La cuantización de la energía-naturaleza dual de la materia

5

Click here to load reader

Transcript of La cuantización de la energía-naturaleza dual de la materia

Page 1: La cuantización de la energía-naturaleza dual de la materia

*La cuantización de la energía

La experiencia que realizaron Franck y Hertz en 1914 es uno de los experimentos claves que ayudaron a establecer la teoría atómica moderna. Nos muestra que los átomos absorben energía en pequeñas porciones o cuantos de energía, confirmando los postulados de Bohr. Mediante una simulación se tratará de explicar las características esenciales de este sencillo experimento, observando el movimiento de los electrones y sus choques con los átomos de mercurio, e investigando el comportamiento de la corriente Ic con la diferencia de potencial U que se establece entre el cátodo y la rejilla.

Descripción

En la figura, se muestra un esquema del tubo que contiene vapor de mercurio a baja presión con el que se realiza el experimento. El cátodo caliente emite electrones con una energía cinética casi nula. Ganan energía cinética debido a la diferencia de potencial existente entre el cátodo y la rejilla, véase el movimiento de partículas cargadas en un campo eléctrico.

el viaje chocan con los átomos de vapor de mercurio y pueden perder energía. Los electrones que lleguen a la rejilla con una energía cinética de 1.5 eV o más, impactarán en el ánodo y darán lugar a una corriente Ic. Los electrones que lleguen a la rejilla con una energía menor que 1.5 eV no podrán alcanzar el ánodo y regresarán a la rejilla. Estos electrones no contribuirán a  la corriente Ic.

La corriente Ic presenta varios picos espaciados aproximadamente 4.9 eV. El primer valle, corresponde a los electrones que han perdido toda

su energía cinética después de una colisión inelástica con un átomo de mercurio.

El segundo valle, corresponde a electrones que han experimentado dos colisiones inelásticas consecutivas con átomos de mercurio, y así sucesivamente.

Cuando un electrón experimenta una colisión inelástica con un átomo de mercurio lo deja en un estado excitado, volviendo al estado normal después de emitir un fotón de 2536 A de longitud de onda, que corresponde a una energía E=hf=hc/l de aproximadamente 4.9 eV. Esta radiación se puede observar durante el paso del haz de electrones a través del vapor de mercurio. En la simulación aproximaremos el valor de esta energía a 5 eV.

La energía del fotón hf=E2-E1 es igual a la diferencia entre dos niveles de energía E2 y E1 del átomo de mercurio. Esta energía es la que pierde el electrón en su choque inelástico con el átomo de mercurio.

Page 2: La cuantización de la energía-naturaleza dual de la materia

En la simulación, empleamos un número limitado de átomos de Hg y de electrones, en el experimento real el número de átomos y electrones es muy grande, esto hace que para las diferencias de potencial (ddp) para las cuales la corriente presenta un mínimo se produzcan ciertas variaciones en el valor medido de la corriente para la misma ddp.

*El efecto fotoeléctrico

La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son:

Para cada sustancia hay una frecuencia mínima o umbral de la radiación electromagnética por debajo de la cual no se producen fotoelectrones por más intensa que sea la radiación.

La emisión electrónica aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del metal, ya que hay más energía disponible para liberar electrones.

En los metales hay electrones que se mueven más o menos libremente a través de la red cristalina, estos electrones no escapan del metal a temperaturas normales por que no tienen energía suficiente. Calentando el metal es una manera de aumentar su energía. Los electrones "evaporados" se denominan termoelectrones, este es el tipo de emisión que hay en las válvulas electrónicas. Vamos a ver que también se pueden liberar electrones (fotoelectrones) mediante la absorción por el metal de la energía de radiación electromagnética.

El objetivo de la práctica simulada es la determinación de la energía de arranque de los electrones de un metal, y el valor de la constante de Planck. Para ello, disponemos de un conjunto de lámparas que emiten luz de distintas frecuencias y placas de distintos metales que van a ser iluminadas por la luz emitida por esas lámparas especiales.

 

Descripción

Sea f la energía mínima necesaria para que un electrón escape del metal. Si el electrón absorbe una energía E, la diferencia E-f, será la energía cinética del electrón emitido.

Einstein explicó las características del efecto fotoeléctrico, suponiendo que cada electrón absorbía un cuanto de radiación o fotón. La energía de un fotón se obtiene multiplicando la constante h de Planck por la frecuencia f de la radiación electromagnética.

E=hf

Page 3: La cuantización de la energía-naturaleza dual de la materia

Si la energía del fotón E, es menor que la energía de arranque f, no hay emisión fotoeléctrica. En caso contrario, si hay emisión y el electrón sale del metal con una energía cinética Ek igual a E-f.

Por otra parte, cuando la placa de área S se ilumina con cierta intensidad I, absorbe una energía en la unidad de tiempo proporcional a IS, basta dividir dicha energía entre la cantidad hf para obtener el número de fotones que inciden sobre la placa en la unidad de tiempo. Como cada electrón emitido toma la energía de un único fotón, concluimos que el número de electrones emitidos en la unidad de tiempo es proporcional a la intensidad de la luz que ilumina la placa

Mediante una fuente de potencial variable, tal como se ve en la figura podemos medir la energía cinética máxima de los electrones emitidos, véase el movimiento de partículas cargadas en un campo eléctrico.

Aplicando una diferencia de potencial V entre las placas A y C se frena el movimiento de los fotoelectrones emitidos. Para un voltaje V0 determinado, el amperímetro no marca el paso de corriente, lo que significa que ni aún los electrones más rápidos llegan a la placa C. En ese momento, la energía potencial de los electrones se hace igual a la energía cinética.

Variando la frecuencia f, (o la longitud de onda de la radiación que ilumina la placa) obtenemos un conjunto de valores del potencial de detención V0. Llevados a un gráfico obtenemos una serie de puntos (potencial de detención, frecuencia) que se aproximan a una línea recta.

La ordenada en el origen mide la energía de arranque en electrón-voltios f/e. Y la pendiente de la recta es h/e. Midiendo el ángulo de dicha pendiente y usando el valor de la carga del electrón e= 1.6 10-19 C, obtendremos el valor de la constante de Planck, h=6.63 10-34 Js.

 

Page 4: La cuantización de la energía-naturaleza dual de la materia

Naturaleza dual de la materia: electrones, núcleos y partículas elementales

La naturaleza ondulatoria es inherente a cada cuerpo. La importancia del hecho radica en que en ocasiones la luz se comporta de una u otra forma.

Louis de Broglie postuló la dualidad en su forma:

lambda=h/mxv

Donde lambda= la longitud de onda (metros)h=Constante de Planck (6.626x10-34 Jxs)m=masa (kg)v=velocidad (m/s)

No muchos años más tarde, el francés Louis de Broglie propondría en su doctorado que si la luz                                                                   era una partícula y una onda a la vez, también el resto de partículas podrían serlo. El problema para detectar la onda de las partículas es que la longitud de ésta es inversamente proporcional a la masa y a la velocidad de la partícula. Por tanto, por poco grande que fuera la masa de una partícula, su onda ya era demasiado pequeña para ser observada. No obstante esto se lograría poco después en un experimento con unas partículas lo suficientemente poco masivas como para tener una onda “visible” y bastante manejable: los electrones. En el experimento se observó que los electrones tenían un comportamiento exclusivo de las ondas: la difracción. No explicaré ahora en qué consiste éste fenómeno, pero el caso es que  bastó para ver que las partículas también pueden ser descritas como ondas, con su frecuencia y su longitud de onda, demostrándose así la dualidad onda-partícula.

Todo esto no significa que cuando una partícula se mueve está “arrastrando” una onda tras de ella, sino que puede ser descrita como onda: de igual modo que puede describirse asignándole toda una serie de características propias de las partículas (masa, velocidad...), se puede describir utilizando una función de onda, es decir, también observamos las características de las ondas. Y si resulta que tiene las características que definen a una onda... es que es una onda. Lo que estamos acostumbrados a imaginar como simples partículas son entes de naturaleza dual que se comportarán como onda o como partícula según las circunstancias.