Introd I.teoria Reticular 2014-15
Embed Size (px)
Transcript of Introd I.teoria Reticular 2014-15
-
7/24/2019 Introd I.teoria Reticular 2014-15
1/23
HORARIS DE CLASSE
LABORATORI DE MICROSCPIES ICARACTERITZACI DE MATERIALS
Hora Dilluns Dimarts Dimecres Dijous Divendres
15 16 17 18 19
17-18 LMX
18-19 Introducci LM No classe LMX
22 23 24 25 26
17-18 LMX
18-19 LM LM LMX
29 30 1 2 3
17-18 LMX
18-19 LM LM LMX
-
7/24/2019 Introd I.teoria Reticular 2014-15
2/23
Cristallografia i Difracci dels Raigs X pels Cristalls
Cristalls - matria slida cristallina
Matria ordenada o peridicaen les tres dimensions de lespai
Quars SiO2
Matria slida desordenada: vidre SiO2
unitat de longitud:
La difracci s la tcnica que permet la
determinaci de lestructura dels cristalls
-
7/24/2019 Introd I.teoria Reticular 2014-15
3/23
acyclovir
acyclovir II (P-1).cif
naturalesa
compostos qumics, farmacutics
cos hum: pedres rony, protenesADN
materials tecnolgics - Si ... (PRCTIQUES)- perovsquites: superconductors (PRCTIQUES)
- capes primes de multitud de materials i per mltiples aplicacions
minerals essers vius
es poden cristallitzar
exemples de cristalls / matria cristallinano forosament cristalls ben desenvolupats
-
7/24/2019 Introd I.teoria Reticular 2014-15
4/23
es poden cristallitzar
la matria cr istallina s simtrica, amb independncia de la
seva morfologia externa
simetria a nivell intern simetria a nivell extern o morfolgic
la simetria sinterrelaciona amb la difracci SEMCA (3er curs)
-
7/24/2019 Introd I.teoria Reticular 2014-15
5/23
exemples de cristalls ben desenvolupats
mtrics: cristalls gegants de guix,
cueva de Naica, Chihuahua Mxic)
centimtrics
millimtrics: protenes
nanomtrics: cristalls de plat
Na Tian et al., Science(vol 316, p 732)
-
7/24/2019 Introd I.teoria Reticular 2014-15
6/23
quasicristall
cristalls lquids
vidre
cristall
biopolmers
polmers
Ordre
la difracci tamb saplica a materials destructura parcialment ordenada
-
7/24/2019 Introd I.teoria Reticular 2014-15
7/23
Cristallografia i Difraccidels Raigs X pels Cristalls
conseqncia de la periodicitat interna
la determinaci de lestructura dels materialsla identificaci de les fases cristallinesla caracteritzaci de la textura, la microestructura i la nanoestructura:
la caracteritzaci de superfcies
orientaci, mida dels nanocristalls
-
7/24/2019 Introd I.teoria Reticular 2014-15
8/23
Cristallografia i Difracci dels Raigs X pels Cristalls
la matria cristallina s peridica:
I. Teoria Reticular tambCristallografia Geomtrica
la matria cristallina difracta:
II. Difracci de Raigs X
III. Descripci de les estructures metlliques bsiques
la matria cristallina s simtrica (SEMCA 3er curs)
Gui
-
7/24/2019 Introd I.teoria Reticular 2014-15
9/23
TEORIA RETICULAR
MATRIA CRISTALLINA: Els seus constituents, toms (cr. metllics i covalents)
ions (cr. inics)molcules (cr. moleculars)
presenten ordenaci triplement peridica
RETICLE
vectors de translaci nusos
cella tipus de celles
fileres reticulars algunes: arestes dels cristalls desenvolupats
plans reticulars alguns: cares dels cristalls desenvolupats
IMPORTANTS EN LA DIFRACCI DELS RAIGS X
-
7/24/2019 Introd I.teoria Reticular 2014-15
10/23
TEORIA RETICULAR
MATRIA CRISTALLINA: Els seus constituents, toms(cr. metllics i covalents)
ions (cr. inics)molcules (cr. moleculars)
presenten ordenaci triplement peridica
diamant cbic: a = b = c = 3.567
a
b
c
a b
c
idntica estructura: Si a = 5.431 Gea = 5.658
-
7/24/2019 Introd I.teoria Reticular 2014-15
11/23
MATRIA CRISTALLINA: Els seus constituents, toms (cr. metllics i covalents)
ions(cr. inics)
molcules (cr. moleculars)
presenten ordenaci triplement peridica
TEORIA RETICULAR
rtil
Ti02
tetragonal:
a = b = 4.594 , c =2.959
a
b
c
a b
c
-
7/24/2019 Introd I.teoria Reticular 2014-15
12/23
MATRIA CRISTALLINA: Els seus constituents, toms (cr. metllics i covalents)
ions (cr. inics)
molcules(cr. moleculars)presenten ordenaci triplement peridica
TEORIA RETICULAR
enllaos curts intramoleculars - enllaos llargs intermoleculars
gel H2O
trigonal:a = b = c = 7.78
= = = 113.1
-
7/24/2019 Introd I.teoria Reticular 2014-15
13/23
Estructura Cristallina del Rtil (TiO2)tetragonal P, a = b = 4.594 , c =2.959
cella fonamental o cella unitat
a
b
c
a b
c
RETICLE: conjunt de nusos
a b
c
nusos: orgens i extrems dels vectors de translacien aquest cas, coincideixen amb els Ti situats a lorgen
el cristall: repetici de les celles
, , :u v w sencersvectors de translaci:
-
7/24/2019 Introd I.teoria Reticular 2014-15
14/23
reticle del Rtiltetragonal P, a = b = 4.594 , c =2.959
Fileres reticulars
ndexs de Miller [uvw]:
components del vector entre dos nusos consecutius
a b
c
[010]
[001]
[1-11]
http://pubs.rsc.org/en/content/articlehtml/2008/cs/b719551f -
7/24/2019 Introd I.teoria Reticular 2014-15
15/23
Nanoscale surface chemistry over faceted substrates: structure, reactivity and nanotemplatesTheodore E. Madey*a, Wenhua Chena, Hao Wanga, Payam Kaghazchiband Timo Jacob*bc
DOI: 10.1039/B719551F(Critical Review) Chem. Soc. Rev. , 2008, 37, 2310-2327
Fig. 1 (a) SEM image of rutile TiO2particles. (b) Theoretical equilibrium crystal
shape (ECS ) for rutile TiO2. http://link.aps.org/abstract/PRB/v49/e16721).
Filera reticular aresta [010]
Filera reticular aresta [001]
Filera reticular aresta [1-11]
http://pubs.rsc.org/en/content/articlehtml/2008/cs/b719551fhttp://dx.doi.org/10.1039/B719551Fhttp://pubs.rsc.org/en/content/articlehtml/2008/cs/b719551fhttp://dx.doi.org/10.1039/B719551Fhttp://pubs.rsc.org/en/content/articlehtml/2008/cs/b719551f -
7/24/2019 Introd I.teoria Reticular 2014-15
16/23
Plans reticularsRtil
es defineixen pels nusos
a
bc
a
bc
es repeteixen a unadistncia constant
no queden nusos fora delpla (i la seva repetici!)
-
7/24/2019 Introd I.teoria Reticular 2014-15
17/23
Plans reticularsRtil
a
bc
plans atmicsplans reticulars
a
bc
espaiat reticular
interplanar spacing
DIFRACCI
-
7/24/2019 Introd I.teoria Reticular 2014-15
18/23
Rtil
, ,a b c
Plans reticulars: ndex de Miller (hkl)2 definicions:1) El nombre de vegades que el pla reticular talla en la seva repetici, als
eixos
c
si s parallel a un eix,ndex 0(aqu es suposen tots elsplans )
-
7/24/2019 Introd I.teoria Reticular 2014-15
19/23
a
-
7/24/2019 Introd I.teoria Reticular 2014-15
20/23
, ,a b c
2) Les inverses de les distncies que el pla ms proper a l'origen talla alseixossi s parallel a un eix, talla a, linvers s 0ndex 0
m.c.m (m, n, p) = N : nombre plansreticulars parallels fins a lorigen
Suposem el pla:
on (m, n, p):sencers
OA = m
OB = n
OC = p
a
b
c
Si fem:
m
OA'= N
OB'=N
pOC'=
N
a
nb
c
tindrem elPLA RETICULAR
MSPROPER A LORIGEN
NDEXS DE MILLER
N= h =
m OA'N
= k =n OB'
N= l =
p OC'
a
b
c
(hkl): tres nombres sencers
Donat un pla reticular qualsevol, sempre existeix un pla parallel que talla als eixos de
referncia a distncies mltiples de , , : OA,OB,OCa b c
-
7/24/2019 Introd I.teoria Reticular 2014-15
21/23
2) un exemple en 2D
m.c.m (2,3) = 6 : nombre plansreticulars parallels fins a lorigen
el pla:
OA = 2
OB = 3
OC = p
a
b
c
Si fem:
m 2 1
OA'= = =N 6 3
3 1OB'= = =
N 6 2
a a a
nb b b
tindrem el
PLA RETICULAR MS PROPER ALORIGEN
Donat un pla reticular qualsevol, sempre existeix un pla parallel que talla als eixos de
referncia a distncies mltiples de , , : OA,OB,OCa b c
h = 3K = 2
(32 l)
INDEX DE MILLER
-
7/24/2019 Introd I.teoria Reticular 2014-15
22/23
Pla que talla a: 3, 4, 5
segments de tall als tres eixos: OA = 3a OB = 4b OC = 5c
mnim com mltiple (3, 4, 5): 3 x 4 x 5 = 60 que vol dir que hi ha 60 plans
entre el que talla a 3, 4 i 5 i lorigen O
(Tenir en compte que un pla, i la seva repetici, passa per tots els nusos, i per
tant tamb per lorigen).
A quines distncies talla als eixos a, b i c el pla ms proper a lorigen?
OA = 3/60 = 1/20 OB = 4/60 = 1/15 OC = 5/60 = 1/12
Els ndex de Miller sn els inversos daquestes distncies: (20 15 12)
2) exemple dun pla coneixent les distncies de tall en mltiples de , ,a b c
-
7/24/2019 Introd I.teoria Reticular 2014-15
23/23
Base de dades destructures inorgniques
http://rruff.geo.arizona.edu/AMS/amcsd.php
Introduction la cristallographie et la chimie structurale
Meersche, Maurice Van
Leuven [etc.] : Peeters, 1984. 3e ed
Biblioteca Facultat de Cincies i ETSE
Teoria reticular, simetria puntual, simetria espacial;
Difracci de raigs X (extensa); Cristalloqumica; Defectes (incloent macles).
Cristallografia : teoria reticular, grups puntuals i grups espacials
Gal Medina, Salvador
Barcelona : PPU, 1993
Biblioteca Facultat de Cincies i ETSETeoria reticular, simetria puntual, simetria espacial
Elements of X-ray diffraction
Cullity, B. D.
Upper Saddle River : Prentice-Hall, cop. 2001. 3rd ed
Biblioteca Facultat de Cincies i ETSE
Difracci de raigs X (extensa)
Uni Internacional de Cristallografia
http://www.iucr.org/
Bibliografia pgines web
https://cataleg.uab.cat/search~S1*cat?/tIntroduction+{u00E0}+la+Cristallographie/tintroduction+a+la+cristallographie/1,2,4,B/frameset&FF=tintroduction+a+la+cristallographie+et+a+la+chimie+structurale&1,,3https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aCullity/acullity/1,2,4,B/frameset&FF=acullity+b+d&1,,3/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aCullity/acullity/1,2,4,B/frameset&FF=acullity+b+d&1,,3/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aCullity/acullity/1,2,4,B/frameset&FF=acullity+b+d&1,,3/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aCullity/acullity/1,2,4,B/frameset&FF=acullity+b+d&1,,3/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/aGali+Medina/agali+medina/1,1,5,B/frameset&FF=agali+medina+salvador&2,,5/indexsort=-https://cataleg.uab.cat/search~S1*cat?/tIntroduction+{u00E0}+la+Cristallographie/tintroduction+a+la+cristallographie/1,2,4,B/frameset&FF=tintroduction+a+la+cristallographie+et+a+la+chimie+structurale&1,,3