La Fuerza y La Energia

21
27/4/2016 La Energía en la Vida Cotidiana | Rossymar Hernández, Julio Godoy, Douglas Villegas FÍSICA FUERZA Y ENERGÍA

description

La Energía En La Vida Cotidiana

Transcript of La Fuerza y La Energia

Page 1: La Fuerza y La Energia

27/4/2016

La Energía en la Vida Cotidiana | Rossymar Hernández, Julio Godoy, Douglas Villegas

Física Fuerza y Energía

Page 2: La Fuerza y La Energia
Page 3: La Fuerza y La Energia

Introducción

La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico o biológico sería posible.

La forma de energía asociada a las transformaciones de tipo mecánico se denomina energía mecánica y su transferencia de un cuerpo a otro recibe el nombre de trabajo. Ambos conceptos permiten estudiar el movimiento de los cuerpos de forma más sencilla que usando términos de fuerza y constituyen, por ello, elementos clave en la descripción de los sistemas físicos.

El estudio del movimiento atendiendo a las causas que lo originan lo efectúa la dinámica como teoría física relacionando las fuerzas con las características del movimiento, tales como posición y velocidad. Es posible, no obstante, describir la condición de un cuerpo en movimiento introduciendo una nueva magnitud, la energía mecánica, e interpretar sus variaciones mediante el concepto de trabajo físico. Ambos conceptos surgieron históricamente en una etapa avanzada del desarrollo de la dinámica y permiten enfocar su estudio de una forma por lo general más simple.

En el lenguaje ordinario energía es sinónimo de fuerza; en el lenguaje científico, aunque están relacionados entre sí, ambos términos hacen referencia a conceptos diferentes. Algo semejante sucede con el concepto de trabajo, que en el lenguaje científico tiene un significado mucho más preciso que en el lenguaje corriente.

El movimiento, el equilibrio y sus relaciones con las fuerzas y con la energía, define un amplio campo de estudio que se conoce con el nombre de mecánica. La mecánica engloba la cinemática o descripción del movimiento, la estática o estudio del equilibrio y la dinámica o explicación del movimiento. El enfoque en términos de trabajo y energía viene a cerrar, pues, una visión de conjunto de la mecánica como parte fundamental de la física.

Page 4: La Fuerza y La Energia

Índice

Pág.

Introducción.…………………………………………………………………………………………………………………………………3

Marco Teórico……………………………………………………………………………………………………………………………….4

Conclusión….……………………………………………………………………………………………………………………………….16

Bibliografía…………………………………………………………………………………………………………………………………..17

Page 5: La Fuerza y La Energia

LA FUERZA

La fuerza es un concepto difícil de definir, pero muy conocido. Sin que nos digan lo que es la fuerza podemos intuir su significado a través de la experiencia diaria.

Una fuerza es algo que cuando actúa sobre un cuerpo, de cierta masa, le provoca un efecto.

Por ejemplo, al levantar pesas, al golpear una pelota con la cabeza o con el pie, al empujar algún cuerpo sólido, al tirar una locomotora de los vagones, al realizar un esfuerzo muscular al empujar algo, etcétera siempre hay un efecto.

El efecto de la aplicación de una fuerza sobre un objeto puede ser:

• Modificación del estado de movimiento en que se encuentra el objeto que la recibe

• Modificación de su aspecto físico

También pueden ocurrir los dos efectos en forma simultánea. Como sucede, por ejemplo, cuando alguien patea una lata de bebida: la lata puede adquirir movimiento y también puede deformarse.

De todos los ejemplos citados podemos concluir que:

• La fuerza es un tipo de acción que un objeto ejerce sobre otro objeto (se dice que hay una interacción). Esto puede apreciarse en los siguientes ejemplos:

— un objeto empuja a otro: un hombre levanta pesas sobre su cabeza

— un objeto atrae a otro: el Sol atrae a la Tierra

— un objeto repele a otro: un imán repele a otro imán

— un objeto impulsa a otro: un jugador de fútbol impulsa la pelota con un cabezazo

— un objeto frena a otro: un ancla impide que un barco se aleje.

• Debe haber dos cuerpos: de acuerdo a lo anterior, para poder hablar de la existencia de una fuerza, se debe suponer la presencia de dos cuerpos, ya que debe haber un cuerpo que atrae y otro que es atraído, uno que impulsa y otro que es impulsado, uno que empuja y otro que es empujado, etc.

Dicho de otra manera, si se observa que sobre un cuerpo actúa una fuerza, entonces se puede decir que, en algún lugar, hay otro u otros cuerpos que constituyen el origen de esa fuerza.

• Un cuerpo no puede ejercer fuerza sobre sí mismo. Si se necesita que actúe una fuerza sobre mi persona, tendré que buscar algún otro cuerpo que ejerza una fuerza, porque no existe ninguna forma de que un objeto ejerza fuerza sobre sí mismo (yo no puedo empujarme, una pelota no puede "patearse" a sí misma).

Fuerza para levantar pesas.

Un hombre ejerce una fuerza sobre el burro, empujando o tirando de él.

Page 6: La Fuerza y La Energia

• La fuerza siempre es ejercida en una determinada dirección: puede ser hacia arriba o hacia abajo, hacia adelante, hacia la izquierda, formando un ángulo dado con la horizontal, etc.

Para representar la fuerza se emplean vectores. Los vectores son entes matemáticos que tienen la particularidad de ser direccionales; es decir, tienen asociada una dirección. Además, un vector posee módulo, que corresponde a su longitud, su cantidad numérica y su dirección (ángulo que forma con una línea de referencia).

Se representa un vector gráficamente a través de una flecha en la dirección correspondiente

Resumiendo:

Clasificación de las fuerzas

Las fuerzas se pueden clasificar de acuerdo a algunos criterios: según su punto de aplicación y según el tiempo que dure dicha aplicación.

Según su punto de aplicación:

a) Fuerzas de contacto: son aquellas en que el cuerpo que ejerce la fuerza está en contacto directo con el cuerpo que la recibe.

Un golpe de cabeza a la pelota, sujetar algo, tirar algo, etc.

b) Fuerzas a distancia: el cuerpo que ejerce la fuerza y quien la recibe no entran en contacto físicamente.

El ejemplo más familiar de una fuerza de este tipo es la atracción gravitatoria terrestre, responsable de que todos los cuerpos caigan hacia el suelo. Otro ejemplo es la fuerza que un imán ejerce sobre otro imán o sobre un clavo.

Según el tiempo que dura la aplicación de la fuerza:

a) Fuerzas impulsivas: son, generalmente, de muy corta duración, por ejemplo: un golpe de raqueta.

b) Fuerzas de larga duración: son las que actúan durante un tiempo comparable o mayor que los tiempos característicos del problema de que se trate.

Por ejemplo, el peso de una persona es una fuerza que la Tierra ejerce siempre sobre la persona. La fuerza que ejerce un cable que sostiene una lámpara, durará todo el tiempo que la lámpara esté colgando de ese cable. La fuerza que ejerce el cable sobre un teleférico durará mientras ahí esté. Asimismo, las fuerzas que actúan sobre un cuerpo pueden ser exteriores e interiores.

Fuerza de contacto sobre la pelota.

En física, fuerza es toda causa capaz de modificar el estado de reposo o de movimiento de un cuerpo.

Fuerzas gravitacionales a distancia entre el Sol, la Tierra y la Luna.

Page 7: La Fuerza y La Energia

a) Fuerzas exteriores: son las que actúan sobre un cuerpo siendo ejercidas por otros cuerpos.

b) Fuerzas interiores: son las que una parte de un cuerpo ejerce sobre otra parte de si mismo.

Unidades de fuerza

El primer paso para poder cuantificar una magnitud física es establecer una unidad para medirla.

En el Sistema Internacional (SI) de unidades la fuerza se mide en newtons (símbolo: N), en el CGS en dinas (símbolo, dyn) y en el sistema técnico enkilopondio (símbolo: kp), siendo un kilopondio lo que comúnmente se llama un kilogramo, un kilogramo fuerza o simplemente un kilo.

Un newton es la fuerza que, al ser aplicada a un cuerpo de masa 1 Kilogramo, le comunica una aceleración de 1 metro por segundo al cuadrado.

Cantidad vectorial

Una fuerza es una cantidad vectorial. ¿Qué significa esto?

Significa que tiene tres componentes:

— un valor, que viene dado por un número y una unidad de medida (25 Newton, por ejemplo).

— una dirección, que vendría a ser la línea de acción de la fuerza (dirección vertical, por ejemplo).

— un sentido, que vendría a ser la orientación, el hacia dónde se dirige la fuerza (hacia arriba, por ejemplo).

Estos tres componentes deben estar incluidos en la información de una fuerza.

Las fuerzas se pueden sumar y restar. No tiene sentido físico el multiplicarlas o dividirlas.

Si sumas dos fuerzas que van en la misma dirección y en el mismo sentido, entonces la suma es la suma aritmética de ellas. Si sus valores son 40 Newton y 30 Newton, el resultado sería 70 Newton en la dirección y sentido común que tienen.

Si sumas dos fuerzas que van en la misma dirección pero sentidos distintos (una a la derecha y la

Fuerza impulsiva aplicada sobre la pelota.

Page 8: La Fuerza y La Energia

otra a la izquierda, por ejemplo) entonces la suma es la diferencia entre ellas (resta), con la misma dirección pero el sentido de la fuerza mayor. Si sus valores son 40 Newton a la derecha y 30 Newton a la izquierda, entonces la suma sería 10 Newton a la derecha.

Si sumas dos fuerzas que van en la misma dirección pero sentidos opuestos y resulta que las dos fuerzas tienen el mismo valor numérico, entonces la suma de ellas dará como resultado el valor 0. En este caso se puede decir que las fuerzas se anulan.

Pero ojo: las dos fuerzas deben estar actuando sobre el mismo cuerpo, de lo contrario no se pueden anular, incluso no podrían sumarse.

Si las fuerzas que se vayan a sumar no tienen la misma dirección, el problema se complica bastante y habría que recurrir a procedimientos geométricos e incluso de trigonometría.

Cuando graficamos una fuerza que actúa sobre un cuerpo, se dibuja con una flecha partiendo desde el centro del cuerpo que la recibe.

LA ENERGIA

La energía es la magnitud física por la que los cuerpos tienen capacidad para realizar transformaciones en ellos mismos o en otros cuerpos. Se manifiesta en la naturaleza de distintas formas: mecánica, termica, química, radiante. Llamamos fuentes de energía a los recursos naturales de los que los seres humanos podemos obtener energía utilizable en nuestras actividades. Principio de conservación de la energía: la cantidad total de energía del universo se mantiene constante en cualquier proceso. Principio de degradación de la energía: con cada transformación la energía va perdiendo calidad para producir nuevas transformaciones. El trabajo de una fuerza constante que produce un desplazamiento rectilíneo en la misma dirección y sentido que la fuerza es igual al producto de la fuerza, por el desplazamiento incremento de X. La potencia es la relación que existe entre el trabajo realizado y el tiempo empleado. La energía cinética es la energía que poseen los cuerpos por el hecho de estar en movimiento. La energía potencial gravitatoria es la energía que posee un cuerpo debido a la posición que ocupa respecto a la superficie de la tierra. Principio de conservación de la energía mecánica: si la única fuerza que realiza trabajo sobre un cuerpo es el peso, su energía mecánica, es decir, la suma de sus energías cinética y potencial, se mantiene constante en todos los puntos de la trayectoria. Una maquina mecánica es un dispositivo que recibe el trabajo procedente de una fuerza externa y lo transmite a algún cuerpo. El rendimiento de una maquina mecánica es el cociente entre el trabajo que produce y el trabajo que se le suministra.

Page 9: La Fuerza y La Energia

Todo lo que vemos a nuestro alrededor se mueve o funciona debido a algún tipo o fuente de energía, lo cual nos demuestra que la energía hace que las cosas sucedan.

Si es de día, el Sol nos entrega energía en forma de luz y de calor. Si es de noche, los focos usan energía eléctrica para iluminar. Si ves pasar un auto, piensa que se mueve gracias a la gasolina, un tipo de energía almacenada. Nuestros cuerpos comen alimentos, que tienen energía almacenada. Usamos esa energía para jugar, estudiar... para vivir.

Desde una perspectiva científica, podemos entender la vida como una compleja serie de transacciones energéticas, en las cuales la energía es transformada de una forma a otra, o transferida de un objeto hacia otro.

Pensemos, por ejemplo, en un duraznero. El árbol absorbe luz —energía— de la radiación solar, convirtiendo la energía luminosa en energía potencial química almacenada en enlaces químicos. Luego utiliza esta energía para producir hojas, ramas y frutos. Cuando un durazno, "lleno" de energía potencial química, se cae del árbol al suelo, su energía de posición (almacenada como energía potencial gravitacional) se transforma en energía cinética, la energía del movimiento, a medida que cae. Cuando el durazno golpea el suelo, la energía cinética se transforma en calor (energía calórica) y sonido (energía acústica). Cuando alguien se come el durazno, ese organismo transforma su energía química almacenada en el movimiento de unos músculos (entre otras cosas)...

Page 10: La Fuerza y La Energia

Con las máquinas y las fuentes energéticas sucede lo mismo. El motor de un auto, por ejemplo, transforma la gasolina (que contiene energía química almacenada hace mucho tiempo por seres vivos) en calor. Luego transforma ese calor en, por ejemplo, energía cinética.

¿Qué tienen en común todos los ejemplos que hemos dado? Dos cosas: la transformación (de una energía en otra) y la transferencia (la energía pasa de un objeto hacia otro).

El principio crucial y subyacente en estas series de transformaciones de energía (y en todas las transacciones energéticas) es que la energía puede cambiar su forma, pero no puede surgir de la nada o desaparecer. Si sumamos toda la energía que existe después de una transformación energética, siempre terminaremos con la misma cantidad de energía con la que comenzamos, pese a que la forma puede haber cambiado.

Este principio es una de las piedras angulares de la física, y nos permite relacionar muchos y muy diversos fenómenos. ¿En qué se parecen una pelota de fútbol impulsada por una patada, a la llama de una vela? ¿Cómo podemos comparar cualquiera de ellos con un balón de gas, o con el sándwich que te comiste al almuerzo? La energía cinética de la pelota, la energía calórica de la llama, la energía potencial química del gas y el sándwich pueden medirse y ser todas transformadas y expresadas en trabajo, en "hacer

que algo suceda". Este es un paso hacia el entendimiento y la comprensión de la unidad esencial de la Naturaleza.

Fuentes energéticas

En la naturaleza existen diversas fuentes de energía; esto es, elementos o medios capaces de producir algún tipo de energía.

Como fuentes, capaces de producir algún tipo de energía, tenemos algunas que se presentan como agotables o no renovables: el carbón, el petróleo, el gas natural, la fuerza interna de la tierra (fuente geotérmica de energía), los núcleos atómicos (fuente nuclear de energía).

Hay otras fuentes capaces de producir energía y que se presentan como inagotables o renovables: ríos y olas (fuente hidráulica de energía, Ver Energía hidráulica), el sol (fuente solar de energía, Ver Energía solar), el viento (fuente eólica de energía, Ver Energía eólica.), las mareas (fuente mareomotriz de energía, Ver Energía del mar), la biomasa (fuente orgánica de energía).

Cualquiera de estas fuentes es capaz de producir alguno de los diferentes tipos o formas de energía que se conocen.

Tipos o formas de energía

1.- Energía mecánica.

2.- Energía calórica o térmica

3.- Energía química.

4.- Energía radiante o lumínica

5.- Energía eléctrica o electricidad.

6.- Energía nuclear.

7.- Energía magnética

8.- Energía metabólica.

Page 11: La Fuerza y La Energia

Si intentamos una definición de energía, y concordamos en que energía es todo aquello que puede hacer cambiar las propiedades de la materia, en un continuo de transformaciones, entenderemos por qué se llama energía tanto a las fuentes como a los tipos de ella.

Así, se habla comúnmente de energía hidráulica o hidroeléctrica para referirse a la energía eléctrica que proviene de una fuente hídrica (ríos, embalses y, eventualmente, olas), que son tales debido a la energía mecánica almacenada en las aguas, las cuales al moverse o caer transforman su propia energía potencial en energía cinética.

La energía mecánica es la empleada para hacer mover a otro cuerpo. Ésta se divide a su vez en dos energías: la energía potencial(es la que poseen los cuerpos debido a la posición en que se encuentran, es decir un cuerpo en altura tiene más energía potencial que un cuerpo en la superficie del suelo) y energía cinética (es la que poseen los cuerpos debido a su velocidad).

Un tipo de energía potencial muy conocido es el de la energía potencial hidráulica que es la que se obtiene de la caída del agua desde cierta altura a un nivel inferior lo que provoca el movimiento de ruedas hidráulicas o turbinas. En esta categoría podría incluirse también la energía del mar, que se puede obtener del movimiento de sus aguas, ya sea como olas o como mareas.

Energía calórica o térmica: es la que se trasmite entre dos cuerpos que se encuentran a diferente temperatura. El calor es la vibración de moléculas de un cuerpo. La vibración es movimiento. Unos de los fines para que se utilice la energía calórica es para causar movimiento de diversas máquinas.

El calor es energía en tránsito, que se hace evidente cuando un cuerpo cede calor a otro para igualar las temperaturas de ambos. En este sentido, los cuerpos ceden o ganan calor, pero no lo poseen.

Todo el calor proviene directa o indirectamente del sol.

Cuando se aprovecha directamente este calor a través de ingeniosos aparatos que lo almacenan y transforman en algún tipo de trabajo, se habla de energía solar.

Los procesos físicos por los que se produce la transferencia de calor son la conducción, la radiación y la convección. La conducción requiere contacto físico entre los cuerpos —o las partes de un cuerpo— que intercambian calor, pero en la radiación no hace falta que los cuerpos estén en contacto ni que haya materia entre ellos. La convección se produce a través del movimiento de un líquido o un gas en contacto con un cuerpo de temperatura diferente.

La energía química es la que generan los alimentos y los combustibles, o, más exactamente, la contenida en las moléculas químicas y que se desarrolla en una reacción química. Conocemos el resultado del alimento en nuestro cuerpo: desarrollamos energía para realizar diferentes trabajos. La energía procedente del carbón, de la madera, del petróleo y del gas en combustión, hace funcionar motores y proporciona calefacción.

La energía radiante o lumínica es aquella que más frecuentemente vemos en forma de luz y que nos permite ver las cosas alrededor de nosotros. Se propaga en todas las direcciones, se puede reflejar en objetos y puede pasar de un material a otro.

La luz proviene de los cuerpos llamados fuentes o emisores. Llena el Universo, emitida por el Sol y por todas las estrellas que son fuentes luminosas naturales (igual como lo son el fuego y algunos insectos como las luciérnagas). Sobre la Tierra, las plantas verdes se mantienen vivas gracias a la

Energía calórica.

Page 12: La Fuerza y La Energia

energía radiante del Sol, e incluso la vida de los animales —entre ellos el hombre— depende de esta energía. Además de la luz, las ondas de radio, los rayos X, los rayos ultravioleta, son formas de energía radiante invisibles, utilizadas por el hombre.

Existen también fuentes luminosas artificiales (las ampolletas, los tubos fluorescentes y las linternas).

El hombre ha ideado diferentes formas para utilizar la energía luminosa que proviene del sol. Algunas de ellas son los colectores solares y espejos curvos especiales, que se utilizan en calefacción y para generar energía eléctrica. La energía solar tiene la ventaja de no contaminar.

Energía eléctrica (o electricidad): es la que se produce por el movimiento de electrones a través de un conductor. Se divide a su vez en energía magnética (energía de los imanes), estática y corriente eléctrica.

La electricidad es una forma de energía que se puede trasmitir de un punto a otro. Todos los cuerpos presentan esta característica, propia de las partículas que lo forman, pero algunos la transmiten mejor que otros.

Los cuerpos, según su capacidad de trasmitir la electricidad, se clasifican en conductores y aisladores.

Conductores son aquellos que dejan pasar la electricidad a través de ellos. Por ejemplo, los metales.

Aisladores son los que no permiten el paso de la corriente eléctrica.

Centrales eléctricas

Son instalaciones que transforman en energía eléctrica, la energía mecánica que produce una caída de agua (centrales hidroeléctricas), o energía calórica o térmica, que se produce por la combustión de carbón o gas natural (centrales termoeléctricas).

La energía nuclear o atómica es la que procede del núcleo del átomo, la más poderosa conocida hasta el momento. Se le llama también energía atómica, aunque este término en la actualidad es considerado incorrecto. Esta energía se obtiene de la transformación de la masa de los átomos de uranio, o de otros metales pesados.

Aunque la energía nuclear es la descubierta más recientemente por el hombre, en realidad es la más antigua: la luz del Sol y demás estrellas, proviene de la energía nuclear desarrollada al convertirse el hidrógeno en helio.

Energía magnética: es aquella que está en los imanes y se produce porque los imanes están cargados con cargas de electrones, generalmente positivas. Esto hace que si uno acerca algún cuerpo de metal que sea dador de electrones al imán, el primero seda el electrón y quede cargado con una carga opuesta al imán lo que implica la atracción de los cuerpos.

Hoy se conoce la naturaleza del magnetismo y es posible fabricar potentes imanes de distintos tamaños utilizando el acero. Los mejores están hechos de aleaciones de acero especialmente ideadas para mantener las propiedades magnéticas.

Energía metabólica: es aquella generada por los organismos vivos gracias a procesos químicos de oxidación como producto de los alimentos que ingieren.

Page 13: La Fuerza y La Energia

Uso de la energía

Los usos de la energía son tan variados como las actividades humanas.

Necesitamos energía para la industria, para el transporte por carretera, ferrocarril, marítimo o aéreo, para iluminar las calles, oficinas, comercios y hogares, para los electrodomésticos que nos hacen la vida más fácil, para los aparatos multimedia, para la agricultura, para las telecomunicaciones, para mandar los cohetes al espacio... Es difícil imaginar nuestra vida cotidiana sin disponer de energía.

La transformación de la energía

Las máquinas

Una máquina es un conjunto de aparatos combinados que transforman la energía en otra forma más adecuada produciendo un efecto determinado.

Las máquinas hacen funcionar una herramienta, sustituyendo el trabajo del operario.

Todas las máquinas se caracterizan por realizar funciones que nos son útiles y que necesitan energía para funcionar.

Las máquinas se pueden clasificar según la función principal que desarrollan o por el tipo de energía que emplean.

Page 14: La Fuerza y La Energia

La energía de las máquinas

Las primeras máquinas construidas por los seres humanos utilizaban fuentes de energía naturales: el viento, las corrientes de agua, el calor del Sol, la combustión de la leña o el esfuerzo de animales o del propio ser humano. Pero a finales del siglo XVIII con el invento en Inglaterra de la máquina de vapor, la energía más usada era la proveniente de la combustión de la hulla.

Esta fuente de energía moverá las máquinas de vapor de las fábricas, de los ferrocarriles y calentará los hogares. Con posterioridad, se perfecciona la tecnología para extraer el petróleo llegando a ser más barato que el carbón. Esta nueva fuente de energía moverá los motores de combustión interna, los coches empiezan a fabricarse en serie. Es la energía que mueve casi todos los transportes.

La máquina de vapor

La máquina de vapor es un motor de combustión externa que transforma la energía térmica contenida en el vapor de agua en energía mecánica.

El vapor de agua generado en una caldera cerrada produce la expansión del volumen de un cilindro, que empuja a un pistón. Mediante un balancín, el movimiento de subida y bajada del pistón del cilindro se transforma en un movimiento de rotación que acciona, por ejemplo, las ruedas de una locomotora o el rotor de un generador eléctrico.

Una vez alcanzado el final de la carrera, el émbolo retorna a su posición inicial y expulsa el vapor de agua.

Page 15: La Fuerza y La Energia

Conclusión

El término energía es probablemente una de las palabras propias de la física que más se nombra en las sociedades industrializadas. La crisis de la energía, el costo de la energía, el aprovechamiento de la energía, son expresiones presentes habitualmente en los diferentes medios de comunicación social. ¿Pero qué es la energía?

La noción de energía se introduce en la física para facilitar el estudio de los sistemas materiales. La naturaleza es esencialmente dinámica, es decir, está sujeta a cambios: cambios de posición, cambios de velocidad, cambios de composición o cambios de estado físico, por ejemplo. Pues bien, existe algo que subyace a los cambios materiales y que indefectiblemente los acompaña; ese algo constituye lo que

Page 16: La Fuerza y La Energia

se entiende por energía.

La energía es una propiedad o atributo de todo cuerpo o sistema material en virtud de la cual éstos pueden transformarse modificando su situación o estado, así como actuar sobre otros originando en ellos procesos de transformación. Sin energía, ningún proceso físico, químico o biológico sería posible. Dicho en otros términos, todos los cambios materiales están asociados con una cierta cantidad de energía que se pone en juego, se cede o se recibe.

Las sociedades industrializadas que se caracterizan precisamente por su intensa actividad transformadora de los productos naturales, de las materias primas y de sus derivados, requieren para ello grandes cantidades de energía, por lo que su costo y su disponibilidad constituyen cuestiones esenciales.

Bibliografía

www.wikipedia.com

www.naturaeduca.com

Page 17: La Fuerza y La Energia

www.monografías.com