INTERPRETACION DE PLANOS - uclm. · PDF fileINTERPRETACION DE PLANOS Manuel ... En la realidad...

131
1 INTERPRETACION DE PLANOS Manuel Sánchez Muñoz Rev. 2013

Transcript of INTERPRETACION DE PLANOS - uclm. · PDF fileINTERPRETACION DE PLANOS Manuel ... En la realidad...

1

INTERPRETACION

DE

PLANOS

Manuel Sánchez Muñoz Rev. 2013

2

Desarrollar las técnicas utilizadas en las representaciones gráficas de las instalaciones industriales ya que estas representaciones son necesarias para el diseño de las instalaciones y sirven de base para estudios posteriores de diferentes índoles o naturalezas.

Debe de prevalecer la máxima universalidad de los elementos o símbolos utilizados

Deben de conseguir sintetizar al máximo toda la información que contiene una instalación con el objeto de facilitar y conseguir la máxima comodidad en la consulta de esta información

OBJETO

3

Todos los equipos, líneas, instrumentos, equipamientos, etc que componen una instalación industrial se puede representar:

- De forma esquemática

- Mediante símbolos y diagramas (Ing. Conceptual)

- De manera abreviada poniendo los equipos fundamentales ( Ingeniería básica )

- Planos o P&I ( Ingeniería de detalle )

REPRESENTACIONES GRAFICAS

4

El diseñador de todas estas representaciones trata de plasmar de la forma más sencilla y a la vez más detallada una instalación que en realidad se desarrolla en tres dimensiones del espacio y que abarca un volumen considerable, para poderlo ver en dos dimensiones y en un tamaño no mayor de lo que ocupa una mesa para permitir su estudio o análisis de forma cómoda y sencilla.

5

Para poder desarrollar estos planos o esquemas de instalaciones es necesario que simbolicemos todos aquellos elementos que podemos encontrarnos en una instalación y conseguir la máxima universalidad de estos símbolos para que puedan ser conocidos y entendidos por cualquier persona diferente y ajena a quien ha realizado estos símbolos.

A parte de la representación gráfica de los diferentes elementos que forma una instalación está también el hecho de utilizar una nomenclatura que esté lo más normalizada posible por el mismo objetivo.

SIMBOLIZACIÓN

6

C: Recipientes, Torres, Reactores, Separadores, Secadores, Acumuladores, Absorbedores, Adsorbedores

D: Almacenamientos, tanques, esferas, mezcladores...

E: Intercambiadores de calor, aerorefrigerantes ...

F: Hornos, calderas, chimeneas, antorchas

G: Bombas

GM: Bombas accionadas con motor eléctrico

GT: Bombas accionadas con turbinas de vapor

K: Compresores rotativos, alternat., soplantes, agitador

L: Filtros

NOMENCLATURA UTILIZADA

7

Se debe de tratar conseguir que con la mínima utilización de caracteres podamos transmitir la máxima información posible. Así por ejemplo una forma de designar a un equipo que se encuentra en una unidad perteneciente a una empresa, seria a través de una combinación de cifras formada por letras y números

por ejemplo : 534G-034AEn este caso la información transmitida sería:Unidad: 534Equipo: Se trataría de una bombaIdentificación : y sería la bomba nº 34 de orden de proceso y concretamente de las dos bombas utilizadas para cada servicio sería la A

8

Otro tema a normalizar es el esquema con el que vamos a representar gráficamente cualquier equipo, entre los más habituales tenemos:

Depósitos:

Tanques

9

Reactores

Torres

10

Esferas

Intercambiadores

11

Aéreos

Bombas

12

Compresores

Hornos

13

Válvula de macho

Válvula de bola

Válvula de aguja

Válvula de doble clapeta

Válvula de mariposa

Válvula de tres vías

Válvula de compuerta

Válvula de asiento

Válvula de retención

Válvulas

14

Válvula motorizada

M

Válvula de Seguridad

8,5

Válvula de cuatro vías

Válvula control.con diafragma

Válvula controladora mariposa con diafragma

15

Disco en líneas

Válvula de actuación por

solenoide

Válvula controladora de doble diafragma

16

Sentido del flujo

Línea de transmisión hidráulica

Línea de transmisión neumática

Línea de cerramiento

C3 B4

Cambio especificación

de línea

Línea de tubo capilar

Señal electromagnética

Señal eléctrica de instrumento

Líneas

17

Instrumentación:

Instrumento de señal montado en

campo

Instrumento de señal montado en

panel

Transmisor montado en

campo

FT

Transmisor de caudal montado

en campo

PT

Transmisor de presión montado

en campo

TT

Transmisor de temperatura

montado en campo

LT

Transmisor de nivel montado en

campo

18

Instrumento con línea conexión a

procesos

Instrumento con línea conexión

medida eléctrica

Instrumento con línea conexión

medida neumática

Instrumento con línea conexión de tubo capilar

Transmisor montado en campo dos

servicios

Instrumento montado en panel

dos servicios

Instrumento montado detrás

del panel

Instrumento montado en panel local

19

FI

Rotámetro

FO

Orificio de restricción

Rele de tiempo

E

N

Convertidor

PI

Indicador de presión con

cierre químico

PI

Indicador de presión con

amortiguador

TSK

Termopar temperatura superficial

SE-8

Sistema de enclavamiento

20

Lazos de control

FC

FCV

LC

LCV

21

FC FR FA

FRC

LI TI

LSHTSL

AI

FI

22

Abreviatura de instrumentos

Variable Función Desviación

F: Flujo I: Indicador H: Por alto

L: Nivel C: Control L: Por bajo

T: Temperatura R: Registro V: Válvula

P: Presión A: Alarma

A: Analizador S: Corte

E: Voltaje D: Diferencial

I: Intensidad M: Marcha

S: Velocidad P: Paro

V: Vibraciones T: Transmisor

23

En la realidad la identificación de los instrumentos de control esta formada por la combinación de varias letras de las anteriormente indicadas. De esta forma las del primer grupo suelen usarse en primer lugar y viene a referirse a la variable medida por el instrumento.

El segundo grupo de letras se suele utilizar acompañando a la primera letra y viene a referirse al sistema de controlque realiza el instrumento ya sea indicación , registro, control, etc.

El tercer grupo de letras nos da información de la magnitud o desviación de la variable controlada.

24

¿Desean realizar

alguna pregunta?

GRACIAS POR VUESTRA ATENCION

25

CALENTAMIENTO

SEPARACION

26

27

28

2929

EJEMPLO PREJEMPLO PRÁÁCTICO CTICO

DE DE

HAZOPHAZOP

Manuel Sánchez Muñoz Rev. 2013

3030

Humos a tratar

Aceite térmico

Agua

Vapor deagua

A cambiadores

Aire Gas piloto Gas de Refinería

TCV-1

P-1B

F-1

P-1A

3131

1. Se trata de un sistema de calentamiento en una refinería consistente en un circuito cerrado de aceite térmico que tiene la función de calentar otros fluidos y que es calentado por medio de un horno que quema fue-gas.

2. El aceite térmico utilizado es producido en la sección dedestilación del crudo sacándose como producto de fondoy tiene temperatura de inflamabilidad de 175 ºC.

3. La temperatura máxima alcanzada por el aceite térmicodurante el proceso es de 330 ºC a la salida del horno F-1.

4. El aceite térmico puede degradarse si no es sustituido al cabo de un determinado tiempo o bien si se sobrecalienta por encima de una determinada temperatura

DescripciDescripcióón de la instalacin de la instalacióón que se quiere estudiarn que se quiere estudiar

3232

5. El calor residual de los humos en la zona convectivadel horno se utiliza para producir vapor de media presión que se utiliza para alimentar a otros equipos del proceso.

6. El combustible utilizado en el horno es el Fuel-gas excedente de la propia Refinería.

7. El control del caudal del Fuel-gas al quemador del horno se efectúa por medio de la medición de la temperatura de salida del aceite térmico del horno que queda regulado por la válvula TCV-1.

3333

Las protecciones con las que está dotado el horno provocan el corte del combustible del horno mediante la válvula TCV-l por las causas siguientes:

- Alta temperatura en la salida de humos, por actuacióndel TSH situado en la zona convectiva del horno

- Baja presión en la línea de Fuel-gas de refinería, por actuación del PSL-2 situado aguas arriba de la válvula de control TCV-1

Por otra parte el horno tiene una protección para evitar la falta de alimentación a este por fallo de la bomba de alimentación por medio del PSL-1.

DescripciDescripcióón de las protecciones del horno Fn de las protecciones del horno F--11

3434

Se estudia el sistema en condiciones normales de operacióny esto requiere plantear las hipótesis siguientes:

1. Se considera que la bomba P-1A impulsa el aceite a través del horno; la bomba P-1B es de reserva y sólo entra en funcionamiento cuando se produce una caída de presión en la línea de impulsión del aceite registrado por el PSL-1.

2. El horno trabaja a tiro natural, es decir, el humo sale libremente debido a la disminución de su densidad al aumentar su temperatura sin que exista ningún equipo de aspiración, de la misma manera, la entrada de aire en la cámara de combustión es natural, no hay equipo de impulsión.

3. El calor residual de los humos que se utiliza para vaporizar el agua y producir vapor, esta corriente no se tendrá en cuenta en nuestro estudio.

Consideraciones previas al anConsideraciones previas al anáálisislisis

3535

Humos a tratar

Aceite térmico

Agua

Vapor deagua

A cambiadores

Aire Gas piloto Gas de Refinería

TCV-1

PSL-2

PSL-1

TC-1

TSH

P-1B

F-1

P-1A

3636

La tabla siguiente muestra, mediante la matriz de interacción, el estudio preliminar para determinar la peligrosidad de las substancias en las posibles condiciones de proceso (normales de operación y anómalas).

Aceite Gas Aire Agua Comentarios

Aceite térmico - - x - Riesgo de inflamación

Gas de refinería - - x - Atmósfera explosiva

Aire x x - - Riesgo de inflamación

Agua/vapor - - - - -

Temperatura trabajo en F-1 x x - - Aceite líquido inflamable,

gas inflamable

Exceso temperatura en F-1 x x - - Degradación del aceite

Hollín en tubos

Riesgo integridad del horno

Estudio preliminar

3737

Mediante la matriz de interacción se han identificado las situaciones peligrosas siguientes:

1. La presencia de gas en la aspiración del aire del horno puede producir la formación de una atmósfera explosiva.

2. La presencia de aire en el aceite térmico puede favorecer la inflamación de materia combustible, especialmente si está recalentado.

3. La temperatura normal de calentamiento del aceite está por encima de su punto de inflamación, y un exceso de temperatura provoca la descomposición del aceite.

Situaciones peligrosas identificada

3838

PALABRA GUIA

VARIABLE

CAUSAS POSIBLES

CONSECUENCIAS POSIBLES

PROTECCIONES DEL SISTEMA

MEDIDAS CORRECTORAS

Nodo nº 1

Mas Temperatura

1-Fallo del lazo control temperatura de salida del aceite.2-Bajo caudal del aceite a través horno por descarga de la bomba3- Cambio de composición del Fuel gas

1- Descomposic. del aceite y aumento de la Temperatura de humos de salida por chimenea.2- Descomposic.

del aceite .

3- Descomposic. del aceite.

1- Se detecta alta tºen salida humos cuya señal actuaría sobre lazo control de tº del horno pero por fallo no actuaría2- El TC-1 detectaría la desviación y regularía el caudal de FG. a quemadores3- El TC-1 detecta la

desviación y regularía el caudal de FG. a quemadores

1- Poner sistema de corte del fuel-gas por alta tº de salida del aceite, independiente a la de control de tº de salida del aceite del horno. (A-1)

Menos Temperatura

1-Fallo lazo de control de la tº de salida del aceite2-Fallo alim. de Fuel gas

Baja temperatura del aceite térmico y disfunciones en los trenes de intercambio

Ninguno Instalar un TAL en línea de salida del aceite térmico del horno. (A-2)

3939

No/Menos

Caudal 1- Descarga de la bomba de alimentación2- Fallo

eléctrico de las dos bombas3- Parada de

bombas por problemas suministro aceite de lubricación

1- Aumento de la temperatura en tubos del F-1 con peligro de formar hollín o incluso rotura de tubos2- Aumento de la temperatura en tubos del F-1 con peligro de formar hollín o incluso rotura de tubos3- Posibilidad de griparse las bombas por falta de lubricación

1- El PSL-1 arrancara la bomba de reserva.

2- Ninguna

3- Ninguna

2- Instalación de un FSL que por bajo caudal del aceite por el horno se cierre la entrada de fuel-gas a quemadores de este. (A-3)3- Instalación de un sistema que bloquee la marcha de las bombas por bajo nivel del carter de las bombas. (A-4)

Mas Caudal No procede

Inverso Caudal Retroceso a través de la otra bomba

Bajada de caudal dentro del horno

Existencia de válvula de retención

4040

Mas Presión 1- Válvula de retención gripada

2-Obstrucción en tubos del horno por hollín

1- Aumento de presión desde bomba a retención hasta presión de shut-off

2- Aumento de presión desde bomba al horno hasta presión de shut-off

1-Ninguna

2-Ninguna

1 y 2-Diseñar la tubuladura en impulsión de la bomba a la presión de shut-off de la bomba o bien poner SV tarada a la presión de diseño de la línea. (A-5)

Menos Presión 1-Rotura de un tubo dentro del horno

2- Fallo eléctrico en las dos bombas

1- Fuego incontrolado dentro del hogar del horno y la bajada de presión originaría la entrada de la bomba de reserva

2- Ver no caudal

Ninguna Instalación de un FDC a la end y sad del horno con alarma y que a un valor desactive la función del PSL-1. (A-6)

4141

Otra Composición

1- Aceite degradado por falta sustitución

2- Aceite degradado por sobrecalenta-miento

1-Mala transmisión de calor aguas abajo del horno

2- Mala transmisión de calor aguas abajo del horno

1- Ninguna

2- Ninguna

1 y 2-Instalar un sistema de control de la calidad del aceite en la salida del horno ( densímetro) (A-7)

4242

Nodo nº 2No/Menos

Caudal 1- Falta de fuel-gas por problemas externos de la instalación

2- Fallo en lazo de control TC-1 con cierre de válvula

1-Bajada de presión en línea entrada a quemador con posibilidad de apagarse

2- Bajada de presión en línea entrada a quemador con posibilidad de apagarse

1- Actuación del sistema de protección PSL-2

2- No actuacióndel sistema de protección PSL-2

1-Valorar la posibilidad de que la instalación funcione con un combustible alternativo (A-8)2-Cambiar posición del PSL-2 aguas abajo de la TCV-1 (A-9)

Mas Caudal Fallo del lazo de control con apertura total de válvula

Aumento de temperatura en línea salida tubos del horno con posibilidad de formar hollín o rotura de tubos

Ninguna Igual que acción (A-1)

4343

Mas Presión No procede

Menos Presión Falta de fuel-gas por problemas externos de la instalación

Bajada de presión en línea entrada a quemador con posibilidad de apagarse

Actuación del sistema de protección PSL-2

Mas Temperatura

No procede

4444

Menos Temperatura

No procede

Otra Composición

Modificación de la corriente que va a la red de fuel-gas

Modificación de la forma y capacidad calorífica de la llama pudiendo incidir sobre algún tubo rompiéndolo

Ninguna Instalación de analizador en línea de fuel-gas (A-10)

4545

El diagrama de flujo de la instalación presentado en la figura anterior, con la aplicación de las recomendaciones de la tabla quedaría modificado de la manera siguiente .

-Se añade un actuador para bajo caudal de aceite (FSL) bloquea la entrada de combustible en el horno (F-1) y protege los tubos interiores de aceite del posible aumento de temperatura.

-Al mismo tiempo por su posición ( ubicado en la impulsión de las bombas ) protege a éstas de trabajar al vacío y las bloquea en caso de falta de aceite desde la refinería o por taponamiento de las tuberías.

-El actuador FSL no interfiere en la función del actuador (PSL-1) que por baja presión en la impulsión de las bombas activa la bomba de reserva.

CONCLUSIONESCONCLUSIONES

4646

-Se separa totalmente el sistema de regulacion del horno del sistema protector para que éste pueda bloquear la instalación en caso de fallo del primero. Las modificaciones de la instrumentación del horno son:

� Se añade una válvula de corte en la línea de combustible independiente de la válvula de control y de esta forma se permite el bloqueo de los quemadores independientemente del bucle de control que lo protege de cualquier fallo de éste último.

� Se modifica la localización del dispositivo de corte por baja presión del fuel gas, localizándolo aguas debajo de la válvula de control del fuel gas con lo que se permite aumentar el numero dehipótesis de fallo que queda protegido con este medidor.

4747

� Se añade un actuador para alta temperatura (TSH) a la salida de producto independiente del TC-1 ya existente, que protege al horno de un exceso de combustible y de una falta significativa de aceite, y que bloquea la llegada del combustible a los quemadores.

� Se instala un sistema de comprobación del caudal a la entrada y salida que nos permite detectar roturas de tubos en el interior del horno.

� Instalamos un sistema que nos permite activar el corte del fuel gas en situaciones de corte de la alimentación del aceite al horno

� Y por ultimo se instala un sistema de alarma de alta temperatura a la salida del horno para evitar que se produzca el deterioro del aceite por sobrecalentamiento.

4848

Aceite térmico

Humos a tratar

Agua

Vapor de agua

A cambiadores

Aire Gas piloto Gas de Refinería

TCV-1

PSL-2

PSL-1

TC-1

TSH

P-1A

P-1B

FSL

TSH

F-1

TALFDC

4949

Estas modificaciones introducidas en el sistema de control y protección de la instalación mejoran su seguridad. La mejora se dan por:

- La redundancia de señales de bloqueo de los quemadores del horno.

- El resultado de la separación de los dos sistemas. Así pues, el sistema protector puede proteger la instalación de cualquier fallo que se produzca en cualquiera de los elementos que integran el bucle de control (falta de señalización en los indicadores, falta de señal en los transmisores, fallo en la apertura de las válvulas, etc. )

50

ANALISIS

CUANTITATIVO

DE RIESGOSManuel Sánchez Muñoz Rev. 2013

51

• La realización de un Estudio Cuantitativo de Riesgos tiene como objetivo fundamental el analizar el riesgo asociado a una modificación, ampliación o nueva instalación que ejerce sobre una zona en la que va a quedar implantada la mencionada instalación por lo que va a depender de la vulnerabilidad de la zona elegida.• Con la elaboración del Análisis Cuantitativo de Riesgos se consigue por ello, disponer de una información numérica sobre el riesgo que representa la implantación de una instalación industrial, para con ellos poder justificar la aceptabilidad del mismo de acuerdo con unos valores de riesgos establecidos con carácter oficial

OBJETIVO DE LOS ANALISIS DE RIESGO

52

La investigación de Riesgos Industriales es cada día mas importante y necesario por el desarrollo industrial existente, con el que convivimos desde hace casi un siglo y que día a día se complica con la aparición de nuevas técnicas o tecnologías que vienen a resolver los problemas que limita nuestro crecimiento.

Sin embargo este desarrollo de nuevas tecnologías no debe de suponer un riesgo para nuestra propia integridad, por ello la aparición de las nuevas tecnologías debe de ir acompañado de unos análisis de los riesgos que entrañan.

Para conseguir la perfecta medición de los riesgos es necesario elegir el método mas adecuado a las características y naturaleza de la instalación que se nos planteen, así como, desarrollar en el caso que se requiera nuevos métodos, diferentes a los existentes, si estos no permiten evaluar adecuadamente el riesgo planteado.

53

Estos métodos de análisis es de aplicación principalmente en aquellas modificaciones, ampliaciones o construcción de nuevas instalaciones industriales que quedan recogidas o clasificadas en determinada legislación vigente como puede ser por ejemplo el R.D. 1254/1999 y que pueden provocar Accidentes Gravesque pongan en riesgo la integridad de las personas, bienes y/o el medio ambiente

ALCANCE

54

Sin embargo es importante conocer exactamente la definición de la terminología que vamos a utilizar con cierta frecuencia, como es el caso de la definición de RIESGO.

Se han propuesto diversas definiciones de Riesgo:

•Situación que puede conducir a una consecuencia negativa no deseada en un acontecimiento.

•Probabilidad de que suceda un determinado peligro potencial, es decir, una situación física que pueda provocar daños a la vida, a las instalaciones industriales o al medio ambiente.

•Consecuencias no deseadas de una actividad dada, en relación con la probabilidad de que ocurra.

RIESGOS: DEFINICION Y TIPOSRIESGOS: DEFINICION Y TIPOS

55

• Si realizamos un estudio más riguroso del riesgo obtenemos una definición más precisa que permita su cuantificación.Definición: es el producto de la frecuencia prevista para un determinado suceso por la magnitud de las consecuencias más probables:

R: RiesgoF: Frecuencia de ocurrencia del sucesoC: Consecuencias más probables

• Esta definición es lógica ya que el riesgo de una instalación dependerá de dos parámetros, será mayor cuanto mayor sea la frecuencia con que se produzca un incidentes y será mayor el Riesgo cuanto mayor sean las consecuencias de ese incidentes.

•Ejemplos de trabajo en oficinas frente a trabajar en la construcción y viajes en coche frente a avión

56

•Si un incidente/accidente tiene una frecuencia de que ocurra estimada de una vez cada 25 años y sus consecuencias es de producir 100 muertos, el riesgo será de 4 muertos.año-1. Pero si las consecuencias es de producir 25 muertos, el riesgo será de 1 muertos . año-1, es decir cuatro veces menor que en el caso inicial.

• Si en lugar de tener como consecuencias muertes humanas, tiene perdidas materiales el caso seria semejante.

• Esta forma de definir el riesgo presenta dificultadas e inconvenientes a veces. Una de estas dificultades es la unidad de medida utilizada para el Riesgo, así no siempre podremos expresarlo en muertos o en perdidas económicas, ya que hay consecuencias como pueden ser la existencias de heridos y estos de diferentes grados o también las secuelas a largo plazo de difícil o imposible estimación.

EJEMPLO

57

• Otras dificultades puede ser el propio hecho de calcular los dos parámetros que intervienen en la definición de Riesgo: Las consecuencias y la frecuencia. Exísten metodologías que permiten estudiar estos dos parámetro no de forma exacta pero sí con una precisión razonable.

• Por otra parte es importante diferenciar entre dos conceptoscomo son: Riesgo y Peligro. El Peligro se puede definir como todo fenómeno que puede producirse y que puede desencadenar un accidente o un daño material, personal o al medio ambiente. El Riesgo por el contrario estaría asociado a la probabilidad de que este peligro se convierta en realidad con unas determinadas consecuencias.

58

Debido a la gran variedad de Riesgos que podemos considerar los podemos clasificar:

••Riesgo de categorRiesgo de categoríía Aa A: son los inevitables y aceptados sin compensación. (morir atrapado por los escombros por un terremoto).

••Riesgos de categorRiesgos de categoríía Ca C: Normalmente evitables, voluntarios y con compensación ( morir por una enfermedad contraída por el exceso del tabaco).

••Riesgos de categorRiesgos de categoríía Ba B:: Evitables, en principio, pero que deben considerarse inevitable si uno quiere integrarse plenamente en la sociedad moderna (morir por un accidente de tráfico).

CLASIFICACION DE LOS RIESGOS

59

••Riesgos convencionales:Riesgos convencionales: relacionados con la actividad y los equipos existentes en cualquier sector ( electrocución, caidas...).

••Riesgos especRiesgos especííficos:ficos: asociados a la utilización de productos que, por su naturaleza, pueden ocasionar daños ( productos tóxicos, radioact.).

••Riesgos mayoresRiesgos mayores:: relacionados con accidentes y situaciones de excepcional gravedad ( escapes de gases, explosiones...).

Los dos primeros están relacionados con la Seguridad y la Higiene en el trabajo y por su forma de actuar pueden ser relativamentefáciles de prevenir. Por el contrario el tercero por sus características los convierten probablemente en la contingencia más terrible. Esto provoca un rechazo de la población por este tipo de empresa y a su vez las empresas tratan de controlar estos riesgos por medio de estudios como pueden ser uno el Análisis Cuantitativo de Riesgos.

Clasificación del riesgo en función de actividades industr.

60

Actividad/sucesoActividad/suceso Mortalidad aMortalidad añño y personao y persona Mortalidad personaMortalidad personaCaída de meteoritos 6 . 10-11 1 de 17.000 millonesExplosiones de Recipientes 5 . 10-8 1 de 20 millonesViajar en avión 1 . 10-7 1 de 10 millonesFulminados por un rayo 1 . 10-7 1 de 10 millonesMordedura de serpientes 2 . 10-7 1 de 5 millonesViajar en tren 5 . 10-7 1 de 2 millonesTornados o terremotos 2 . 10-6 1 de 500.000Ahogados 4 . 10-5 1 de 25.000Atropellos por automóvil 5 . 10-5 1 de 20.000Abuso del alcohol 7,5 . 10-5 1 de 13.300Suicidio 1 . 10-4 1 de 10.000Viajar en automóvil 1,7 . 10-4 1 de 5.900Viajar en motocicleta 1 . 10-3 1 de 1.000Fumar mas de 20 cigarrillos/día 5 . 10-3 1 de 200

Tabla comparativa de consecuencias diferentes Tabla comparativa de consecuencias diferentes fenomenosfenomenos

61

Se han propuesto diversos parámetros para cuantificar el riesgo. Uno de los más utilizados es la tasa de accidentes mortales (TAM O FAR Fatal Accident Rate) , este parámetro se define como el numero de accidentes mortales después de 108 (hora . hombre) de una actividad. Esta cantidad equivale, al numero de horas trabajadas(2500h./a) por un grupo de 1000 personas después de su vida laboral (40a.) e incluye solo los accidentes con consecuencias inmediatas.

• Valores de la FAR en la industria química de varios países son: Alemania. 5.10-8 acc por cada 1000 trab. = 5 FARFrancia 8,5 . 10-8 acc por cada 1000 trab = 8,5 FAR Gran Bretaña 4 . 10-8 acc por cada 1000 trab = 4 FAR USA 5 . 10-8 acc por cada 1000 trab = 5 FAR India 100 . 10-8 acc por cada 1000 trab = 100 FAR Indonesia 160 . 10-8 acc por cada 1000 trab = 160 FAR

• Un parámetro alternativo es la frecuencia de los accidentes mortales, expresada en muertes por persona y año.

PARAMETROS DE MEDICION DEL RIESGO

62

• La relación entre la FAR y la frecuencia es sencilla. Por ejemplo si la FAR para un trabajador de un determinado sector esde 8 . 10-8 , y este trabajador está expuesto durante unas 2000 horas / año, la frecuencia será:

f = 8 . 10-8 muertes.personas-1.h-1 . 2500 h/año = 2 . 10-4 muertes persona-1 año-1

Si queremos comparar este riesgo con otros de la vida diaria, pueden tomarse como ejemplos los siguientes datos. Si una persona trabaja toda su vida en la industria química de cada 1000 operarios morirán durante este tiempo las siguientes personas:

4 por accidente laboral.20 por otros tipos de accidentes ajenos al trabajo370 por enfermedades diversas ajenas al trabajo.

63

• Podemos comparar valores de FAR correspondiente a diversas actividades industriales

- Industria de la confección 0,15 muertes.personas-1.h-1

- Industria del automóvil 1,30 “

- Industria de la madera 3,00 “

- Industria Química 4,00 “

- Industria Mecánica 7,00 “

- Agricultura 10,00 “

- Minería 12,00 “

- Industria Pesquera 35,00 “

- Construcción 64,00 “

Valores de FAR de diversas actividades industriales

64

• Estos parámetros nos permite comparar de forma poco exhaustiva el riesgo de dos tipos de actividades, sin embargo si se quiere conocer de forma mas precisa este riesgo se debe de realizar un análisis del riesgo mediante modelos físico / matemáticos y modelos de vulnerabilidad para obtener: consecuencias y frecuencia

• Cuando se habla del riesgo al que esta sometido un individuo podemos llegar casi siempre a un valor, es decir, lo podemos cuantificar. Ese valor nunca va a ser nulo. Por ello lo que nos quedaría es definir hasta que valor es tolerable este riesgo, o lo que es lo mismo conocer el riesgo tolerable.

• Otros conceptos que podemos definir son: - Riesgo individual que es la probabilidad de que una persona sufra unas consecuencias determinadas por exposición a un peligro- Riesgo colectivo que se define como la probabilidad de que un grupo de persona sea victima de un determinado accidente.

65

Si queremos establecer un valor para el denominado riesgo tolerable nos encontramos con una dificultad enorme ya que esto va a depender de los sentimientos y forma de pensar de las personas e incluso de los colectivos de personas por lo que estetema es mas propio de psicólogos y sociólogos que de técnicos.

Entre los factores que afectan a la actitud de un individuo que se encuentra sometido a un riesgo concreto, hay dos que juega unpapel fundamental: -- El conocimiento / desconocimiento de las características del peligro en cuestión- El carácter voluntario o involuntario de asumir el riesgo

TOLERABILIDAD DEL RIESGO

66

•Estos riesgos se presentan de forma combinada

•La sociedad se aterroriza mucho mas por accidentes que presentan un impacto social

•Los medios de comunicación también ejercen su influencia negativa

TIPOS DE RIESGOS

Riesgos desconocidos como son los riesgos tecnológicos como por ejemplo la radioactividad.

Riesgos conocidos como son los riesgos derivados de practicar algún deporte de alto riesgo.

Riesgos voluntarios como los que las personas fumadoras asumen por el hecho del fumar

Riesgos involuntarios como pueden ser los accidentes caseros, el incendio de una vivienda...

67

•Como hemos visto el Riesgo cero no existe y todos aceptamos unos determinados riesgos en el trabajo

•Incluso se aceptan riesgos con una tasa de mortalidad relativamente alta como por ej. el fumar sin preocuparse demasiado, es decir, se suele aceptar riesgos que son voluntarios o bien son conocidos

•El problema surge cuando el riesgo es demasiado elevado o cuando un sector de la sociedad considera que la cuota de riesgoque le corresponde es alta.

•Otras veces se acepta un riesgo porque ello representa el poder disfrutar de determinadas ventajas de la vida moderna como puede ser la energía y los productos químicos que se nos ofrece.

CRITERIOS DE TOLERABILIDAD

68

•El control del riesgo y su mantenimiento dentro de unos limites “tolerables” tiene que ser unos de los objetivos tanto de la industria como del gobierno de cualquier país, pero por el contrario no podemos aspirar a tener demasiadas instalaciones industriales sin aceptar un margen de riesgo.

10-6

10-8

•Si bien es difícil y complejo, se han realizado intentos para establecer valores para el riesgo tolerable, este es un terreno delicado en el que la unidad de medida que es la vida humana,se ve afectada no solo por factores de orden práctico sino también de orden ético y social, por ello no se han fijado oficialmente unos valores para el riesgo tolerable. Así en Holanda se ha establecido:

Inaceptable

Riesgo Frecuencia . año-1 Reducción deseada

Tolerable

69

•Así para accidentes graves el máximo valor permisible para el riesgo individual en Holanda es de 10-6 muertos personas-1 año-1

por actividad, que supone aumentar el riesgo en 1% del riesgo demorir una persona por otros riesgo ajenos a los de la industria.

•En el caso de los trabajadores se considera que el nivel de riesgo tolerable puede ser más alto, ya que han escogido voluntariamente trabajar ahí y reciben una compensación.

•Otro criterio que se ha propuesto aunque algo criticado, es el hecho de aumentar el valor del riesgo tolerable para posibilitar aumentar el desarrollo industrial, ya que gracia a la industria y a la generación de energía se aumenta la esperanza de vida, que en los países industrializados esta aumentando a razón de 0,05 año año-1

70

Lugar Año nº muertos nº heridos nº evacuados Substancia

Yokkaichi, Japón 1974 0 521 0 cloro

Cuernavaca, Méjico 1977 2 500 2.000 amoníaco

Iri, Corea del Sur 1977 57 1.300 0 explosivos

Els Alfacs, España 1978 216 200 0 propileno

Xilatopec. Méjico 1978 100 200 0 butano

Three Mile Isl.. USA 1979 0 0 200.000 reactor nuclear

Mississauga, Canadá 1979 0 200 20.000 cloro y propano

Nilo, Egipto 1983 317 0 0 GLP

Cubatáo, Brasil 1984 508 2 0 gasolina

S. Juan lxhuat, Méjico 1984 503 7.000 60.000 GLP

Bhopal, India 1984 2.800 50.000 200.000 isocianato de metilo

Rumania 1984 100 100 2 productos químicos

Miamisburg, USA 1986 0 140 40.000 ácido fosfórico

Chernobil, URSS 1986 32 299 135.000 reactor nuclear

EJEMPLOS ACCIDENTES GRAVES O CATASTROFES

71

La evaluación de los diversos riesgos asociados a una determinada instalación industrial, generación de energía, transporte de mercancías peligrosa ..., se lleva a cabo como ya se ha dicho mediante el análisis de riesgos, para lo cual se sigue las siguientes fases:

•Accidentes que pueden ocurrir.

•Frecuencia de estos accidentes.

•Magnitud de sus consecuencias

Las diferentes fases por la que se desarrollan los estudios de riesgos y su inclusión en el proyecto de una determinada instalación quedan reflejado en el siguiente esquema:

EL ANALISIS DE LOS RIESGOS

72

Sucesos externos

Análisishistórico

HAZOP

Modelos de Accidentes

Árboles de fallos

Modelos de vulnerabilidad

Identificaciónde sucesos

no deseados

Cuantificación de efectos

Estimación de frecuencias

Cuantificación de consecuencias

Cuantificación de riesgos

Proyecto final

Proyecto inicial

Alteración del proyecto

FASES DEL ANALISIS DE RIESGOS

73

• Un ejemplo muy significativo de este hecho lo podemos encontrar en el llamado estudio de la Isla de Canvey. La isla de Canvey situada en el estuario del Támesis y con una población de 30.000 personas disponían de una zona industrial formada por refinería, almacenamiento de LPG, terminales de carga de barcos... En el 1975 y a raíz de un proyecto de ampliación de la zona industrial se extendió sobre la población una gran preocupación por la seguridad de la zona.

• Debido a esta preocupación se llevo a cabo un análisis del riesgoy de cómo este afectaría a la población. El estudio puso de manifiesto un incremento significativo del riesgo y llevo a la modificación del proyecto inicial y a la mejora de la seguridad en la zona como confirmo estudios posteriores.

74

20 40 60

edad, años

1%

Probabilidad 0,5%

Muerte

0,1%

Valores de Gran Bretaña

Antes estudio

Después estudio

TABLAS DE ESPERANZA DE VIDA

75

Por accidente grave se puede entender aquel suceso fortuito e incontrolado capaz de producir daños a las personas, el medio ambiente y a los bienes. Así dentro de la industria química se asocia con situaciones de emisión, escapes, vertidos, incendios y explosiones en las que van a estar presentes sustancias peligrosas.

La legislación aplicable es:

• La primera Directiva la 82/501 ……llamada SEVESO I

• Directiva la 96/82 ……………………llamada SEVESO II

• Directiva 2012/18/UE ………………..llamada SEVESO III

• R.D. 886/88 y el 952/90 trasposición de la Seveso I

• R.D. 1254/99 trasposición de la Seveso II llamado “Medidas de control de los Riesgos inherentes a los Accidentes Graves y el R.D. 119/2005 que la revisa

• R.D. 948/2005 que transpone la Directiva 2003/105/CE que modifica la Seveso II

•R.D 1196/2003 Directriz Básica de Protección Civil para la Elaboración y la Homologación de los planes de especiales del Sector químico

ACCIDENTES GRAVES

76

- Accidentes de Categoría 1: Aquellos que prevéque habrá como única consecuencia daños materiales en la instalación industrial accidentada.

La legislación Española considera que los Accidentes de categoría 2 y 3 son los llamados Accidentes graves.

- Accidentes de Categoría 3: Aquellos accidentes en los que se prevé que habrá como consecuencias victimas, daños materiales o alteraciones graves del medio ambiente en el exterior de la industrial.

- Accidentes de Categoría 2: Aquellos accidentes que prevé que habrá como consecuencias posibles víctimas y daños materiales en la instalación industrial.

CATEGORIAS DE ACCIDENTES GRAVES

77

Los R.D. 886/88 y el 952/90 y el 1254/99 recoge unas tablas en las que quedan definido las sustancias y cantidades de sustancias peligrosas a partir de las cuales una empresa queda afectada por este R.D.

Además en él se indica la necesidad por parte de estas industrias de suministrar a la autoridad competente la siguiente documentación:

• Información Básica de su actividad ( IBA ).

• Estudio de Seguridad de posibles accidentes que puedan darse y el alcance de consecuencias. ( E.S. )

• Medidas organizativas que dan respuesta a las situaciones de Emergencias ( PEI )

• Sistema de Gestión de la Seguridad (S.G.S.)

•Política de prevención Accidentes graves (PPAG)

78

En general, los accidentes graves están relacionado con algunos de los siguientes tipos de fenómeno:

• De tipo térmico: Radiación Térmica

• De tipo químico: Emisión a la atmósfera o vertido incontrolado de substancias contaminantes tóxicas.

• Vertidos en caudales de corrientes naturales: cuando su concentrac. 1 km más abajo del vertido, sobrepase valores.

• Vertidos en lagos: cuando la concentración que resulta de la dilución de sustancia en la masa total del agua sobrepasan

• Vertidos en aguas marítimas.

• Vertido en el subsuelo: cuando pueda provocar filtración almacenamiento en el medio acuífero o alterar potabilidad

• De tipo mecánico: ondas de presión y proyección

FenFenóómenos peligrosos asociados a un accidente menos peligrosos asociados a un accidente grave y valores crgrave y valores crííticos de las variables fticos de las variables fíísicas.sicas.

79

• La legislación vigente referida a Accidentes graves se centra fundamentalmente en determinar los efectos de estos accidentes en los seres humanos. Para evaluar estos efectos la Administración exige en los Estudios de Seguridad estimaciones cuantitativas en las zonas de influencia . Los impacto sobre el medio ambiente y los bienes son tenidos también en cuenta pero son tratados a un nivel mucho más cualitativo.

• Las magnitudes físicas que determinan el daño de cada uno de los fenómenos que se asocia a los accidente grave y los valores limites que se deben de respetar son los siguientes:

80

FENOMENOS DE TIPO TERMICO- Dosis de radiación térmica emitida por las llamas y cuerpos incandescentes en incendios y deflagraciones:

Valor límite para la zona de intervención: 250 (kW/m2)4/3seg equivalente a las combinaciones de intensidad térmica y tiempo de exposición siguientes:

I, kW/m2 7 6 5 4 3

texp, seg 20 25 30 40 60

Valor límite para la zona de alerta: 115 (kW/m2)4/3seg equivalente a las combinaciones de intensidad térmica y tiempo de exposición que se indican a continuación:

I, kW/m2 6 5 4 3 2

texp, seg 11 15 20 30 45

81

- Valor local integrado del impulso de la onda de presión:

Valor límite para la zona de intervención: 150 mbar.seg

Valor límite para la zona de alerta: 100 mbar.seg

- Sobrepresión estática de la onda de presión:

Valor límite para la zona de intervención: 125 mbar

Valor límite para la zona de alerta: 50 mbar

- Alcance máximo de los proyectiles con un impulso superior a 10 mbar.seg producido por la explosión o estallido:

Valor límite para la zona de intervención: 95%

Valor límite para la zona de alerta: 99,9%

FENOMENOS DE TIPO MECANICO

82

- Concentración de sustancias peligrosas superior al equivalente de los límites de los valores de los índices AEGL, ERPG y/o TEEL:

Valor límite para la zona de intervención: AEGL-2, ERPG-2 y/o TEEL-2 ( Valores que aunque son perceptibles por las personas que están expuestas a ello, no provocan efectos irreversibles en ellas )

Valor límite para la zona de alerta: AEGL-1, ERPG-1 y/o TEEL-1 ( Valores prácticamente imperceptibles para las personas que están expuestas a ellas )

FENOMENOS DE TIPO QUIMICO

83

• Definidas así las zonas de intervención y alertase pueden representar mediante círculosconcéntricos centrados en el lugar del accidente y que cubre el área en la que se esperan determinados niveles de daños.

•De esta forma en la zona de intervención las consecuencias de los accidentes producen un nivel de daños que justifica la aplicación inmediata de medidas de protección, mientras que en la zona de alerta las consecuencias de los accidentes provocan efectos que, a pesar de que son perceptibles por la población, no se justifican medidas de proteccióncon la excepción de a los grupos más críticos

84

85

Un tema necesario de analizar dentro de los Análisis Cuantitativo de Riesgo es el de identificar los posibles escenarios accidentalesque se nos puede presentar en una determinada instalación. A continuación relacionamos una serie de accidentes perfectamente tipificados de los cuales es posible mediante correlaciones matemáticas o modelos de calculo por ordenador, estimar el alcance de los fenómenos peligrosos que de ellos se derivan.

ESCENARIOS ACCIDENTALES

86

Incendio de charco ( pool fire ): Combustión estacionaria con llama de difusión del liquido de un charco de dimensión definida

• Dardo de fuego ( jet fire ): Llama estacionaria y alargada provocada por la ignición de un chorro turbulento de gases

• Llamarada ( Flash fire ): Llama progresiva de difusión de baja velocidad, sin onda de presión y asociada a la dispersión de vapores inflamables a ras de suelo, hasta encontrar un punto de ignición provocando el avance del frente de llama hasta el punto de emisión.

• Bleve-Bola de fuego ( Boiling Liquid Expanding Vapor Explosion ): Se produce por el estallido súbito y total de un recipiente, por calentamiento externo debido a un incendio de charco o por dardo de llama, que contiene un gas inflamable licuado a presión, al perder resistencia mecánica el material de la pared.

FENOMENOS DE TIPO TERMICO

87

Explosión de una nube de vapores inflamables no confinada: Es una reacción química que involucra a una cantidad importante de gas o vapor en condiciones de inflamabilidad que se dispersa en el ambiente exterior. Este fenómeno está asociado a una fuga o escape de gases licuados, gas refrigerado o líquidos inflamables muy volátil en grandes cantidades.

• Explosión de vapores confinado: Se trata de una reacción química que involucra a un gran volumen de una mezcla de gases inflamables en condiciones de confinamiento.

• Estallido de un depósito a presión: Se trata de una explosión física derivada de la rotura repentina de un recipiente a presión, causada por la presión interior y por un fallo de la resistencia mecánica del depósito, que provoca una dispersión violenta del fluido interior, una onda de presión y proyectiles.

FENOMENOS DE TIPO MECANICO

88

Un chorro gaseoso de sustancia tóxica o inflamable: En este caso la dispersión depende de la velocidad y de la presión de salida y de las condiciones meteorológicas.

• La dispersión atmosférica: En este caso la nube es función de las condiciones meteorológicas, se extiende y se desplaza mientras se va diluyendo, quedando afectado todo el terreno que quede por debajo de esta nube.

• Según la evolución del fenómeno en el tiempo: Las emisiones se pueden clasificar en instantáneas, continuas o en régimen transitorio ( emisiones limitadas en el tiempo y a menudo de caudal variable ).

• Según la densidad del producto: la dispersión puede ser neutra o gausiana (para los gases o vapores con densidad similar al del aire) , de gases ligeros, o de gases pesados en este caso la gravedad ejerce su influencia en la dispersión de la nube.

FENOMENOS DE CONTAMINACION ATMOSFERICA

89

EscapeEscape

Evaporación

Formación deuna nube

Velocidad < 20 m/s

Velocidad > 20 m/s

Combustión IncendioIncendio

LlamaradaExplosión

LlamaradaExplosión

DispersiónProducto

tóxico

DispersiónProducto

tóxico

N. inflamable

Nube tóxica

IncendioIncendio

DispersiónProducto

tóxico

DispersiónProducto

tóxico

ExplosiónExplosión

BLEVEBLEVEEstallidoEstallido

líquido

Líquido + gases

Gas/vapor

Gas/vapor

polvo

POSIBILIDAD DE EVOLUCION DE UN ACCIDENTE

90

CASO PRACTICO DE

A.C.R.Manuel Sánchez Muñoz Rev. 2013

91

• El Análisis Cuantitativo de Riesgo es un método analítico• Nos permite cuantificar el nivel de riesgo de una instal.

• La elaboración de este estudio queda definida en la legislación vigente RD-1254/99, 119/2005 y 948/2005

• En este R.D. y mas concretamente en su articulo 7, se refleja la necesidad que tienen los industriales de definir una Política de Prevención de Accidentes Graves y de plasmarla en un documento escrito.

• Uno de los puntos que debe de incluir esta Política es la “Identificación y evaluación de los riesgos de accidente graves “ y para ello debe de estar establecido un procedimiento dentro de la empresa en el que se indique como y cuando se deben de realizar estos estudios.

ACR Y SUS REFERENCIAS EN LA LEGISLACION

92

• Por otra parte la Directriz Básica de Protección Civil RD1196/2003 en su art. 3 indica los documentos que son necesarios entregar a la autoridad competente para la elaboración de los Planes Exteriores de Emergencia y en el articulo 4.4.4 aparece un párrafo en el que se dice textualmente:

“La autoridad competente en cada caso podrá exigir un análisis cuantitativo de riesgo (ACR), cuando así lo considere oportuno, en función de las circunstancias específicas del entorno, instalaciones, procesos y productos de la actividad industrial, dando un razonamiento justificativo de tal requerimiento y de la finalidad para la que se precisa”

• Este párrafo faculta a la autoridad competente a pedir en determinadas situaciones al industrial la elaborar de un ACR

REQUERIMIENTOS DE LA ADMINISTRACION

93

De esta forma el Análisis Cuantitativo de Riesgos (ACR)a diferencia que los Análisis Cualitativos es un estudio que en principio no es necesario elaborarlo y su realización esta ligada a una petición explicita por parte de la Administración correspondiente.

Un criterio que puede ser utilizado para decidirse por la elaboración de este análisis puede ser el hecho de que los efectos de algunos de los escenarios accidentales que se identifique durante el Estudio de Seguridad se extienda fuera de la zona o del recinto que constituye la empresa. Este hecho se agrava exponencialmente si próximo a la empresa en cuestión se encuentra alguna zona de pública concurrencia.

94

El análisis cuantitativo de Riesgo se debe de ejecutar después de realizar y concluir el análisis cualitativo de riesgo (HAZOP) ya que necesita de los resultados y conclusiones obtenidos en este ultimo como base de partida para la realización y aplicación de los métodos de cálculos requeridos.

De la misma forma el Estudio de Seguridad debe de ser realizado con anterioridad al ACR por necesitar este ultimo datos obtenidos en el mencionado Estudio de Seguridad.

Por ello podemos decir que el Análisis Cuantitativo de Riesgo es el estudio que complementa o complementatodos los estudios realizados anteriormente.

¿CUÁNDO DEBEMOS REALIZAR EL ACR

95

96

El presente estudio tiene como objeto realizar el Análisis Cuantitativo de Riesgo de la instalación de la planta “X”ubicada en el área “Y” de la empresa “Z” situada en el Polígono Industrial de la localidad “L” de la provincia “P”.

Este ACR tiene entidad de documento independiente y complementa el Estudio de Seguridad elaborado el día “D” y realizado por la ingeniería “M” con el fin de actualizar el Informe de Seguridad que deberán presentar a la Administración Pública de acuerdo con las exigencias de la legislación vigente en materia de Accidentes Graves ( R.D. 1254/99 así como la Directriz Básica para la Elaboración y Homologación de los Planes especiales del sector Químico).

CAPITULO I: INTRODUCCIÓN

OBJETO

97

El alcance del presente ACR es el Análisis Cuantitativo de Riesgo de la unidad de proceso U-230 y U-860 y la metodología será:

• Planteamiento de hipótesis de los posibles accidentesOtra herramienta utilizada, ha sido el HAZOP realizado por la ingeniería “N” el día “D”.

• Calculo de consecuencias:A partir de las hipótesis planteadas y mediante modelos de cálculos de reconocido prestigio para la estimación de las consecuencias

• Análisis de la frecuencia de los posibles accidentesExtraídos de bases de datos especializadas y mediante la técnica de los árboles de sucesos se asigna también frecuencias

• Calculo de riesgo:

1.2. ALCANCE Y METODOLOGIA

98

2.1. INTRODUCCIÓN

Es el de identificar los riesgos de accidentes que se podrían derivar del desarrollo normal del proceso de las U-230 y U-860

2.2. METODOLOGÍA

Los accidentes potenciales que se pueden producir en las U-230 y U-860 se han estudiado a través de los siguientes métodos:

• Hazop: El hazop técnica cualitativa que permite identificar los puntos débiles y establece las hipótesis accidentales mas posibles

• Fallos genéricos: Fallos habituales relacionados con cada uno de los equipos de la unidad

• Análisis Histórico: Estudio de accidentes ocurridos en el pasado en instalaciones similares.

CAPITULO II IDENTIFICACIÓN DEL RIESGO

99

Sobre la base del estudio de las instalaciones y de la experiencia operativa de unidades semejantes se han seleccionado las siguientes:

U-230Rotura catastrófica del reactor 230C-5 Rotura catastrófica de la torre de fraccionamiento 230D-1 Fuga en línea 14”-L-03546 de salida de fondo del reactor 230C-3 Fuga en la línea 16”-L-12345 salida de la torre 230D-1 al reactor 230C-5

U-860Rotura catastrófica de la torre de fraccionamiento 860D-2 Fuga en línea 10”-L-34578 de alimentación a la unidad Fuga en línea 8”-L-23456 de salida de fondo de la torre 860D-2 al striper 860D-3

2.3. IDENTIFICACIÓN DE LAS HIPÓTESIS INCIDENTALES

100

U-230

101

U-860

102

3.1.1 Objeto

Estudiar las consecuencias de las hipótesis accidentales planteadas en el capítulo 2. Se determina el alcance de los efectos para tres niveles: Zona de alerta, Zona de intervención y Zona letalidad 50%

3.1.2. Descripción y criterios para evaluación de vulnerabilidad de los efectos físicos

Se describe los efectos producidos por diferentes fenómenos indicándose los modelos de calculo aplicados para su evaluación y el tipo de daño que produce en las personas y construcciones

Radiación térmica: muertes de personas por efecto directo de la radiación térmica se estudia por ecuación del tipo ProbitY= -14,9 + 2,56 ln ( t x I4/3 x 10-4 )

CAPITULO III ANÁLISIS DE CONSECUENC. Y VULNER.3.1. INTRODUCCIÓN

103

Dispersión de gas: la probabilidad de muerte de personas por efecto directo de la inhalación de sustancias se calculará por medio de ecuación de Probit Y= a + b ln ( Cn t )

Ondas de sobrepresión: En cuanto a la letalidad se toma el criterio de calcular los muertos por hemorragias interna utilizando la ecuación de Provit Pr = -77.1 + 6,91 ln P

3.1.3. Niveles de afectación evaluados

Los valores obtenidos para los tres niveles evaluados son:

Para fenómenos de tipo térmico:

- Dosis de radiación térmica emitida por las llamas y cuerpos incandescentes en incendios y deflagraciones: Valor límite para la zona de intervención: 250 (kW/m2)4/3segequivalente a las combinaciones de intensidad térmica y tiempo de exposición siguientes:

104

I, kW/m2 7 6 5 4 3

texp, seg 20 25 30 40 60

Valor límite para la zona de alerta: 115 (kW/m2)4/3seg equivalente a las combinaciones de intensidad térmica y tiempo de exposición que se indican a continuación:

I, kW/m2 6 5 4 3 2

texp, seg 11 15 20 30 45

Valor limite para la zona 50% letalidad: todos dentro charco

105

Para fenómenos de tipo mecánico:

-Valor local integrado del impulso de la onda de presión: Valor límite para la zona de intervención: 150 mbar.seg Valor límite para la zona de alerta: 100 mbar.seg

-Sobrepresión estática de la onda de presión: Valor límite para la zona de intervención: 125 mbar Valor límite para la zona de alerta: 50 mbar Valor limite para la zona 50% letalidad: 140 mbar

- Alcance máximo de los proyectiles con un impulso superior a 10 mbar.seg producido por la explosión o estallido de continente: Valor límite para la zona de intervención: 95% Valor límite para la zona de alerta: 99,9%

106

Para fenómenos de tipo químico:

- Concentración de sustancias peligrosas superior al equivalente de los límites de los valores de los índices AEGL, ERPG y/o TEEL:

Valor límite para la zona de intervención: AEGL-2, ERPG-2 y/o TEEL-2 ( Valores que aunque son perceptibles por las personas que están expuestas a ello, no provocan efectos irreversibles en ellas ).

Valor límite para la zona de alerta: AEGL-1, ERPG-1 y/o TEEL-1 ( Valores prácticamente imperceptibles para las personas que están expuestas a ellas )

Valor limite para la zona 50% letalidad: todos dentro de nube

3.1.4. Meteorología

Se utilizan los datos estadísticos registrados por el Instituto Nacional de Meteorología del observatorio más próximo

107

3.1.5. Consideraciones para el calculo de víctimas

• El accidente puede afectar a todo el personal existente en la refinería, se calcula una densidad de 1,1.10-4 personas /m2.

• Se supone que no se ha tenido tiempo de activar el P.E.I.

• El alcance de letalidad no afecta al exterior por ello no hay victimas en el exterior.

3.2 CALCULO DE CONSECUENCIAS

Se presenta a continuación las consecuencias derivadas de las hipótesis accidentales analizadas en el apartado anterior.

3.2.1 Rotura catastrófica del reactor 230C-5

Este fenómeno implicaría un vertido instantáneo de todo el líquido del reactor, así como la dispersión atmosférica de la fase gas y una fuga continua de la corriente de llegada al reactor. La línea de salida del reactor tiene válvula automática que permite el cierre.

108

• Las condiciones de operación son: Presión: 30 kg/cm2

Temperatura: 40 ºC Volumen: 80 m3

Grado llenado: 50 %

• Se considera la existencia de una fuga bifásica con formación de charco y dispersión de la nube de vapores.

• La fuga de gas tiene las siguientes características medias: Peso molecular: 6,02 g/mol Caudal de la fuga: 10 kg/s LEL: 4,11% UEL: 73,9% IPVS: 100 ppm

109

Tras la simulación se han obtenido los siguientes resultados:

Característica de toxicidad: TEEL-1 TEEL-2 LC50Estabilidad D y v =3 m/s 700/48 m 300/20 m 180/10 m Estabilidad F y v =3 m/s 2500/65 m 1000/30 m 560/15 m

Característica de inflamab.: LSI LII 10%LII cant lim Estabilidad D y v =3 m/s 50/12 m 250/15 m 1000/55 m 400 kg Estabilidad F y v =3 m/s 130/4 m 700/20 m 3100/75 m 1200 kg

Característica de explosión: cantidad 140kPa 12,5 kPa 5kPaEstabilidad D y v =3 m/s 400 kg 4 m 70 m 180 m Estabilidad F y v =3 m/s 1200 kg 8 m 100 m 200 m

Respecto al incendio de charco que se formaría por la fase líquida fugada, se estima que el vertido ocuparía toda la superficie en planta de la unidad y sus consecuencias sería: Caudal 60 l/s; diámetro incendio 60 m; compuesto: Gasóleo; alcances zona concentración 80 m y zona de alerta 140 m.

110

El número de víctimas que causarían los distintos desarrollos de la hipótesis son:

Fuga tóxica Probabilidad Área LC50 Víctimas=P*A*d Estabilidad D y v= 3 m/s 0,521 3.610 0,21 Estabilidad F y v = 3 m/s 0,478 12.900 0,68

Explosión de vapores de una nube de gas inflamable no confinada

Probabilidad Área LC50 Víctimas=P*A*d Estabilidad D y v= 3 m/s 0,521 6.723 0,39 Estabilidad F y v = 3 m/s 0,478 29.688 1,56

Llamarada Probabilidad Área LC50 Víctimas=P*A*d Estabilidad D y v= 3 m/s 0,521 5.973 0,34 Estabilidad F y v = 3 m/s 0,478 22.307 1,17

Incendio de charco La superficie del charco sería de aproximadamente de 2800 m2 lo que implicaría un número de victimas de 0,308.

111

4.1. INTRODUCCIÓN

Se trata de determinar: - Las frecuencias en ocasiones/año del suceso iniciador - La probabilidad del suceso final que se produce como consecuencia del evento iniciador realizándose la evolución de la fuga mediante la técnica del árbol de eventos.

La evaluación de la frecuencia accidental se puede determinar por dos métodos. Uno de ello consiste en recurrir a bibliografía especializada y el otro usando la técnica de Árbol de fallos

P2 E1

P1

F (1 – P2) E2

(1- P1) E3

fE1 = f x P1 x P2

fE2 = f x P1 x ( 1 – P2 )

fE3 = f x ( 1 – P1 )

CAPITULO IV: DETERMINACIÓN DE CAUSAS Y FRECUENCIAS

112

4.2. DETERMINACIÓN DE FRECUENCIAS

4.2.1. Asignación de frecuencias o eventos iniciadoresComo se ha comentado la determinación de las frecuencias en lo que respecta a la probabilidad de la hipótesis incidental, se ha obtenido mediante datos bibliográficos.

4.2.2. Hipótesis accidentales de la U-230Rotura catastrófica del reactor 230C-5: 10-6 ocasiones/año Rotura catastrófica de torre de fraccion. 230D-1: 10-6 ocas./año Fuga en línea 14” de salida fondo del reactor 230C-3: 3,6.10-6 oc/a Fuga en línea 16”salida de torre 230D-1 al reactor 230C-5: 4,8.10-6

4.2.3. Hipótesis accidentales de la U-860Rotura catastrófica de torre de fraccionamiento 860D-2: 10-6 oc/añFuga en línea 10”-L-34578 alimentación a la unidad: 6,7.10-6 o/a Fuga en línea 8”-L- 23456 de salida de fondo de la torre 860D-2 al striper 860D-3:7,2..10-6 ocasiones/año

113

Se procede a continuación a estudiar el desarrollo de las hipótesis incidentales mediante la asignación de probabilidades a cada una de las ramas de los árboles de eventos.Para el I. Charco se da 0,33

Si se produce el incidente

1

Ignición inmediata

Si 0 (rack tuberías)

No 1

Ignición retardada

si 0,1 (concent.)

no 0,9

Condiciones de explosión

si 0,01 (masa)

no 0,99

Dardo fuego = 0

Explos. Gas = 10-3

Llamarada = 9,9.10-2

Dispersión = 0,9

4.3. ASIGNACIÓN DE PROBABILIDADES A LOS EVENTOS DESARROLLADOS

114

230 C-5 230 D-1 230 C-3 230D-1 alC-5

Dispersión 0,9.10-6 0,9.10-6 3,2.10-6 4,3.10-6

Lamarada 9,9. 10-8 9,9. 10-8 3,6.10-7 4,8. 10-7

Explosión N. 1, 10-9 1, 10-9 3,6 10-9 4,8, 10-9

I. Charco 3,3. 10-7 3,3. 10-7 1,2. 10-6 1,6. 10-6

860 D-2 Alimentación 860D-2 al D-3

Dispersión 0,9.10-6 6,0.10-6 6,5.10-6

Lamarada 9,9. 10-6 6,6. 10-5 7,1.10-5

Explosión N. 1, 10-9 6,7 10-9 7,2 10-9

I. Charco 3,3. 10-7 2,2. 10-6 2,4.10-6

115

5.1. INTRODUCCIÓN

El concepto de riesgo global asociado a una actividad se expresa, como la suma de los riesgos de cada uno de los posibles eventos que se pueda producir, definiéndose este riesgo como el producto de la frecuencia de ocurrencia por el número de víctimas.

Para determinar el riesgo global seguimos los siguientes pasos:

1) Mediante técnicas generales y experiencias y con el soporte del Hazop se elaboró una lista de hipótesis.

2) Se cuantifico las consecuencias de los sucesos evaluando por un lado los alcances de las zonas de intervención y alerta y por otra evaluando el número de posibles víctimas.

3) Mediante el uso de bibliografía especializada y de la técnica de árboles de eventos se ha estimado la frecuencia de cada hipótesis.

CAPITULO V EVALUACIÓN DEL RIESGO

116

Los conceptos básicos asociados al riesgo son los que se definen a continuación:

Riesgo global: Es el número de víctimas probables por año a consecuencia de la actividad desempeñada en la unidad. Se expresa en víctimas por año de actividad.

Riesgo individual medio: Es la probabilidad media de muerte, por año, de un individuo aleatoriamente dentro del área afectada por los efectos de un incidente. Se expresa en probabilidad individual de muerte por año de exposición

R.I. = R.G. / Nº de trabajadores

5.2. EVALUACIÓN DE LOS RIESGOS GLOBALES E INDIVIDUALES

117

U-320 frecuencia víctimas Riesgo global %

Hipótesis 1 Disp. 0,9.10-6 0,89 8,01.10-7 00,54

Llam. 9,9.10-6 1,51 1,50.10-5 11,20

Exp. N 1.10-9 1,95 1,95.10-9 00,01

I. Charco 3,3.10-7 0,308 1,02.10-7 00,70

Hipótesis 2 Disp. 0,9.10-6 0,80 7,20.10-7 00,50

Llam. 9,9.10-6 1,45 1,44.10-5 10,70

Exp. N 1.10-9 1,98 1,98.10-9 00,01

I. Charco 3,3.10-7 0.29 9,57.10-8 00,05

Hipótesis 3 Disp. 3,2.10-6 0,44 1,41.10-6 01,02

Llam. 3,6.10-5 0,74 2,66.10-5 19,80

Exp. N 3,6.10-9 0,78 2,81.10-9 00,01

I. Charco 1,2.10-6 0,35 4,20.10-7 00,30

Hipótesis 4 Disp. 4,3.10-6 0,86 3,70.10-6 02,74

Llam. 4,8.10-5 1,45 6,96.10-5 51,92

Exp. N 4,8.10-9 1,85 8,88.10-9 00,05

I. Charco 1,6.10-6 0,40 6,40.10-7 00,45

16,05 1,34. 10-4 100

118

U-860 frecuencia víctimas Riesgo global %

Hipótesis 5 Disp. 0,9.10-6 0,78 7,02.10-7 00,64

Llam. 9,9.10-6 1,30 1,29.10-5 11,33

Exp. N 1.10-9 1,60 1,60.10-9 00,02

I. Charco 3,3.10-7 0,30 9,90.10-8 00,09

Hipótesis 6 Disp. 6,0.10-6 0,40 2,40.10-6 02,13

Llam. 6,6.10-5 0,70 4,62.10-5 40,53

Exp. N 6,7.10-9 0,72 4,82.10-9 00,02

I. Charco 2,2.10-6 0,29 6,38.10-7 00,58

Hipótesis 7 Disp. 6,5.10-6 0,38 2,47.10-6 02,19

Llam. 7,1.10-5 0,67 4.76.10-5 41,77

Exp. N 7,2.10-9 1,20 8,64.10-9 00,02

I. Charco 2,4.10-6 0,32 7,68.10-7 00,68

8,66 1,14.10-4 100

119

U-320

RIESGO GLOBAL EMPLEADOS 1,34. 10-4 víctimas/año

POBLACIÓN POTENCIALMENTE AFECTADA 1250 personas

RIESGO INDIVIDUAL EMPLEADOS 1,072. 10-7 víctimas/año

U-860

RIESGO GLOBAL EMPLEADOS 1,14. 10-4 víctimas/año

POBLACIÓN POTENCIALMENTE AFECTADA 1250 personas

RIESGO INDIVIDUAL EMPLEADOS 9,12. 10-8 víctimas/año

120

La unidad que presenta un mayor riesgo asociado a su operación es la U-230 con un valor de riesgo global de 1,34. 10-4

víctimas/año o lo que es lo mismo una víctima cada 7462 años. Para esta unidad el riesgo individual medio para el personal de la refinería es de 1,072.10-7 que resulta ser un valor totalmente aceptable.

Los sucesos que soportan un mayor porcentaje de riesgo, son las llamaradas en primer lugar con un casi 93% y en segundo lugar la dispersión de nubes tóxicas con un 5%.

En cuanto al riesgo global exterior no existe ya que los alcances de concentraciones letales no afectan al exterior.

Si comparamos el riesgo individual medio de esta instalación con el riesgo que tienen otras actividades o eventos naturales, vemos que el riesgo de esta instalación es bastante mas bajo por lo que el riesgo es aceptable

5.3. CONCLUSIONES

121

El Riesgo individual queda definido por el Institute of Chemical Engineers como la frecuencia a la cual un individuo puede esperar un determinado nivel de daño como consecuencia de la ocurrencia de un determinado suceso accidental sobre un período de referencia de un año y viene expresado en unidades año-1.

Las curvas de isoriesgos constituyen la representación gráfica del riesgo individual. A cada punto del entorno se asocia la frecuencia de daño que tendría una persona situada en este punto. Posteriormente, se interpolan todos los valores puntualespara delimitar las isolíneas de riesgo.

Una persona ubicada sobre una curva de isoriesgo de muerte de 10-6/año, generada por una industria cercana tiene una frecuencia de muerte de 10-6 por año como consecuencia de esta actividad industrial.

5.4. CURVAS DE ISORIESGO

122

Manuel Sánchez Muñoz Rev. 2013

El HAZOP (HAZard OPerability study) es una técnica cualitativa que permite identificar los puntos "débiles" de una instalación y como resultado de ella, las hipótesis de accidentes más relevantes en una planta. Además consiste también en determinar si el diseño ofrece desde el punto de vista de seguridad las garantías suficientes para minimizar los riesgos de un accidente mayor.

La metodología consiste en seleccionar una serie de nudos donde se analizan las posibles desviaciones de las principales variables que caracterizan el proceso (PRESION, TEMPERATURA, CAUDAL, NIVEL, COMPOS.)

Las desviaciones son establecidas de forma sistemática recurriendo a una lista de palabras guía (NO, MAS, MENOS, OTRO, INVERSO), que cualifican el tipo de desviación.

DESCRIPCIÓN DEL MÉTODO HAZOP

Para cada desviación se obtiene:

1) La lista de las posibles causas que la provocan.

2) La lista de las consecuencias factibles, que se pueden producir en relación con cada una de las causas planteadas.

3) La respuesta del sistema ante la desviación estudiada: elementos del sistema que permiten detectar el fenómeno a contrarrestar sus efectos; instrumentación como controladores, alarmas, etc.

4) Acciones que se podrían tomar para evitar las causas a limitar las consecuencias.

5) Comentarios: cualquier tipo de anotación para completar o aclarar algunas de los puntos anteriores.

DATOS OBTENIDOS DEL ANALISIS DE CADA VARIABLE

Las sesiones del HAZOP tuvieron lugar los días 7 y 8 de Noviembre del 2001 en las instalaciones de REPESA (Refino Petrolífero S.A.) situado en el polígono industrial Los Labradores de la localidad de Manzanares ( Ciudad Real).

Los asistentes a las sesiones HAZOP fueron los siguientes:

• Antonio López perteneciente a Central Ingeniería de REPESA

• Manuel Domínguez perteneciente a Central Ingeniería de REPESA

• Vicente Ruiz perteneciente a I..P.I. (Ingeniería procesos)

• José Mayo perteneciente a I..P.I. (Ingeniería procesos)

• Luis Sánchez perteneciente a Procesos C.I. de REPESA

• Rafael Martín perteneciente a Técnico producción de REPESA

• Andrés Sancho perteneciente a Jefe Planta Refinería REPESA

• Jesús Ruiz perteneciente a Depart. Seguridad REPESA

• Iván Sánchez perteneciente a Depart. Instrumentac. REPESA

El estudio HAZOP está dirigido y coordinado por la firma TEMA participando las siguientes personas:

•Jaime La Fuente Director del HAZOP

•Amparo Martínez Ayudante

PARTICIPANTES

Durante el desarrollo de las diferentes sesiones en la que ha tenido lugar el HAZOP la documentación utilizada fue la siguiente:

•3476979 Diagrama de procesos.

•GL-4B-326879 hojas de 1 a 5 de Separación de nafta nº 2. Diagrama mecánico de procesos e instrumentos. Alimentación de nafta.

•GL-4B-678456 hojas de 4 a 9 Separación de nafta nº 2. Diagrama mecánico de procesos e instrumentos. Separación de nafta.

•GR-L- Planimetría General.

•GP-A Esquema mecánico e procesos e instrumentos del Blow-down.

•R-P-15-B- 4634. Diagrama mecánico del Blending de nafta

•Relación de válvulas motorizadas en tanques

MATERIAL TÉCNICO UTILIZADO

Los nodos que se han analizados perteneciente a la nueva instalación quedan relacionados en la siguiente lista adjunta:

NODO 1: Línea de alimentación a la torre de separación

NODO 2: Línea de salida de cabeza de la torre de separación incluido el depósito acumulador de cabeza.

NODO 3: Línea de reflujo y de salida de la nafta ligera a tanques

NODO 4: Línea de salida de fondo de la torre de separación de la nafta pesada a tanques.

NODO 5: Línea de calentamiento del fondo de la columna

ELECCION DE NODOS

ESQUEMA UNIDAD

LC C-1

FC

P-1

de tanques

FC

FC

FC

FC

M

M

M

FCV-1

FCV-2

FCV-3

FCV-4

FCV-5

TCV-1A

TCV-1B

TCV-2

TC

TC

E-1

LC

LC

LX

C-2

E-2

E-3

E-4

E-5

E-6

C-3

PCV-1B

PCV-1APC

P-3

P-2

PSV-2

PSV-1

vapor

agua

agua

Nodo

Pala guía

Desviac Posibles causas Posibles consecuencias

Respuesta sistema

Acciones a tomar

1 MAS Temper 1. Fallo del lazo de control2.Mas intercambio E-1 (+ tº de fondo)3.Alimentación más caliente de C-1

1 y 3. Aumento temperatura en fondo columna, más vaporización y presión en C-2.2.Sin consecuenc

1 y 3. Válvula Seguridad PSV-1 en columna C-2

A-1:Para evitar disparo de SV instalar TA por alta en end. C-2 con señal a panel

1 MENOS

Temper 1. Fallo del lazo de control2. Menor intercambio E-1

1 y 2. Aumento nivel fondo, disminución destilado, mas trabajo reboiler. Sin consecuencia

1 MAS Presión 1. Ensuciamiento, obstrucción en E-1.2. Cierre válvula motorizada3. Fallo válvulas TCV-1A/B4. Vaporizaciones en E-1 por pasar poco caudal y by-passear mucho

1, 2 y 3 Aumento Presión en línea entrada a C-2 hasta shut-off bomba.4. posible rotura del equipo por vaporización bruscas

A-2: Enclavamient Eléctrico de las dos válvulas motor. al abrir una cuando se cierra la otra.A-3: Comprobar que línea y E-1 están diseñados a presión shut-off de bomba.A-4: Establecer limitación al cierre de la TCV-1A

1 ME NOS

Presión 1. Parada bomba P-1 1. Bajada carga de alimentación a columna. Sin consecuencias

1 MAS Caudal 1. Fallo del lazo de control de la C-12. Fallo de la FCV-5

1 y 2 Aumento perdida de carga en línea, alteraciones en tempe- raturaTC-1 y en columna C-2

A-5: Instalación de un FI posterior a motorizada que sirva de totalizador confi-gurando alarma por alta

1 ME NOS /NO

Caudal Igual que puntos 1, 2 y 3 de mas presión.1. Parada Bomba P-12. Fallo del lazo de control de la C-13. Fallo de la FCV-5

1. Disfunciones en la columna C-22. Inundación del C-1

A-6: Instalar un LA por alto, independiente de las tomas del LC en C-1

1 IN VERSO

Caudal 1. Fallo en la alimentación a la C-1 con la consiguiente bajada de presión en esta

1. Contaminar el proceso aguas arriba de la C-1 con producto del tanque

A-7: Instalar válvula de retención posterior a FCV-1

1 OTRA

Composición

1. Rotura de los tubos en el E-1

Sin consecuencias