogenerada, de un 99% y la disponibilidad esperada de un 100%.

1.6.5 Estudio económico

Cada ofertante elaborará un estudio económico representando todos los gastos

energéticos del CHV, de manera que quede perfectamente justificada la viabilidad

económica del proyecto.

Compra de energía eléctrica a la Cía Suministradora (A) Incrementado por Compra de

gas natural para sala de caldera y cogeneración (B) Incrementado por Suma de las

facturas mensuales de la empresa adjudicataria según PCAP ( C) Disminuido por

Venta de Energía Eléctrica (D)

Resultado económico anual del CHV = A + B + C - D

Page 148: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 18

2 Condiciones y características suplementarias

2.1 Personal adscrito al contrato

En un plazo de 10 días naturales desde la adjudicación del contrato, la empresa

adjudicataria dispondrá del personal necesario para satisfacer el presente Pliego

informando al CHV del organigrama funcional del mismo e indicando nombre y lugar

que ocupan en el Organigrama. En cualquier caso el CHV se reserva el derecho a

establecer las modificaciones que considere oportunas en el Organigrama establecido

como consecuencia de la evaluación del servicio prestado.

Será Obligación de la empresa Adjudicataria facilitar al CHV una copia sellada del

ingreso de las cuotas de la Seguridad Social.

Será por cuenta de la empresa Adjudicataria el pago del importe de los salarios y

cargas sociales de todo el personal adscrito al contrato.

2.1.1 Organigrama funcional

TECNICO TITULADO: La empresa adjudicataria pondrá a disposición del contrato

como responsable del mismo e interlocutor con la CHV a un técnico titulado (Ingeniero

Técnico Industrial o Ingeniero Industrial), con experiencia demostrable con plena

autoridad para resolver cuantas incidencias acontezcan en la prestación del servicio.

JEFE DE EQUIPO: Con experiencia demostrable en instalaciones o servicios similares

durante por lo menos cinco años, y con capacidad demostrable como para asumir el

normal funcionamiento de la Central de Transformación Energética.

OFICIALES: En número de 7 (siete), con distintas especialidades a fin de ejecutar las

labores propias del mantenimiento, de forma que dos de ellos (como mínimo) sean

oficiales de Primera. Del conjunto de los 7 Oficiales dedicado al contrato 4 deben de

tener un mínimo de 18 (dieciocho) meses de experiencia demostrable en este tipo de

instalaciones. El CHV se reserva el derecho a evaluar el personal presentado en la

Page 149: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 19

oferta y aceptar o rechazar a las personas propuestas. Además deberá la empresa

adjudicataria de disponer de sede con Domicilio Social en la Provincia de Valencia

disponiendo de un local definido con teléfono, fax y correo electrónico,

proporcionando un teléfono de atención los 365 días del año las 24horas del día. Así

mismo la empresa adjudicataria deberá de dispones de otros peones y oficiales para

realizar trabajos extraordinarios en el CHV.

2.1.2 Turnos, jornada laboral y vacaciones

Se establecen como turnos de funcionamiento los siguientes:

De lunes a Viernes:

De 7:00 a.m. a 15:00 p.m.

De 15:00 p.m. a 23:00 p.m.

En cualquier caso el CHV se reserva el derecho a la modificación del presente turno sin

que por ello la empresa Adjudicataria pueda por ello solicitar aumento de los precios

concertados.

Durante los turnos de noche y fines de semana, la empresa adjudicataria deberá

disponer de un servicio de atención de averías, garantizando la presencia en las

instalaciones en un plazo no superior a 30 minutos en caso necesario.

2.1.3 Seguridad del personal

Es responsabilidad de la empresa Adjudicataria el estricto cumplimiento de lo

dispuesto en la Ley 31/1995 de 8 de noviembre de Prevención de Riegos Laborales y el

R.D: 1627/1997 de 24 de Octubre. Las empresa que opten a licitación deben de

acreditar documentalmente la formación específica del personal destinado al contrato

en materia de de Seguridad y Salud.

La empresa Adjudicataria presentará en el plazo de 30 días desde el inicio del contrato

un Plan de Seguridad y Salud, deforma que se aseguré el suministro de los

correspondientes equipos de seguridad al personal adscrito al contrato, así como la

correcta utilización de los mismos.

Page 150: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 20

2.1.4 Medios adscritos al contrato

La empresa adjudicataria deberá disponer en el plazo de 15 días naturales desde la

notificación oficial de la adjudicación de al menos un vehículo motorizado (furgoneta)

para el transporte de personas y materiales. Así mismo debe de disponer de teléfonos

móviles para la comunicación del personal.

La empresa adjudicataria debe de tener domicilio social o una delegación en la ciudad

de Valencia o, como máximo a una distancia que permita el servicio en las condiciones

establecida en el presente Pliego, disponiendo de teléfono, fax y correo electrónico.

La empresa adjudicataria debe de disponer de personal y medios materiales no

adscritos al contrato que permitan ante eventuales necesidades dotar de apoyo al

servicio que es objeto del presente pliego.

2.2 Códigos y normas aplicables

Como detalla en el PCAP, el Adjudicatario deberá cumplir toda normativa oficial

aplicable, tanto nacional, como autonómica y local, sea de índole técnica, laboral,

social, administrativa, etc.

Cuando se produzcan contradicciones entre las distintas normas, se aplicará la más

exigente. En particular, deberá cumplirse la siguiente normativa de índole técnica:

Obra civil:

Instrucción para el proyecto y ejecución de obras de hormigón en masa o armado (EH-

91).

Normas Básicas de la Edificación (NBE).

Normas Tecnológicas de la Edificación (NTE).

Pliego de prescripciones técnicas generales para la recepción de cementos (RC-88).

Instrucción para el Proyecto y la ejecución de forjados unidireccionales de hormigón

armado o pretensado (EF-88).

Page 151: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 21

Aparatos a presión:

Reglamento de aparatos a presión. Aprobado según Real Decreto 1244/1979 de fecha 4

de Abril.

Instrucción Técnica Complementaria ITC-MIE-AP1 del Reglamento de Aparatos a

Presión, relativa a Calderas, Economizadores, Precalentadores de Agua,

sobrecalentadores y Recalentadores de vapor. Aprobada según orden del 17 de Marzo

de 1.981.

Instrucción Técnica Complementaria ITC-MIE-AP2 del Reglamento de Aparatos a

Presión, relativa a Tuberías para Fluidos Relativos a Calderas. Aprobada según orden

del 6 de Octubre de 1.980.

Instrucción Técnica Complementaria ITC-MIE-AP17 del Reglamento de Aparatos a

Presión, relativa a Instalaciones de Tratamiento y Almacenamiento de aire

comprimido. Aprobada según orden del 28 de Junio de 1.988.

Códigos de diseño: CODAP/ ASME/ ADMERKBLATTER.

Instalación eléctrica de baja tensión:

Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento Electrotécnico

para Baja Tensión (REBT).

Serán de aplicación igualmente las Instrucciones Técnicas Complementarias (ITC) del

REBT.

Norma NTE-IEB/2971.

Norma UNE 20k-322 de clasificación de emplazamientos con peligro de explosión

debido a la presencia de gases, vapores y nieblas inflamables.

Protección contra incendios:

RD 2177/1996, de 4 de octubre (NBE-CPI-96).

RD 1942/1993, de noviembre, por el que se aprueba el Reglamento de Instalaciones de

Protección contra Incendios (RIPCI).

ITC-MIE-AP5, de extintores de incendios.

RD 486/97, de 14 de abril, sobre disposiciones mínimas de seguridad y salud en los

lugares de trabajo.

Instalación de gas:

Page 152: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 22

Reglamento del Servicio Público, de Gases Combustibles, Decreto 2913/73 de 26 de

Octubre, y el Reglamento de Redes y Acometidas de Combustibles Gaseosos, orden del

26.10.93 (B.O.E. nº 167 de 08.11.83). ITC-MIG-R.7.1., ITC-MIG-R.5.1. Normas UNE-

60.002, UNE-60.302, UNE-60.620.

Norma UNE-14.011.

Condiciones de seguridad y medioambientales:

Ley 31/95, de 8 de noviembre, de Prevención de Riesgos Laborales, y sus normas de

desarrollo, en particular:

R.D. 485/97, de 14 de abril, sobre disposiciones mínimas en materia de señalización de

seguridad y salud en el trabajo.

R.D. 486/97, de 14 de abril, sobre disposiciones mínimas en seguridad y salud en los

lugares de trabajo.

R.D. 487/97, de 14 de abril, sobre disposiciones mínimas de seguridad y salud relativas

a la manipulación manipula de cargas que entrañe riesgos, en particular

dorsolumbares, para los trabajadores.

R.D. 1215/97, de 18 de julio, sobre disposiciones mínimas de seguridad y salud para la

utilización por los trabajadores de los equipos de trabajo.

R.D. 1627/97, de 24 de octubre, sobre disposiciones mínimas de seguridad y salud en

las obras de construcción.

R.D. 1495/86, de 26 de mayo, por el que se aprueba el reglamento de seguridad en

máquinas.

Ordenanza laboral de seguridad e higiene en el trabajo, en aquello que no esté

derogada.

Decreto 21461, de 30 de noviembre, por el que se aprueba el Reglamento de

Actividades Molestas, Insalubres, Nocivas y Peligrosas (RAMINP), y sus

modificaciones posteriores.

Ley 38/72, de 22 de diciembre, de Protección del Ambiente Atmosférico.

Decreto 833/75, de 6 de febrero, por el que se desarrolla la Ley 38/72, de 22 de

diciembre, de Protección del Ambiente Atmosférico.

Real Decreto 547/79, de 20 de febrero de modificación del Decreto 833/75, de 6 de

febrero.

Real Decreto 1613/85, de 1 de agosto, por el que se modifica parcialmente el Decreto

833/75, de 6 de febrero, y se establecen nuevas normas de calidad del aire en lo

referente a contaminación por dióxido de azufre y partículas. Modificado por el Real

Page 153: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 23

Decreto 1154/86, de 11 de abril. B.O.E. núm. 146, de 19.6.86. incorpora Directiva

80/779, de 15 de julio.

Real Decreto 717/87, de 27 de mayo, por el que se modifica parcialmente el Decreto

833/75, de 6 de febrero, y se establecen nuevas normas de calidad de aire en lo

referente a contaminación por dióxido de nitrógeno y plomo. B.O.E. núm. 135, de

6.6.87. Incorpora Directivas 82/884, de 3 de diciembre, 85/203, de 7 marzo y 85/580, de

20 de diciembre.

Orden de 18 de octubre de 1976 sobre prevención y corrección de la contaminación

industrial de la atmósfera.

2.3 Proyecto de ejecución

Conforme a lo estipulado en el PCAP, el adjudicatario deberá realizar el Proyecto de

Ejecución de las obras de reforma definidas en la oferta. Este proyecto incluirá como

mínimo:

Memoria descriptiva

Memoria de cálculos

Planos

Mediciones y presupuesto

Estudio de seguridad y salud

La memoria descriptiva incluirá las características de las instalaciones, con: hojas de

datos, condiciones de instalación, etc.

En los planos se reflejará la ingeniería de detalle necesaria para que el montaje de todos

los elementos sea correcta y conforme a los criterios de diseño.

2.4 Ejecución de las obras

Conforme a lo estipulado en el PCAP, el contratista se obliga a entregar la instalación

completamente terminada, probada y lista para su explotación comercial conforme a

los términos del presente Contrato.

Page 154: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 24

Previo al inicio de los trabajos, el adjudicatario deberá entregar al hospital el Plan de

Seguridad y Salud exigible reglamentariamente.

Los equipos de construcción, instalaciones temporales y materiales sobrantes será

retirados por el contratista una vez terminada la obra, dejando el terreno totalmente

limpio y expedito para su entrega.

El adjudicatario implantará una estructura de obra adecuada al volumen de la misma.

La custodia de estos elementos corresponderá al adjudicatario.

El hospital entregará al adjudicatario los terrenos, locales e instalaciones determinados

en los pliegos para la ejecución de los trabajos objeto del contrato, permitiendo el

acceso a los mismos.

Para la realización de estas obras, el hospital permitirá al adjudicatario la utilización de

energía eléctrica y agua del propio centro.

La ejecución de obras proyectadas y su puesta en servicio se hará de forma que no se

interfiera el normal funcionamiento del hospital. Para ello, el contratista planificará y

coordinará la puesta en servicio de nuevas instalaciones, la reforma de otras existentes

y los desmontajes, de modo que no se interrumpan los suministros de energía térmica.

Para coordinar los trabajos, el adjudicatario deberá acatar las instrucciones del hospital.

El adjudicatario, al final de cada jornada dejará las zonas de trabajo ordenadas y

limpias.

Salvo que el hospital reclame repuestos útiles, los elementos desmontados de las

instalaciones serán retirados por el adjudicatario y llevados a vertedero autorizado, a

chatarra u otro destino legalmente autorizado. En su caso, aquellos repuestos útiles

serán depositados en el lugar del recinto hospitalario que indique el hospital.

Las instalaciones deberán recepcionarse previamente al inicio de la explotación, como

se describe en los pliegos.

2.5 Obligaciones del contratista

Una vez recepcionadas las obras de reforma, el adjudicatario realizará la operación y

mantenimiento de las instalaciones incluidas, con los límites de batería que se

determinan en el contrato. Estas instalaciones son:

Producción de agua caliente sanitaria (ACS).

Producción de agua caliente de calefacción.

Producción de agua enfriada para climatización

Page 155: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 25

Autogeneración eléctrica

Supeditado al PCAP se definen en este apartado aspectos técnicos de la relación entre

las artes contratantes.

El adjudicatario realizará a su cargo las actividades necesarias para entregar al hospital

la energía térmica objeto del contrato en las condiciones de calidad exigidas. Entre

estas actividades, se citan: aprovisionamientos, pagos a proveedores, operación y

mantenimiento de instalaciones, inspecciones reglamentarias, etc.

Serán, igualmente, por cuenta del adjudicatario todos los gastos que la actividad

genere, tales como, consumos de energía, mano de obra, fungibles, gestión de residuos,

etc. Conforme a la legislación vigente, el adjudicatario deberá realizar una evolución de

riesgos de los puestos de trabajo del dominio, e implantar las medidas de seguridad

que se deriven de la misma.

El adjudicatario realizará la conservación y mantenimiento, limpieza, etc. y mantendrá

las instalaciones en orden y perfecto estado de revista.

A la extinción del contrato, previo a la entrega al hospital, el adjudicatario realizará

una reparación general de las instalaciones del contrato, de modo que se garantice la

entrega de las prestaciones de diseño.

El Adjudicatario tendrá teléfonos de atención al usuario, para información y

notificación de incidencias, atendidos las 24 horas del día, todos los días del año.

2.6 Reconocimiento previo

Las empresas licitadoras girarán visitas a las dependencias hospitalarias, para

comprobar el alcance y dificultad de los trabajos solicitados y comprobarán todos los

requisitos y características detalladas en esta especificación ya que es responsable del

diseño e instalación, conforme a las normas aplicables.

La presentación de proposiciones presupone que los licitantes han hecho un

reconocimiento de las instalaciones y un estudio de los documentos de la licitación, no

teniendo derecho a indemnización ni reclamación alguna por defectos o errores en los

mismos.

Page 156: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 26

2.7 Normas de trabajo

La seguridad de los trabajadores y de terceros es la norma básica que debe presidir las

actuaciones del adjudicatario. A este fin se realizarán:

Estudio de seguridad y salud.

Plan de seguridad y salud de las obras

Evaluación de riesgos de puestos de trabajo.

Todos los trabajos se realizarán conforme a la buena práctica de la construcción y el

montaje, y acorde a lo establecido en los proyectos de ejecución.

2.8 Recepción y puesta en servicio

2.8.1 Generalidades

Con carácter previo a la recepción de las obras proyectadas se realizarán los ensayos de

aceptación previstos en la cláusula siguiente. Requisito previo al inicio de los ensayos

es haber entregado toda la documentación de la instalación que se recoge en el

apartado 4 del presente PPT, así como los protocolos de prueba y la documentación de

legalización de las instalaciones y equipos.

Entre otros para los equipos mecánicos y tuberías se entregarán los siguientes

certificados:

- Certificados de calidad de materiales.

- Certificado de construcción.

- Certificado de la Delegación de Industria.

- Placas de industria

- Informe de prueba hidrostática.

- Informe de fabricación según código CODAP/ ASME/ ADMER/ AMERBLATTER.

En aquellos ensayos que lo requieran podrá participar una entidad colaboradora de la

Administración, que emitirá los certificados correspondientes.

Superados con éxito los ensayos y de encontrarse las obras en buen estado y con

arreglo a las prescripciones técnicas el Representante del CHV, las dará por recibidas,

levantándose la correspondiente acta y comenzando entonces el plazo de garantía.

Page 157: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 27

Cuando las obras no se encuentren en estado de ser recibidas se hará constar así en el

acta y el Representante del CHV señalará los defectos observados y detallará las

instrucciones precisas fijando un plazo para remediar aquéllos. Si transcurrido dicho

plazo el contratista no lo hubiere efectuado, podrá concedérsele otro nuevo plazo

improrrogable o declarar resuelto el contrato.

Dentro del plazo de quince días anteriores al cumplimiento del plazo de garantía, un

representante del CHV o un tercero a instancia del contratista, redactará un informe

sobre el estado de las obras. Si éste fuera favorable, el contratista quedará relevado de

toda responsabilidad, salvo lo dispuesto para los vicios ocultos en la cláusula 8.3.5 del

PCAP, procediéndose a la devolución o cancelación de la garantía definitiva

correspondiente a las obras.

En el caso de que el informe no fuera favorable y los defectos observados se debiesen a

deficiencias en la ejecución de la obra y no al uso de lo construido, durante el plazo

garantía, el CHV procederá a dictar las oportunas instrucciones al contratista para la

debida reparación de lo construido, concediéndole un plazo par ello durante el cual

continuará encargado de la conservación de las obras.

Podrán ser objeto de recepción parcial aquellas partes de obra susceptibles de ser

ejecutadas por fases que puedan ser entregadas al uso especificado, según lo

establecido en este PPT.

Siempre que por razones excepcionales de interés público debidamente motivadas en

el expediente, el órgano de contratación acuerde la ocupación efectiva de las obras o su

puesta en servicio para el uso especificado, aun sin el cumplimiento del acto formal de

recepción, desde que concurran dichas circunstancias se producirán los efectos y

consecuencias propios desde que concurran dichas circunstancias se producirán los

efectos y consecuencias propios del acto de recepción de las obras y en los términos en

que reglamentariamente se establezcan.

2.9 Garantías y penalidades

En los términos establecidos en el PCAP y este PPT, el adjudicatario garantizará sus

equipos contra todo defecto de diseño, fabricación o funcionamiento.

Page 158: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 28

Una vez extinguido el contrato y revertidos los bienes a la Administración, no se

considera período de garantía, salvadas las responsabilidades que se establezcan en los

pliegos, ya que los equipos deben entregar las prestaciones de diseño conforme a lo

establecido en el contrato.

2.10 Representantes

Para coordinar las relaciones que con motivo del desarrollo del objeto del Contrato

necesariamente se tiene que establecer entre el hospital y el adjudicatario, ambas partes

designarán un representante, que tendrá capacidad suficiente para actuar como

portavoz de las partes en todas las actuaciones que precisen de su conformidad,

relativas a la organización y control de la explotación de la CTE.

El cambio de representante deberá ser comunicado a la otra parte.

3 MEJORAS

Cumpliendo los requisitos mínimos que se establecen en los pliegos, los licitadores

pueden incluir mejoras respecto al estado actual de las instalaciones. Las mejoras

ofertadas deben estar perfectamente definidas en la Propuesta Técnica de Obras, donde

se detallen su justificación, descripción y características técnicas, planos (en su caso),

mediciones y presupuesto. Como se indica en el PCAP, en cualquier caso el hospital

tendrá la facultad de rechazar modificaciones que proponga el adjudicatario, aunque

estuvieran definidas en su oferta.

Requisitos mínimos para las obras en la Central de Transformación Energética

Las propuestas técnicas de Obra de cada licitador tienen que incluir como mínimo las

siguientes modificaciones en las instalaciones que componen la Central de

Transformación Energética.

- Calderas

Page 159: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 29

Sustitución de todas las calderas de vapor por equipos nuevos de generación de vapor

o de agua caliente. La potencia total instalado para aporte de calor debe superar los

6500 kW térmicos.

- Sistema producción ACS

Renovación completa del sistema de producción y almacenamiento de ACS.

- Actualización del sistema de supervisión y telegestión

El CHV dispone de un sistema de supervisión y telegestión de sus instalaciones de

clima. Se requiere una migración del software al estándar actual, y una integración de

la Central de Cogeneración.

- Montaje de contadores de energía térmica

Para el control y la facturación de los fluidos energéticos como son el agua enfriada, el

agua caliente calefacción y ACS se instalará equipos de medida de energía térmica en

los circuitos de distribución de cada fluido.

4 Procedimientos de evaluación y calificación

La Mesa de Contratación procederá a la entrega de los sobres Nº 2 a una comisión

técnica asesora (órgano evaluador) para que elabore un informe técnico sobre las

mismas. El Director de Servicio Económico Financiero, o persona en quien delegue,

constituirá el órgano evaluador y les informará de los objetivos y plazos, pondrá a su

disposición la documentación técnica necesaria y fijará fechas de reunión.

- PARÁMETROS Y MEDIDAS

En el cuadro de características del PCAP se detallan los criterios de adjudicación y la

puntuación ponderada máxima de cada uno, incluidos los de calificación de la oferta

técnica.

- CALIFICACIÓN

Page 160: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 30

Cada miembro del órgano evaluador estudiará la documentación técnica de los

licitadores y, al menos, los criterios y procedimientos de evaluación técnica

establecidos en el PCAP y PPT.

En reunión de calificación técnica del órgano evaluador se pondrán en común las

puntuaciones propuestas por cada miembro y su justificación, acordándose la

puntuación técnica definitiva de cada apartado. Dichos acuerdos se reflejarán en el

informe técnico correspondiente, que deberá ser firmado por cada miembro.

- INFORME TÉCNICO

Tras el estudio de las ofertas y la documentación técnica presentada por los licitadores,

el órgano evaluador entregará un informe técnico al órgano de contratación que, como

mínimo, incluirá:

Tabulación técnica, indicando la calificación obtenida por cada licitante en cada uno de

los criterios técnicos de puntuación establecidos en el PCAP.

Memoria justificativa de las calificaciones asignadas.

5 Amortización de las instalaciones

5.1 Importe de la inversión de obras

El importe de la inversión en obras e instalaciones, de acuerdo con lo especificado en el

presente pliego de condiciones técnicas, no podrá superar, en ningún caso, la cifra de

800.000 euros (iva incluido), debiendo estar dicho importe debidamente justificado en

la memoria descriptiva y presupuesto de obras presentados.

5.2 Plan de amortización

El contratista, en la presentación de su oferta económica, presentará un Plan de

amortización de la instalación realizada durante un periodo de 8 años, a contar desde

la fecha de inicio del contrato, indicando las cantidades previstas a amortizar para cada

una de las anualidades. En dicho plan se indicará, para cada ejercicio, el importe total

Page 161: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 31

pendiente de amortización, así como el capital total amortizado al vencimiento de cada

anualidad del contrato.

5.3 Subrogación de la deuda

En el caso de que el contrato no llegase a su término por cualquiera de las causas

estipuladas en el PCAP, el CHV se compromete a asumir el capital pendiente de

amortización según el plan de amortización presentado por el contratista. Para que ello

tenga validez, el CHV deberá, una vez adjudicado el contrato y revisado el Proyecto de

Ejecución, aprobar el Presupuesto de Ejecución presentado por el contratista, así como

su Plan de Amortización.

Page 162: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 32

1 Equipos instalados

A continuación se realiza una breve descripción de los equipos utilizados en la

instalación, tanto de recuperación de calor como de producción de frío y elementos

auxiliares.

1.1 Equipos motor-generador

1.1.1 Datos constructivos

El equipo motor-generador está constituido por tres unidades DEUTZ, modelo TGB

620 V12, con 968 KW de potencia nominal y calor útil de 1168 KW por unidad, con

gases hasta 120 ºC.

Los datos constructivos del motor son los siguientes:

• Disposición: en ‘V’ a 90º;

• Sentido de giro: antihorario mirando al volante de inercia;

• Ciclo d trabajo: Otto, cuatro tiempos;

• Sistema de arranque: eléctrico;

• Diámetro de cilindros: 170 mm;

• Carrera del pistón: 195 mm;

• Cilindrada unitaria: 4,426 l;

• Cilindrada total: 53,11 l;

• Relación de compresión: 12;

• Presión media efectiva: 7 a 17 bar;

Page 163: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 33

• Nº metano: >70.

El equipo puede utilizar gas natural, gas de vertedero o gas de depuradora. En la

presente instalación se alimentará con gas natural.

El generador utilizado es un generador síncrono de marca Stamford, modelo HCI

734 E2 con una tensión de salida de 380 V y 50Hz de frecuencia.

El sistema de formación de mezcla y admisión está formado por un filtro limpiador

de aire seco situado antes del compresor, un turbo compresor accionado por gases de

escape, un enfriador de mezcla aire-gas de dos etapas, un mezclador multigás DEUTZ

MWM tipo Ventura y un sistema de control electrónico de mezcla que controla la

proporción gas/aire.

1.1.2 Equipo de recuperación de calor

Está constituido de dos tramos, el primero que pasa por el circuito de refrigeración

de camisas, y el segundo por la salida de los gases de escape. Obtenemos un caudal

total de 11,33 Kg/s por cada motor. El sistema de refrigeración posee una válvula de

tres vías que permite realizar un bypass del circuito que se dirige al intercambiador de

calor, de tal forma que si éste no funciona o no puede recuperar el calor, entra en

funcionamiento el aeroenfriador, cuya descripción sigue a continuación.

1.1.3 Aeroenfriador

Cada motor dispone de su propio aeroenfriador, cuya finalidad es evacuar el calor

producido en las camisas de los pistones. En situación normal no funcionan a plena

carga, ya que es el propio circuito de refrigeración el que evacua el calor, por lo que

para el dimensionamiento de los Aeroenfriadores, se debe tomar el caso más

desfavorable, es decir, 474 KW a disipar, considerando una temperatura de entrada de

92 ºC y 82 ºC de salida.

Cada aeroenfriador está compuesto por:

Page 164: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 34

• Un haz tubular aleteado de cobre con aletas continuas. La alimentación se

realiza con bridas PN16, que van soldadas a los colectores de distribución de

cobre.

• Paneles laterales de acero que incorporan orejetas para izado de haces.

• Cajas de conexiones de motores.

• Ventiladores

• Planchas de acero galvanizado remachadas para caja de aire y estructura

soporte.

• Motores eléctricos con protección IP-55 y carcasa de aluminio.

1.1.4 Recuperación de gases de escape

La recuperación de gases de escape se realiza en un intercambiador de calor de

tubos y carcasa. Por el interior de los tubos circula el agua y por la carcasa los gases

procedentes de la combustión. Los gases abandonan el escape a 516 ºC y se enfrían

hasta 120 ºC. El caudal seco de gases de escape es de 5623 Kg/h.

Para cuando no sea necesario aprovechar la salida de los gases de escape a la salida,

se dispondrá de una válvula que permitirá el paso de los gases de escape por fuera del

intercambiador, y se expulsarán directamente a la atmósfera.

1.2 Intercambiador de calor para calefacción

A la salida del circuito intercambiador de calor de gases de escape el caudal de agua

a 106,65 ºC se llevará durante los periodos invernales al intercambiador de agua para

calefacción. La demanda de ésta se realiza a 80 ºC, y el retorno a la instalación a 70 ºC.

La potencia térmica por unidad motor-generador de la instalación asciende a 1168

KW, por lo que el caudal por el circuito primario del intercambiador es de 11,33 Kg/s.

En el circuito secundario se obtiene un caudal de agua a 80 ºC para calefacción de 25,3

Kg/s por cada motor conectado.

Page 165: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 35

1.2.1 Calderas auxiliares para calefacción

En situaciones donde la demanda térmica de la instalación sea superior a la potencia

proporcionada por el equipo cogenerador se instalará, a modo de servicio de auxiliar,

calderas de calefacción a gas natural. Se realizará en paralelo con el circuito anterior, y

su potencia será igual a la requerida por la instalación en condiciones de no

funcionamiento de la cogeneración, debido al posible fallo de ésta.

1.2.2 Acumuladores de calor para agua caliente sanitaria

La demanda de agua caliente sanitaria se supone constante a lo largo de todo el año.

Para ello se dispondrá de una bomba de alimentación de agua que sale del

intercambiador de agua para calefacción, o del equipo de absorción en invierno, cuyo

caudal es de 11,33 Kg/s por cada motor funcionando; su temperatura de entrada será

de 84,3 ºC y ha de volver al circuito de camisas a 82 ºC. El agua de suministro procede

de una red a una temperatura media anual de 10 ºC, y considerando que la demanda se

produce a 50 ºC, se obtiene un caudal medio de 250 litros de agua caliente por día y por

habitación, que es más que suficiente para satisfacer las necesidades.

Se instalarán en paralelo con el intercambiador de ACS dos acumuladores de ACS

por motor, para amortiguar las demandas diarias.

1.3 Equipo de absorción

Se procederá a instalar una única máquina de absorción (Bromuro de Litio / agua)

de simple efecto para toda la instalación, de una potencia frigorífica de 2221 Kw. La

alimentación de dicha máquina será de agua caliente a 106,65 ºC, el caudal será el

mismo que para el sistema de calefacción, ya que se encuentran en paralelo.

La capacidad frigorífica de la máquina le permite proporcionar un caudal de agua

fría a 6,7 ºC de 96,6 Kg/s que abastecerá la demanda del hospital. En funcionamiento

Page 166: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 36

normal, el agua de refrigeración actúa en circuito cerrado regresando a la máquina de

absorción a una temperatura de 12,2 ºC.

Los circuitos del evaporador, absorbedor y condensador serán del tipo de

intercambiadores de calor con tubos de borde recto y envolvente. Todos los tubos irán

mandrinados en los alojamientos de las placas de tubos.

Las bombas de solución y de refrigerante serán del tipo autónomo hermético sin

sellos. La lubricación y refrigeración de la bomba de solución se realizarán por la

solución de bromuro de litio. La bomba de refrigerante será lubricada y refrigerada por

el mismo refrigerante. Las tuberías de agua de la red urbana no se aceptan para

refrigeración, lubricación o funcionamiento de la máquina. Los conjuntos moto bombas

se diseñarán para un mínimo de cinco años o 20.000 horas de funcionamiento normal

entre inspecciones. Los motores de las bombas deberán funcionar con corriente

trifásica, 50 Hz y 200 V con un error máximo del 10%.

1.3.1 Torre de refrigeración

Será necesaria la instalación de una torre de refrigeración, ya que durante el proceso

de absorción se genera calor que es necesario evacuar para el correcto funcionamiento

del equipo. La torre proporciona un caudal de 147,6 Kg/s de agua de refrigeración a

29,4 ºC, el cual es devuelto a la torre a 38,4 ºC.

El agua a refrigerar circula a través de los tubos de batería de intercambio sin que

exista contacto directo con el ambiente exterior, consiguiendo así preservar el fluido

del circuito primario de cualquier ensuciamiento o contaminación. El calor se trasmite

desde l fluido, a través de las paredes de los tubos hacia el agua que es continuamente

rociada sobre la batería. El ventilador situado en la parte superior de la torre aspira el

aire que es conducido a contra corriente del agua, evaporando una pequeña cantidad

de la misma, absorbiendo así el calor latente de evaporación y descargándolo en la

atmósfera. El resto del agua es recirculada mediante una bomba que impulsa el agua

desde la bandeja hasta los pulverizadores. Una pequeña cantidad de calor es

transmitida directamente al aire exterior por convección, como si se tratara de un aero-

refrigerante.

Page 167: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 37

1.4 Grupo de bombas

En la instalación se usarán motobombas de rotor húmedo para circulación de agua

caliente, que girarán a un régimen de 1450 rpm.

El equipo de bombas necesarias está compuesto por:

• Una bomba de circulación que permite hacer pasar agua a través del

aeroenfriador o intercambiador de recuperación de baja temperatura. Se

instalará una por cada equipo motor.

• Una bomba para circulación a la salida del circuito secundario del

intercambiador de baja temperatura.

• Una bomba para alimentación de agua fría a la instalación a la salida de la

máquina de absorción.

• Una bomba de alimentación para los equipos de calefacción y ACS. Se instalará

una bomba por cada equipo motor.

• Seis bombas para alimentación de agua para los intercambiadores de

calefacción.

• Tres bombas de circulación para el circuito primario del intercambiador de

ACS.

• Tres bombas principales de alimentación de agua caliente situadas en el

secundario del intercambiador para ACS.

• Una bomba de circulación para la torre de refrigeración.

• Una bomba de circulación del agua caliente a la salida de la máquina de

absorción.

• Una bomba por cada equipo auxiliar, ya sea caldera de calefacción o compresor

para producir frío.

Page 168: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 38

1.5 Instalación eléctrica

La instalación eléctrica de la planta a diseñar, consta de tres motores síncronos en

paralelo, cuya tensión en bornes del alternador será de 380 V, y que posteriormente se

elevará a 20 KV mediante tres transformadores de 1500 KVA.

Dado que la instalación puede exportar electricidad a la red será necesario equipar

con contadores de potencia para cada sentido de la energía, así como taxímetros

integradores de la energía reactiva.

La instalación está compuesta por centro de transformación, servicios auxiliares,

distribución y protecciones.

1.5.1 Centro de transformación

Los transformadores elevadores se situarán en la subestación de 20 KV y a ellos se

llegará mediante una línea de cable aislado situado en la bandeja por el rack existente.

1.5.2 Servicios auxiliares

Para la alimentación de los equipos auxiliares que requieran los motogeneradores

para su arranque y durante su funcionamiento, se ha previsto un cuadro de servicios

auxiliares, cuya alimentación se realizará desde un transformador exterior. Este cuadro

alimentará a su vez a los respectivos cuadros de maniobra correspondientes a los

equipos, bombas, etc.

1.5.3 Distribución

La distribución de alumbrado se realizará con luminarias fluorescentes estancas de

AC, protección IP-55 para interior; en las zonas exteriores se montarán luminarias

apropiadas, previéndose luminarias autónomas de emergencia con la disposición

oportuna.

Page 169: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 39

La distribución de la malla de tierra se realizará con una red enterrada mediante

picas cobreadas de 1,5 m de longitud y cable de cobre de 70 mm2 de sección. Los

alternadores irán convenientemente puestos a tierra a través de una pica con las

características anteriormente mencionadas. Cada equipo y armario se conectará a tierra

mediante cable de cobre de 35 mm2 de sección.

1.5.4 Protecciones

En este apartado se recogen las protecciones mínimas en el punto de conexión para

garantizar la desconexión de la red en caso de falta, bien en la red, bien en la

instalación de autogeneración:

• Tres relés de mínima tensión (27)

• Un relé de máxima tensión con disparo temporizado en tiempo fijo regulable

entre 0,11 y 1 segundo.

• Un relé de máxima tensión para desconexión del generador en caso de que se

produzca una tensión superior en un 7% a la nominal, que dispondrá de un

disparo temporizado en un tiempo fijo regulable entre 1 y 300 segundos.

• Un relé de máxima tensión homopolar para detectar faltas a tierra en la red.

• Teledisparo, es decir, desconexión del interruptor del acoplamiento por

apertura del interruptor en cabecera de línea.

• Relés de máxima y mínima frecuencia para regular funcionamiento en red

aislada.

2 Obra civil

La planta de cogeneración contará con un recinto en el exterior al hospital de

reciente construcción donde se albergarán los diferentes equipos. El recinto destinado a

ello estará divido de la siguiente manera:

Page 170: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 40

• Recinto de motogeneradores con estructura para el apoyo de un puente grúa:

720 m2.

• Recinto para recuperadores de calor: 120 m2.

• Recinto máquina de absorción: 320 m2.

• Sala de instalaciones eléctricas: 115 m2.

• Sala de control: 115 m2.

• Recinto auxiliar: 115 m2.

• Obras complementarias:

- Drenaje de aguas resultantes de la purga de la caldera y tanque de

descalcificación.

- Estructura para el apoyo de la torre de refrigeración.

- Estructura para el apoyo de los filtros de aire de los motores.

- Estructura para el apoyo de los depósitos del aceite.

- Cimentación equipos, principalmente de la caldera y de los motores.

- Canaletas de cables y tuberías.

- Drenaje de goteos de calderas, condensadores y aguas de baldeo.

2.1 Recinto destinado a los motogeneradores

El recinto está formado por muros de bloque macizos armados de 0,20 metros de

espesor, con una altura libre cercana a los 9 metros. Estos muros deben garantizar la

insonorización del recinto. Longitudinalmente el área está recorrida por un puente

grúa de aproximadamente 13 metros de luz y una carga de servicio de 2 toneladas,

cuya viga carril va apoyada en pilares metálicos embebidos en los muros del recinto y

arriostrados en cabeza, por las cerchas intermedias de sustentación del forjado acústico

y los perfiles de los muros de los extremos.

Page 171: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 41

El techo está formado por planchas insonorizantes, y la solera de hormigón

ligeramente armado de 15 cm de espesor lleva a los encajes necesarios que comunican

con la sala de instalaciones eléctricas, sala de control y recinto auxiliar.

2.2 Recinto de los recuperadores de calor

De acuerdo a la legislación ITC MIE-API, los muros serán de hormigón armado de

20 cm de espesor. En ellos se dispondrán los huecos de entrada de ventilación de al

menos 1 m2.

La salida de aire se ha resuelto separando la cubierta metálica ligera con

cerramiento de la chapa metálica prelacrada en los bordes superiores de los muros.

La parte central del recinto está ocupada por la cimentación de las máquinas que

sustentará en elevación a la misma y a la chimenea. En la planta también habrá algunas

cimentaciones de bombas y posiblemente un depósito de condensados con sus

respectivas cimentaciones. La solera será del mismo tipo que en el recinto de los

motogeneradores.

Los goteos del condensador y de la caldera se llevarán al drenaje previsto.

2.3 Recinto auxiliar

Está situado entres los dos recintos auxiliares, siendo las otras dos fachadas de

bloques huecos armados de 20 cm de espesor, que garantizan una resistencia al fuego

de RF = 180 minutos.

La solera de hormigón será análoga a las descritas anteriormente y sobre ella, según

cargas o en cimentaciones propias se situarán intercambiadores y compresores,

elementos complementarios en el proceso de cogeración.

El techo estará formado por un forjado de viguetas metálicas y bovedillas cerámicas.

Esta cubierta es de uso y apoyo de los equipos de recuperación y condensación. Posee

acceso desde el distribuidor de entrada mediante una escalera metálica.

Page 172: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 42

2.4 Recinto de instalaciones eléctricas

Está formado por muros de bloques armados de 20 cm de espesor con una altura

libre aproximada de 3,20 m.

El techo del recinto está formado por un forjado de viguetas metálicas y bovedillas

cerámicas, mientras que la superficie de la cubierta será accesible y ocupada

funcionalmente por los mismos equipos descritos para el recinto auxiliar.

Se dispondrá de las canaletas necesarias en hormigón armado y de los elementos

metálicos de soporte y sustentación de los armarios eléctricos. Si en algún caso y por el

sistema de tendido de cables se cree oportuno el uso de tapas en el sitio donde no haya

armario eléctrico, se dispondrá de una tapa lagrimada 7/5 sobre el pavimento para

tapar el hueco.

2.5 Sala de control

Está formada por muros de bloques arados de 20 cm de espesor con una altura libre

aproximada de 3,20 m.

El recinto es de techo plano formado por forjado de viguetas metálicas y bovedillas

cerámicas, y la cubierta tiene el mismo uso que el descrito en los dos apartados

anteriores.

La solera apoyará un falso suelo flotante para una carga de 250 Kg/cm2. El hueco

del falso suelo comunica con el recinto auxiliar y con el recinto de motogeneradores a

través de conductos con las canaletas de la sala de instalaciones eléctricas.

2.6 Cimentación

La cimentación se ha concebido superficial, con cimentaciones aisladas, y zapatas

también aisladas con vigas de atado de apoyo de fachada para el edificio, salvo recinto

Page 173: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 43

de la caldera, que por estar constituido por muros de hormigón tendrá cimentación

corrida.

Para la formación de las diversas cajas de cimentación se procederá a la realización

de la excavación sobre el terreno natural. Las paredes del cajeado se realizarán de tal

forma que garanticen el equilibrio, en cualquier fase de la realización de la cimentación

y que a su vez no provoque una sobreexcavación exagerada.

La tensión admisible del terreno se estima en 1.5 Kg/cm2 para profundidad de

excavación de -1,60 m.

Para las cimentaciones corridas o de equipos en los que la tensión media sea de poca

entidad (inferior a 0.5 Kg/cm2), la cimentación se hará superficialmente sobre la

zahorra compactada.

2.7 Acabados

2.7.1.1 Motogeneradores

- Piso: Solera de hormigón armado con acabado fratasado y con

tratamiento antipolvo. Parte del suelo lleva terminación en rejilla

galvanizada tipo 30.30.30.3 para tapar las canaletas.

- Muros: Enfoscado y pintado en ambas caras. Cabe reseñar que para

bloques rugosos (sin enfoscar) de 20 cm de espesor queda garantizado

un amortiguamiento acústico de 43 dB.

- Techo flotante.

- Cubierta: Chapa metálica frecada y prelacada.

- Puertas: Una puerta exterior metálica de dos hojas, insonorizadas y con

cerramiento antipático con muelle. Otra del recinto auxiliar, de una hoja.

- Ventanas: Una ventana insonorizada de inspección ocular situada en el

muro lindante con la sala de control.

Page 174: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 44

- Otras disposiciones: Se realizarán los huecos necesarios de entrada y

salida de aire con dispositivo antirruido.

- Los huecos de ventilación se dispondrán de acuerdo a la ITC MIE-API.

2.7.2 Máquinas de absorción

- Piso: Solera de hormigón armada con acabado fratasado y con

tratamiento antipolvo.

- Muros: Se dispondrán muros cara vista de hormigón armado de 25 cm

de espesor.

- Techos: No se dispone ninguno.

- Cubierta: Chapa metálica grecada y prelacada.

- Puertas: Se dispondrán tres puertas metálicas macizas de una hoja con

cerramiento antipático y muelle (según ITC MIE-API). Una hacia el

exterior, otra hacia el recinto auxiliar, y la tercera hacia el distribuidor

de entrada.

2.7.3 Recinto auxiliar

- Piso: Solera de hormigón con acabado fratasado.

- Muros: Todos los muros de bloques llevan ambas caras enfoscadas y

pintadas.

- El muro de hormigón se quedará a la vista y en caras exteriores llevará

unos berenjenos.

- Techo: Enfoscado y pintado en su cara interior.

- Puertas: Una al exterior, metálica de una hoja con cerramiento antipático

y muelle.

Page 175: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 45

2.7.4 Instalaciones eléctricas

- Piso: Lámina de acabado en PVC sobre la solera (superficie antichispa).

- Muros: Enfoscados y pintados en cara exterior, enlucidos y pintados en

la cara interior.

- Techo: Enlucido y pintado.

- Puertas: Una al distribuidor de entrada, metálica de dos hojas con

cerramiento antipático y muelle.

2.7.5 Sala de control

- Piso: Solera con falso suelo flotante desmontable para una carga de 250

Kg/cm2.

- Muros: Enfoscados y pintados en cara exterior, enlucidos y pintados en

cara interior.

- Techo: Enlucido y pintado.

- Puertas: Una al recinto auxiliar, metálica de una hoja. Otra al

distribuidor de entrada, metálica de dos hojas con cerradura antipático y

muelle.

- Ventanas: Ver recinto de motogeneradores.

Page 176: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

DOCUMENTO 4:

PRESUPUESTO

Page 177: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas i

Índice

ÍNDICE........................................................................................................................................................I

1 MEDICIONES ..................................................................................................................................... 2

2 PRECIOS UNITARIOS ..................................................................................................................... 3

3 SUMAS PARCIALES......................................................................................................................... 4

4 PRESUPUESTO GENERAL.............................................................................................................. 4

Page 178: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 2

1 MEDICIONES

Se muestran a continuación, los distintos elementos y equipos a utilizar, así como la

cantidad necesaria de cada uno de ellos.

• Grupos motogeneradores: 3 unidades

• Torres de refrigeración: 1 unidad

• Máquina de absorción: 1 unidad

• Compresor: 1 unidad

• Calderas auxiliares: 1 unidad

• Elementos de instalación de mecánica menores, tuberías, válvulas, accesorios,

bombas, etc : 1 unidad

• Transformadores: 3 unidades

• Celdas de media tensión: 3 unidades

• Elementos de instalación eléctrica secundarios, protecciones, transformadores

de medida, PLC, control y regulación: 1 unidad

• Obra civil: 1 unidad

Page 179: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 3

2 PRECIOS UNITARIOS

Elemento €/ud

Grupo Motogenerador 530.931

Torre Refrigeración 19.658

Máquina absorción 177.999

Compresor 35.045

Calderas auxiliares 86.350

Elementos mec. Aux. 343.937

Transformadores 12.518

Celdas de media tensión 21.670

Elementos Elec. Aux. 162.630

Obra Civil 700

Page 180: INSTALACIÓN DE TRIGENERACIÓN MEDIANTE MOTORES DE GAS · será aprovechado, en invierno por medio de unos intercambiadores de calor para calefacción, y en verano gracias a una máquina

Instalación de Trigeneración mediante motores de gas 4

3 SUMAS PARCIALES

Elemento €/ud uds Coste

Grupo Motogenerador 530.931 3 1.591.173

Torre Refrigeración 19.658 1 19.658

Máquina absorción 177.999 1 177.999

Compresor 35.045 1 35.045

Calderas auxiliares 86.350 1 86.350

Elementos mec. Aux. 343.937 1 343.937

Transformadores 12.518 3 37.554

Celdas de media tensión 21.670 3 65.010

Elementos Elec. Aux. 162.630 1 162.630

Obra Civil 700 190 132.598

4 PRESUPUESTO GENERAL

El presupuesto total de toda la instalación asciende a 2.651.955 €