Las4301 uap01 ap03 pdf01

186
1/264

description

Udi mecanica

Transcript of Las4301 uap01 ap03 pdf01

Page 1: Las4301 uap01 ap03 pdf01

1/264

Page 2: Las4301 uap01 ap03 pdf01

2/264

INDICE

INTRODUCCIÓN:...................................................................................................... 4

Sistema de encendidoClasificación de sistemas de encendido.

ENCENDIDO CONVENCIONAL:............................................................................. 6

Principio de funcionamiento.Funcionamiento del encendido.Oscilograma primario.Oscilograma secundario.Bobina de encendido.Distribuidor de encendido.Bujías de encendido.Punto de encendido.Cables de alta tensión.

ENCENDIDO ELECTRÓNICO TRANSISTORIZADO:......................................... 41

Planteamiento.Generador de impulsos.Módulo electrónico de mando.Verificación y localización de averías.

Page 3: Las4301 uap01 ap03 pdf01

3/264

ENCENDIDO ELECTRÓNICO INTEGRAL:.......................................................... 84

Principio de funcionamiento.Sinopsis de funcionamiento.Captador de régimen y posición.Captador de presión en la admisión.Sensor temperatura motor.Sensor temperatura de aire.Sensor de detonación.Selector de octanaje.Unidad de mando.Etapa de potencia.Distribuidor de encendido.Verificación y localización de averías.

ENCENDIDO ELECTRÓNICO ESTÁTICO:........................................................ 139

Bobina De encendido.Principio de funcionamiento.Tipos de bobinas.Unidad de mando (sensor de fase)Verificación y localización de averías.

Page 4: Las4301 uap01 ap03 pdf01

4/264

Sistema de Encendido

Los motores de combustión interna, necesitan para su funcionamiento, un sistema capaz de encender la mezcla de aire y gasolina que se introduce y comprime en el interior de sus cilindros. Esto se logra por mediación de una chispa eléctrica que se hace saltar en la bujía de encendido, que inflama la mezcla, iniciándose así la combustión. El conjunto de elementos que participan en la obtención de dicha chispa se denomina CIRCUITO DE ENCENDIDO:

1. Batería.

2. Llave de contacto.

3. Bobina.

4. Distribuidor.

5. Bujías.

— Circuito de baja.

Circuito de alta.

Page 5: Las4301 uap01 ap03 pdf01

5/264

Clasificación de Encendidos

InterrupciónCorriente primario

Mecanismosde avance

DistribuciónCorriente alta

Contacto móvilConvencional Platinos Mecánicos

ComponenteElectrónico(Módulo)

ElectrónicoTransistorizado

(EET)Contacto

móvilMecánicos

ElectrónicoIntegral(EEI)

ComponenteElectrónico

(ECU)

SensoresElectrónicos

Contacto móvil

Individualmente(Bobinas DIS o Monobobinas)

ComponenteElectrónico

(ECU)

ElectrónicoEstático(EEE)

SensoresElectrónicos

Page 6: Las4301 uap01 ap03 pdf01

6/264

Page 7: Las4301 uap01 ap03 pdf01

7/264

Encendido Convencional o Clásico

El encendido clásico destaca particularmente: un ruptor o platinos, de accionamiento mecánico, que hace posible la transformación de tensión en la bobina de encendido, un condensador que protege a los contactos del ruptor a la vez que potencia la chispa y unos dispositivos de variación del avance, que modifican el momento del salto de chispa en función de las condiciones de funcionamiento de motor.

Llave de contacto Mecanismo de avance por vacío

Bobina

Distribuidor

CondensadorRuptor o platinos

Bujías

Page 8: Las4301 uap01 ap03 pdf01

8/264Principio de Funcionamiento I

Faraday demostró que, cuando un conductor corta a las líneas de fuerza producidas por un campo magnético, se genera en él una fuerza electromotriz inducida (f.e.m), que es directamente proporcional al flujo cortado, e inversamente proporcional al tiempo empleado en hacerlo.

Es decir:(Diferencia de flujo)

(Diferencia de tiempo)

Los mismos efectos se observan si en lugar de aproximar o alejar el imán a la bobina, es esta la que se mueve acercándose o alejándose del imán. Cambiandola polaridad del imán, el sentido de la corriente en la bobina es contrario al obtenido anteriormente.

Page 9: Las4301 uap01 ap03 pdf01

9/264Principio de Funcionamiento II

Supongamos circuito formado por dos solenoides, el primero, al que denominamos bobina primaria, alimentado por una batería y el segundo, al que denominamos bobina secundaria y cuyo circuito está cerrado por un amperímetro, tal como se indica en la figura.

Al cerrarse el interruptor, la corriente circula por la bobina primaria y el flujo en expansión corta el devanado secundario e induce en él una f.e.m. provocando una corriente eléctrica. Una vez que el flujo está completamente expandido, es decir, en su valor máximo, no hay variación de flujo en el secundario, por lo tanto la corriente inducida en este es cero.

Page 10: Las4301 uap01 ap03 pdf01

10/264

Principio de Funcionamiento III

Al abrirse el interruptor el campo magnético desaparece, dando lugar a la aparición de una nueva f.e.m., y provocando una corriente eléctrica de sentido contrario a la anterior. Una vez que el flujo ha desaparecido por completo, no hay variación de flujo en el secundario, por lo tanto la corriente es cero.

Siempre que haya una variación de flujo que corta las espiras de una bobina, se induce en esta una f.e.m. inducida, dando lugar a una corriente eléctrica siempre y cuando el circuito se encuentre cerrado.

Page 11: Las4301 uap01 ap03 pdf01

11/264Funcionamiento del Circuito I

• Al accionar la llave de contacto, la tensión de la batería queda aplicada al arrollamiento primario (4), de la bobina de encendido (3). Cuando los contactos de los platinos o ruptor (7) están cerrados por la acción de la leva, la corriente fluye a través de ellos, creándose en el primario el consiguiente campo magnético y almacenamiento de una cierta cantidad de energía en la bobina.

• Debido a la acción de la leva sobre los contactos de los platinos, el circuito se abre, interrumpiéndose la corriente por el primario y desapareciendo el campo magnético

• En ese instante se induce una fuerza electromotriz tanto sobre el arrollamiento primario como sobre el secundario de la bobina.

1. Batería2. Contacto.3. Bobina.4. Arrollamiento primario.5. Arrollamiento secundario.

6. Condensador.7. Ruptor o platinos.8. Contacto móvil o pipa.9. Tapa distribuidor.10.Bujías.

Page 12: Las4301 uap01 ap03 pdf01

12/264Funcionamiento del Circuito II

• El condensador (6) se carga mientras los contactos de los platinos se siguen abriendo. Así pues, la corriente que saltaría de un contacto a otro en forma de chispa, es absorbida por el condensador.

• Un instante después, y mientras los platinos permanecen abiertos, comienza el circuito oscilante de descarga y carga del condensador sobre el primario de la bobina, dando como consecuencia a cambios periódicos en el sentido de la corriente eléctrica por el primario ocasionando una sucesión de saltosde chispa en la bujía.

• La alta tensión inducida en el secundario, es mandada a la pipa o contacto móvil (8), que la reparte a la bujía correspondiente a través de los los cables de alta.

1. Batería2. Contacto.3. Bobina.4. Arrollamiento primario.5. Arrollamiento secundario.

6. Condensador.7. Ruptor o platinos.8. Contacto móvil o pipa.9. Tapa distribuidor.10.Bujías.

Page 13: Las4301 uap01 ap03 pdf01

13/264Oscilograma Primario

A-B: Carga inicial del condensador debido a la autoinducción en el primario.B-C: Oscilaciones de carga y descarga del condensador sobre el primario mientras que

existe chispa entre los electrodos de la bujía.C-D: Fase de amortiguación de las oscilaciones y disipación de la energía una vez

extinguida la chispa.D-E: Estabilización de la tensión a la de la batería y cierre de contacto en el punto E, por

lo que la tensión es cero.

Page 14: Las4301 uap01 ap03 pdf01

14/264Oscilograma Secundario

A-B: Tensión de encendido o de aguja. Tensión necesaria para iniciar la sucesión de chispasB-C: Bajada de tensión, ya que la resistencia al salto de chispa es menor.C-D: Tensión de arco. Tensión entre los electrodos mientras se mantiene la chispa.D-E: Zona de amortiguación donde se disipa la energía almacenada.E-A: Se inicia la zona de cierre de primario. Representa la f.e.m inducida en el secundario al

establecerse la corriente de nuevo.

Page 15: Las4301 uap01 ap03 pdf01

15/264Corriente por el Primario

La corriente por el primario no se establece de una manera instantánea, sino que debido a la aparición de la f.e.m. autoinducida en el primario, el estableciendo de esta es lento, alcanzando la corriente máxima en el primario al cabo de un cierto tiempo (t1) desde el cierre de los contactos.

El tiempo de establecimiento de corriente por el primario (t1) es mayor que el tiempo de interrupción de corriente (t2) por lo que los valores de f.e.m inducida en el secundario solo son lo suficientemente grandes, para producir el salto chispa en la bujía, cuando los platinos se abren y no cuando estos se cierran

Page 16: Las4301 uap01 ap03 pdf01

16/264Bobina de Encendido

Misión:Transformar la tensión existente en los bornes de la batería al valor

necesario para producir la chispa entre los electrodos de las bujías.

Características:• Primario formado por unas 200 a 300 espiras de hilo grueso aisladas entre sí y del

secundario. Sus extremos están conectados a los bornes de baja.• Secundario formado aproximadamente de 20.000 a 30.000 espiras de hilo fino de cobre

debidamente aisladas entre sí y del núcleo.

Page 17: Las4301 uap01 ap03 pdf01

17/264

Page 18: Las4301 uap01 ap03 pdf01

18/264Verificación de la Bobina

Resistencia del primario:

Valor teórico: 2 a 5 Ω. Valor real : _________

Resistencia del secundario:

Valor teórico: 6 a 11 kΩ. Valor real : _________

Nula derivación a masa del primario y secundario:

Valor teórico: infinito. Valor real : _________

Page 19: Las4301 uap01 ap03 pdf01

19/264Distribuidor

Misión:Distribuir la corriente de alta a las bujías en el

orden y momento preciso. Incluye otras funciones fundamentales como, por medio del ruptor, interrumpir la corriente por el primario de la bobina y, mediante los mecanismos de regulación del avance al encendido, determinar el instante preciso del encendido, en función del régimen de revoluciones del motor y la carga del mismo.

En su movimiento rotativo, distribuye la corriente en el conocido “orden de encendido” 1-3-4-2.

Page 20: Las4301 uap01 ap03 pdf01

20/264

Page 21: Las4301 uap01 ap03 pdf01

21/264Ruptor o Platinos

Misión:Establecer e interrumpir la corriente por el primario de la bobina, para de

esta forma proceder a su carga y descarga en el momento oportuno.

Características:• Consta de un contacto móvil llamado martillo y uno fijo denominado yunque.• Su apertura se realiza por el accionamiento de la leva, y su cierre por medio

de un muelle de lámina.

Portaplatinos

Placa fija

Tornillo de ajustePlatinos

Acoplamiento avance por vacío

Cable de masa

Page 22: Las4301 uap01 ap03 pdf01

22/264Ciclo de Encendido

Angulo disponible: Es el ángulo de giro del distribuidor del que dispone el encendido para cargar y descargar la bobina. 360º/Número de cilindros.

360º/6 = 120º360º/4 = 90º

Ángulo de cierre o contacto: Es el ángulo de rotación de la leva durante el cual los contactos del ruptor permanecen cerrados.Ángulo Dwell: Es el ángulo de leva expresando en porcentaje respectos al ángulo disponible. Ángulo de apertura o chispa: Es el ángulo de rotación de la leva durante el cual los contactos del ruptor permanecen abiertos.

Page 23: Las4301 uap01 ap03 pdf01

23/264Condensador

Misión:• En el momento de la apertura de contactos, el condensador se carga absorbiendo el

alto voltaje autoinducido, y reduciendo el arco eléctrico que se produce entre los contactos del ruptor y que ocasionaría su rápida destrucción.

• Una más rápida interrupción del circuito primario, consiguiéndose tensiones inducidas más elevadas, aproximadamente 20 veces más rápido de lo que lo haría sin condensador.

• Crea, junto con el arrollamiento primario de la bobina, un circuito oscilante de cargas y descargas del condensador a través del primario, lo que da lugar a una sucesión de saltos de chispas entre los electrodos de la bujía, aportando la energía suficiente para la combustión de la mezcla.

Page 24: Las4301 uap01 ap03 pdf01

24/264Bujías de Encendido

Misión:Tiene como misión hacer que la corriente, producida en el secundario,

salte en forma de chispa entre sus electrodos.Rosca terminal

Aislador

Anillo de reborde

Barreras de fuga

Cámara de aire

Anillo sellador

Compuesto vítreoconductor

Electrodo de masa

Electrodo central

Píe del aislador

Anillo sellador

Núcleo central

Cuerpo metálico

Terminal

Page 25: Las4301 uap01 ap03 pdf01

25/264

Temperatura Funcionamiento Bujía

La temperatura de la bujía ha de estar dentro de unos límites comprendidos entre los 600º y 800º C. Si la temperatura de la bujía está por encima de la temperatura de funcionamiento, da lugar a encendidos por incandescencia (autoencendido); si por el contrario, la temperatura de la bujía es menor de la de funcionamiento, las partículas de aceite y hollín que se depositan sobre el píe del aislador, no desaparecen por ignición, pudiéndose originar derivaciones de corriente.

Page 26: Las4301 uap01 ap03 pdf01

26/264Grado Térmico de una Bujía

Grado térmico de una bujía se refiere a la clasificación en tipos que se hace de las bujías, según su capacidad de transferencia del calor desde el lugar de encendido, en el píe del aislador, hasta el sistema de refrigeración y al medio ambiente.

Grado térmico bajo Grado térmico altoGrado térmico medio

Las bujías con bajo grado térmico se denominan bujías calientesLas bujías con alto grado térmico se denominan bujías frías

Page 27: Las4301 uap01 ap03 pdf01

27/264

Page 28: Las4301 uap01 ap03 pdf01

28/264Grado Térmico de una Bujía

Page 29: Las4301 uap01 ap03 pdf01

29/264

Page 30: Las4301 uap01 ap03 pdf01

30/264Temperatura de la bujia

Page 31: Las4301 uap01 ap03 pdf01

31/264Control y Reglaje de Bujías

El reglaje deberá realizarse actuando sobre el electrodo de masa y nunca sobre el electrodo central, para así evitar deterioros en la porcelana aislante. Lo acercaremos o lo separaremos para darle el reglaje indicado por el fabricante y lo comprobaremos siempre con una galga de espesores.

NOTA: el fabricante del vehículo, siempre nos recomendará un tipo de bujía, (marca y modelo) la cual nos garantiza un correcto funcionamiento; de instalar otro tipo tendremos infinidad de fallos y averías: arranques en frío y caliente defectuoso, consumo alto, falta de potencia, daños en el motor, etc.

Page 32: Las4301 uap01 ap03 pdf01

32/264MONTAJE DE LAS BUJÍAS DE ENCENDIDO

MONTAJE CON LLAVE DINAMOMÉTRICA

MONTAJE SIN LLAVE DINAMOMÉTRICA

Page 33: Las4301 uap01 ap03 pdf01

33/264Punto de Encendido

El punto de encendido es el momento en el cual la corriente salta en forma de chispa entre los electrodos de la bujía.

Desde que salta la chispa y comienzan a inflamarse las capas de mezcla más cercanas a la bujía, hasta que finaliza la combustión de la totalidad de mezcla, transcurre un cierto tiempo, tiempo durante el cual el pistón sigue en movimiento. Para conseguir que la mezcla esté quemada totalmente justo después de que el pistón supere la posición del PMS, obteniéndose el valor máximo de presión, se le dota al punto de encendido de un avance.

1. Chispa de encendido.2. Presión de combustión máxima.

Page 34: Las4301 uap01 ap03 pdf01

34/264Avances Excesivos y Escasos

Si el avance al encendido es excesivo, la máxima presión de combustión se conseguirá antes de que el pistón alcance el PMS, frenándole. Como resultado, la potencia del motor baja y la temperatura del motor aumenta, originando combustiones espontáneas de la mezcla, con picos de presión que se reflejan en vibraciones y ruido denominado picado

1a. a: Avance del encendido correcto.

1b. b: Encendido avanzando, Picado.

1c. c: Encendido retardado, baja presión.

Si el avance al encendido es escaso, la máxima presión de combustión será menor y se conseguirá cuando el pistón ya está lejos del PMS. Esto hace que se reduzca la potencia del motor y se eleve la temperatura de este.

Page 35: Las4301 uap01 ap03 pdf01

35/264

Page 36: Las4301 uap01 ap03 pdf01

36/264Control del Punto de Encendido

El control del punto de encendido se realiza con una lámpara estoboscópica, que efectúa un destello en el momento de encendido. Al orientar el destello hacía las marcas de referencia en el motor, dadas por el fabrica, parece que estas fuesen inmóviles.

El ajuste básico del punto de encendido se efectúa en muchos casos el número de revoluciones de marcha a ralentí (600-900 r.p.m., según indica fabricante). Si se comprueba que las marcas no coinciden, girar la carcasa del distribuidor hasta la perfecta coincidencia de las mismas.

Pinza capacitiba

Cilindro 1 ó 4

Pistola estroboscópica

Page 37: Las4301 uap01 ap03 pdf01

37/264Variación Punto de Encendido

Desde el inicio de la inflamación de la mezcla hasta su combustión completa, transcurren unos 2 milisegundos y prácticamente permanece constante mientras la composición de la mezcla no varíe; sin embargo, al aumentar las revoluciones del motor, el tiempo de paso del pistón por el PMS se reduce, con lo que la finalización de la combustión y la máxima presión obtenida se alcanza cada vez más lejos del PMS. Por lo tanto, según va aumentando la velocidad del motor, el encendido debe “adelantarse”.

Avance inicial

Page 38: Las4301 uap01 ap03 pdf01

38/264

Por otra parte, cuando el motor funciona bajas o medias cargas, y la mezcla aspirada por el motor es pobre, la velocidad de inflamación disminuye, por lo que necesitamos más tiempo para realizar la combustión completa, siendo necesario avanzar el punto de encendido según la carga del motor.

Avance inicial+ centrífugo + por depresión

Page 39: Las4301 uap01 ap03 pdf01

39/264Avance Centrífugo

Está localizado en el distribuidor y se encarga de adelantar el punto de encendido a medida que se incrementa el número de revoluciones del motor. Cuando el motor gira a ralentí, los muelles mantienen a los contrapesos en reposo, pero cuando el motor va aumentando de r.p.m. los contrapesos debido a la acción centrífuga se desplazan hacía la periferia, con lo cual los extremos de los contrapesos hacer girar al manguito de la leva en el mismo sentido de giro del distribuidor, dando así un cierto avance al encendido.

ContrapesosMuelles

Leva

Page 40: Las4301 uap01 ap03 pdf01

40/264Curva de Avance Centrífugo

El fabricante nos indica el valor del avance al encendido en función de las revoluciones del distribuidor en una curva característica, en la cual se indica los márgenes aceptables.

Si los dos muelles del conjunto de avance centrífugo, están ajustados sobre los respectivos pernos, el avance es lineal hasta llegar al tope de la apertura de las masas, por lo que no se consigue más avance y la curva se hace horizontal.

Si uno de los muelles presenta holgura en uno de los pernos de sujeción, la curva tendrá dos pendientes, la primera corresponderá a la fuerza que opone el muelle ajustado y el inicio de la segunda, a la fuerza que oponer los dos muelles una vez superada la holgura del segundo.

Page 41: Las4301 uap01 ap03 pdf01

41/264Avance por Vacío

Está igualmente localizado en el distribuidor y se encarga de adelantar el punto de encendido en función de la riqueza de mezcla.

Cuando el motor funciona a ralentí, la depresión no actúa sobre la membrana.

Ralentí

Page 42: Las4301 uap01 ap03 pdf01

42/264Avance por Vacío

Al abrirse la mariposa de gases a medias cargas, la depresión en el colector de admisión llega a la cápsula de vació haciendo girar a la placa portarruptor en sentido contrario al de giro de la leva, adelantando el punto de apertura de los contactos del ruptor y por lo tanto avanzando el punto de encendido.

Medias cargas

Page 43: Las4301 uap01 ap03 pdf01

43/264Avance por Vacío

A plena carga, la depresión en el colector de admisión disminuye, recuperando la placa portarruptor su posición de reposo.

Plenas cargas

Page 44: Las4301 uap01 ap03 pdf01

44/264Curva de Avance por Vacío

El fabricante nos indica el valor del avance al encendido en función de la depresión en el colector de admisión en una curva característica, en la cual se indica los márgenes aceptables.

La curva de avance en grados con respecto a la depresión, en milímetros de mercurio (mm. Hg) o en milibares (mbar).

El fabricante nos indica los grados de avance en el distribuidor, por lo que hay que tener presente que: 1 grado de giro del distribuidor = 2º de giro del motor.

Page 45: Las4301 uap01 ap03 pdf01

45/264Control Curvas de Avance

Curva de avance centrífugo

Curva de avance por vacío

Page 46: Las4301 uap01 ap03 pdf01

46/264Cables de Alta Tensión

Los cables destinados a transmitir la alta tensión, han de reunir unas características especiales en cuanto a su aislamiento, ya que deben tener la suficiente rigidez dieléctrica para aislar del exterior la elevada tensión que soportan. Sin embargo debido a la pequeña corriente que circula por ellos, no necesitan gran sección de alma.

Ademas han de ser capaces de soporta altas temperaturas, sin agrietamientos ni deterioro del aislante, y ser perfectamente insensibles a la humedad e hidrocarburos.

También son antiparasitarios, para que no puedan interferir con las emisiones de radio y televisión.

Cable antiparasitariode encendido

Cable con núcleode cobre

Page 47: Las4301 uap01 ap03 pdf01

47/264

Control Instalación de Alta Tensión

Resistencia y aislamiento de la pipa:

Valor resistencia: 1 kΩ. Valor real : _________

Valor aislamiento: infinito. Valor real : _________

Aislamiento de la tapa del distribuidor:

Valor aislamiento: infinito. Valor real : _________

Resistencia y aislamiento de la pipa:

Valor resistencia: según fabricante (25 - 30 kΩ máximo). Cable cilindro nº 1: _________Cable cilindro nº 2: _________Cable cilindro nº 3: _________Cable cilindro nº 4: _________Cable bobina/distriuidor: _________

Page 48: Las4301 uap01 ap03 pdf01

48/264Ejemplo de Controles

Modelo Ford Fiesta 1.0

Código motor TKA

Ángulo de apertura y cierre 48º – 52º (53 – 58 %)

Orden de encendido 1-2-4-3

Reglaje de encendido a PMS sin vacío

Avance inicial 10º / 800 r.p.m.

Avance centrífugo 11º - 15º / 2.000 r.p.m.

(Sin vacío y con avance inicial ) 13º - 18º / 3.000 r.p.m.

20º - 25º / 5.000 r.p.m.

Avance por vacío Avance

Variación 10º –18º

Comienzo 67 mbar

Final 300 mbar

Bujías Bosch / NGK

Tipo HR 7 DC / BPR6EFS

Separación entre contactos 0,8 mm

Sistema de encendido SZ

Bobina de encendido Lucas

Tensión de funcionamiento 7 V

Resistencia estabilizadora 1,5 Ω

Resistencia del primario 0,95 – 1,6 Ω

Resistencia del secundario 5 – 9,3 kΩ

Distribuidor de encendido Bosch

Separación del ruptor 0,5 mm

Capacidad del condensador 0,45 µF

Page 49: Las4301 uap01 ap03 pdf01

49/264

Page 50: Las4301 uap01 ap03 pdf01

50/264El Planteamiento

El desreglaje del punto del encendido y el desgaste de los elementos giratorios confieren al encendido clásico una vida muy corta, con lo cual se hace necesario el estudio de un nuevo tipo de encendido que suprima en parte los problemas del encendido clásico y mejore el funcionamiento del motor. se utilizan bobinas con primarios de poca resistencia óhmica, al poder utilizar en el circuito primario corrientes más elevadas, de hasta 10 amperios, el campo magnético generado es mayor al igual que la tensión inducida en el secundario.

10 A

Si, pero ¿por quéelemento se va sustituir el ruptor para conseguir la ruptura de la elevada

corriente por el primario?

Page 51: Las4301 uap01 ap03 pdf01

51/264La Solución

La ruptura eléctrica se realizará con un transistor intercalado en el circuito primario de bobina, de tal manera que el transistor necesitará una débil corrientede mando en su base para poder comandar la corriente de paso por el primario.

LA SOLUCIÓN ES EL TRANSISTOR

10 A

La solución es el transistor, pero ¿Cómo dónde, y de qué manera damos la señal a la base

del transistor?

Page 52: Las4301 uap01 ap03 pdf01

52/264

Encendido Electrónico Transistorizado

En el interior del distribuidor se dispone de un generador de impulsos que hace llegar esos impulsos a un módulo electrónico de mando, en donde después de tratarlos convenientemente, determina principalmente el ángulo de cierre y el punto de encendido.

Módulo de mando

BateríaLlave decontacto

Bobina

Bujía

Generador de impulsos

Page 53: Las4301 uap01 ap03 pdf01

53/264Generador de Impulsos

Los sistemas de encendido electrónicos transistorizados (EET), independientemente de la variedad de las soluciones empleadas, se pueden clasificar según el tipo de generador de impulsos, no obstante nosotros únicamente nos vamos a referir a los generadores de impulso de mayor difusión, es decir:

Generador de impulsos por inducción magnética.Generador de impulsos por efecto hall.

Generador HallGenerador Inductivo

Page 54: Las4301 uap01 ap03 pdf01

54/264Generador de Impulsos Inductivo

El generador de impulsos se va situar en el distribuidor, en el lugar del ruptor. Consta de una parte giratoria o rotor y de una fija o estator.

Rotor

EstatorDisco polar

Conexiones

Page 55: Las4301 uap01 ap03 pdf01

55/264

Generador de Impulsos Inductivo

Rotor

Bobinado de inducción

El rotor: Es de acero dulce, magnético, lleva tantos dientes como número de cilindros hay y es movido por el eje del distribuidor.

El estator: Lleva un imán permanente y una bobina arrollada alrededor de una masa metálica.

Page 56: Las4301 uap01 ap03 pdf01

56/264Funcionamiento (I)

Page 57: Las4301 uap01 ap03 pdf01

57/264Funcionamiento (II)

Page 58: Las4301 uap01 ap03 pdf01

58/264Funcionamiento (III)

Page 59: Las4301 uap01 ap03 pdf01

59/264Funcionamiento (IV)

Page 60: Las4301 uap01 ap03 pdf01

60/264

Al repetirse nuevamente el ciclo, por cada una de los salientes del rotor, en un giro completo de éste conseguiremos una tensión alterna como la representada en la figura, cuyo valor de pico de estará en función de la velocidad de rotación del distribuidor, pudiendo variar desde 0,5 V a 100 V.

Rotor

Estator Bobinado

Page 61: Las4301 uap01 ap03 pdf01

61/264

Page 62: Las4301 uap01 ap03 pdf01

62/264Avance en el EE Transistorizado

Avance Centrífugo

Page 63: Las4301 uap01 ap03 pdf01

63/264

Avance en el EE Transistorizado

Avance por Vacío

Page 64: Las4301 uap01 ap03 pdf01

64/264Circuito EET con Captador Inductivo

1

2 5 6

3

4

Page 65: Las4301 uap01 ap03 pdf01

65/264Generador de Impulsos Hall

El funcionamiento de este generador, se basa en el fenómeno físico conocido como efecto Hall.

Un semiconductor es recorrido por una corriente entre sus puntos A y B, si se le aplica un campo magnético N-S, perpendicular al semiconductor, se genera una pequeña tensión (tensión Hall) entre los puntos E y F debido a la desviación de las líneas de corriente por el campo magnético, cuando estas dos condiciones se producen de forma simultánea.

Page 66: Las4301 uap01 ap03 pdf01

66/264

Constitución:

Pantalla

Imán

Integrado

Tambor

TamborPantalla

Integrado

Page 67: Las4301 uap01 ap03 pdf01

67/264

Page 68: Las4301 uap01 ap03 pdf01

68/264

Funcionamiento:El módulo de mando alimenta de manera constate al integrado Hall, que a

su vez proporciona la corriente necesaria al semiconductor hall, con lo que sólo hay que variar la intensidad del campo magnético periódicamente en el ritmo de encendido, para conseguir una tensión hall variable.

Page 69: Las4301 uap01 ap03 pdf01

69/264

Page 70: Las4301 uap01 ap03 pdf01

70/264Integrado Hall (I)

El circuito integrado Hall, actúa como un interruptor, transfiriéndole masa al terminal neutro (o) con la frecuencia que le indique el semiconductor Hall. Por el terminal (o) el módulo de mando envía una tensión de referencia, que según el estado de conducción de la etapa de potencia del integrado Hall, caerá prácticamente a cero o no.

(+)

Etapa depotencia

Compensaciónde temperatura

Amplificador

EstabilizadorDe tensión

Convertidorde señal

(-)

(O)SemiconductorHall

Page 71: Las4301 uap01 ap03 pdf01

71/264Integrado Hall (II)

Page 72: Las4301 uap01 ap03 pdf01

72/264Circuito EET con Captador Hall

1

3,5,6

4

2

Page 73: Las4301 uap01 ap03 pdf01

73/264Módulo Electrónico de Mando

Los aparatos de mando de los sistemas de encendido de alta prestación con captador inductivo o Hall (TZ-I) están construidos casi exclusivamente en técnica híbrida, ya que reúnen alto espesor de envoltura con reducido peso y buena fiabilidad.

El circuito va montado en el marco de metal que disipa la pérdida de calordel circuito a la superficie de anclaje. Los componentes están protegidos de la suciedad y de posibles daños mecánicos con una tapa.

Page 74: Las4301 uap01 ap03 pdf01

74/264

Funcionamiento Módulo de Mando

Batería

A

C

D

B

1 2 3 4 5

6 7

a

bc d

+

El funcionamiento interno de un módulo electrónico de mando se puede explicar brevemente en un diagrama de bloques como el de la figura.

A: Módulo de mando.B: Bobina de encendido.C: Sensor inductivo.D: Sensor hall.

1. Conformador de impulsos.2. Regulación ángulo de cierre.3. Desconexión corriente en reposo.4. Etapa de excitación o impulso.5. Etapa de potencia.6. Etapa de limitación de corriente.7. Resistencia de captación de corriente.

a: Intensidad de primario.b: Valor nominal de la corriente primaria.c: Tiempo regulación tensión efectiva.d. Tiempo regulación tensón nominal.

Page 75: Las4301 uap01 ap03 pdf01

75/264Limitación de Corriente por el Primario

Produce una caída de tensión en una resistencia de bajo valor en el cable del emisor del transistor. A través de una conexión de regulación de limitación de tensión se ejerce directamente el mando de la etapa de excitación del transistor de potencia del encendido.

Limitación

Page 76: Las4301 uap01 ap03 pdf01

76/264

Page 77: Las4301 uap01 ap03 pdf01

77/264Variación del Ángulo de Contacto

Mediante un circuito interno se modifica la duración del ángulo de contacto en función de a la velocidad de giro del motor y de la tensión de alimentación, aumentando el ángulo de contacto con altos regímenes de giro y ante bajastensiones de batería.

Ángulo de cierre

5.000 r.p.m.

Ángulo de cierre

1.000 r.p.m.

Page 78: Las4301 uap01 ap03 pdf01

78/264

Page 79: Las4301 uap01 ap03 pdf01

79/264

Page 80: Las4301 uap01 ap03 pdf01

80/264Localización del Módulo

El emplazamiento del módulo electrónico puede ser variado. Se empezó situándole en una placa de refrigeración de aluminio, también se instalaba en el mismo soporte de la bobina de encendido y por último se ha acabado situando en el propio distribuidor, haciendo la instalación y el traslado de la señal más fácil y sencillo.

Page 81: Las4301 uap01 ap03 pdf01

81/264Verificación y Localización de Averías

Encendido Electrónico Transistorizado con captador inductivo

Page 82: Las4301 uap01 ap03 pdf01

82/264

2) chispa fuerte y azul

3) Tensión de alimentación.

1)chispa fuerte y azul

Page 83: Las4301 uap01 ap03 pdf01

83/264

4) Verificación masa. 5) Tensión primario.

6) Verificar el captador:

Resistencia Aislamiento

Page 84: Las4301 uap01 ap03 pdf01

84/264

Medir la tensión alterna o obtener la señal del captador.

Page 85: Las4301 uap01 ap03 pdf01

85/264

7) La función Salida del módulo.

8) Si el diodo parpadea, verificar la bobina.

PrimarioSecundario

Excitación del sistema:Se puede excitar la etapa del módulo, dando al pin 5 ó 6 alimentación a 12 voltios de

una forma pulsatoria, a la vez que se observa el salto de chispa a la salida de la bobina.

Page 86: Las4301 uap01 ap03 pdf01

86/264Ejemplo Controles de Encendido (I)

Esquema encendido Citroen AX 1.1/1.4

Modelo Citroen AX 1.1/1.4

Código motor H1A/K1A

Entrehierro 0,3 a 0,5 mm

Orden de encendido 1-3-4-2

Reglaje de encendido a PMS sin vacío (o)

Avance inicial 8º / 750 r.p.m.

Sistema de encendido TZ-i 2ª generación

Bobina de encendido Bosch/Ducelier

Resistencia del primario 0,8 – 1,2 Ω

Resistencia del secundario 8 – 11 kΩ / 6,5 kΩ

Distribuidor de encendido Bosch

Resistencia del captador 320 Ω

Page 87: Las4301 uap01 ap03 pdf01

87/264Ejemplo Controles de Encendido (II)

Esquema encendido Fiat Uno 60

Modelo Fiat Uno 60

Código motor 156A

Tipo BAE 506A

Sistema de encendido Breakerless 2º generación

Bobina de encendido M. Marelli

Resistencia del primario 0,7 – 1 Ω

Resistencia del secundario 3,3 – 4,1 kΩ

Distribuidor de encendido M. Marelli

Tipo SE 101 A

Resistencia del captador 758 - 872 Ω

Entrehierro 0,3 a 0,4 mm

Orden de encendido 1-3-4-2

Reglaje de encendido a PMS sin vacío (o)

Avance inicial 10º / 750 r.p.m.

Page 88: Las4301 uap01 ap03 pdf01

88/264Verificación y Localización de Averías

Encendido Electrónico Transistorizado con captador Hall

Page 89: Las4301 uap01 ap03 pdf01

89/264

a) Alimentación del captador Hall.

(+)

(-)

(6)

(3)

(o)

(-)

b) Tensión de referencia.

Page 90: Las4301 uap01 ap03 pdf01

90/264

c) Función salida del captdor Hall.

(-)(3)

Obtención de la señal del captador Hall.

(6)

(3)

2 - 10 V

Excitación del sistema:Se puede excitar la etapa del módulo, dando al pin 6 masa de una forma pulsatoria,

a la vez que se observa el salto de chispa a la salida de la bobina.

Page 91: Las4301 uap01 ap03 pdf01

91/264

Ejemplo Controles de Encendido (III)

Esquema encendido Seat Toledo 1.8

(+)(o)(-)ECU inyección

Modelo Seat Toledo 1.8

Código motor RP

Resistencia del secundario 3,4 – 3,5 kΩ

Distribuidor de encendido Bosch

Orden de encendido 1-3-4-2

Sistema de encendido TZ-h

Bobina de encendido BOSCH

Resistencia del primario 0,52 – 0,76 Ω

Reglaje de encendido a PMS sin vacío (o)

Avance inicial 6º ±1 / 750 r.p.m.

Comprobación del avance 0º / 950 - 1.200 rpm

Sin vacío 11º-15º/ 2.600 rpm

Variación avance por vacío 10º-14º

Comienzo 100 mbar

27º- 31º/ 6.000 rpm

Final 260 mbar

Page 92: Las4301 uap01 ap03 pdf01

92/264

Page 93: Las4301 uap01 ap03 pdf01

93/264

Encendido Totalmente Electrónico

Si Bien el encendido transistorizado presenta un neto progreso respecto al encendido convencional, no es menos cierto que el reglaje del punto de avance se realiza siempre mediante correctores mecánicos ya sean centrífugos o por depresión.

El siguiente paso será por tanto que el avance del encendido sea en todo momento el adecuado para el grado de carga del motor y el régimen de giro, y que todo esto se realice sin ningún tipo de unión mecánica con el motor. La solución nos vendrá dada por la adopción para el encendido de un “Sistema Electrónico Integral” o también denominado “Encendido de Campo Característico”, que suprime totalmente los dispositivos mecánicos de corrección del avance, a los que sustituye por sensores electrónicos.

Page 94: Las4301 uap01 ap03 pdf01

94/264Principio de Funcionamiento

Captador deVelocidady posición

Captador deVelocidady posición Cierre y

apertura del

primario

Cierre y apertura

del primario

BOBINABOBINA

UNIDADELECTRÓNICADE CONTROL

(ECU)

UNIDADUNIDADELECTRELECTRÓÓNICANICADE CONTROLDE CONTROL

(ECU)(ECU)

Captador deCarga motor

Captador deCarga motor

OtrassalidasOtras

salidasOtras entradas

Otras entradas

Page 95: Las4301 uap01 ap03 pdf01

95/264Campo Característico

Los distintos valores son memorizados en la unidad electrónica de control. Su ilustración gráfica se representa bien como series de puntos en un sistema coordinado de desarrollo tridimensional denominado mapa tridimensional o por tablas de datos.

Mapa tridimensional

¡Jo!, Quérápido soy.

Tabla de datos

Cuanto más alto es el número de puntos o coordenadas que componen un mapa tridimensional o una tabla de datos, más precisa es la respuesta a cada situación específica del motor. Además de la precisión del mapa, otro factor importante es la rapidez de respuesta de la unidad de control a los datos de entrada. Actualmente puede afirmarse que estos datos son calculados prácticamente en “tiempo real”.

Page 96: Las4301 uap01 ap03 pdf01

96/264

ECU

Sinopsis del Funcionamiento

Captador régimen

Activación del AC

Captador Posición

Selección octanaje

Captador carga

Presión del turbo

Sensor temp. motor

Sensor temp. aire

Sensor detonación

Contactor mariposa

Selección cambio auto

BOBINAabre y cierra el primario

Válvula paso mínima

Cuentarrevoluciones

Testigo avería

Toma de diagnosis

Otras funciones

Otras entradas

15

50

31

Page 97: Las4301 uap01 ap03 pdf01

97/264

Captador de Régimen y posición

Sirven para determinar el número de revoluciones y la sincronización con el cigüeñal, mediante captadores, existen varias posibilidades en función de la disposición de los captadores: Si estos van montados en la polea, volante del cigüeñal o en el distribuidor, y en función del tipo de captador, pudiendo ser mayoritariamente del tipo inductivo o hall.

Sensor inductivo en polea Sensor inductivo

en volante

Sensor inductivo en distribuidor

Sensor Hall en distribuidor

Page 98: Las4301 uap01 ap03 pdf01

98/264Captadores Inductivos

En los montajes de este captador en el volante o polea del cigüeñal, este captador está constituido por una corona dentada denominada rueda fónica, acoplada en la periferia del volante o polea, y un captador magnético colocado frente a ella, formado por una bobina enrollada en un imán permanente.

El giro continuado de la corona produce sucesivas variaciones de flujo debidas al paso de los dientes y huecos frente al captador, en cuya bobina se induce una tensión alterna con impulsos positivos y negativos. La frecuencia con que se realizan dichos impulsos le sirve a la unidad de mando para interpretar el régimen de giro del motor.

Page 99: Las4301 uap01 ap03 pdf01

99/264Captador de Régimen

Rueda Fónica condientes idénticos

Sensor de régimen

Page 100: Las4301 uap01 ap03 pdf01

100/264Captador de Posición o PMS

Sensor de régimen

Rueda Fónica condientes enfrentados

Page 101: Las4301 uap01 ap03 pdf01

101/264Captadores de Régimen y Posición

Rueda Fónica contetones de posición

Sensor de régimenSensor de posición

Page 102: Las4301 uap01 ap03 pdf01

102/264Captador de Régimen y Posición

Rueda Fónica condientes y huecos dobles

Page 103: Las4301 uap01 ap03 pdf01

103/264Captador de Régimen y Posición

Rueda Fónica conausencia de dientes

Sensor de régimen

Page 104: Las4301 uap01 ap03 pdf01

104/264

El perfil de los dientes de la corona genera un perfil de tensión alterna, cuya frecuencia indica a la unidad de mando el régimen de giro del motor. Los dientes dobles o la falta de dientes, según el caso, genera una señal de referencia que permite a la unidad de mando reconocer, con un cierto avance, el PMS de la pareja de cilindros 1-4. La unidad de mando reconoce el PMS de la pareja de cilindros 2-3 gracias al montaje de dos marcas de referencia enfrentadas o debido al cálculo de la unidad de mando

PMS Cilindros 1- 4

PMS Cilindros 2- 3

20d

50d

1d

Page 105: Las4301 uap01 ap03 pdf01

105/264

PMS Cilindros 1- 4

PMS Cilindros 2- 3

20d

50d

1d

1 20

PMS Cilindros 1-4

avanceavance

PMS Cilindros 2-3

50

Page 106: Las4301 uap01 ap03 pdf01

106/264

Los sistemas de encendido con captadores inductivos en el distribuidor tuvieron inicialmente una gran implantación, sobretodo a la facilidad de sustitución en los motores existentes de los distribuidores convencionales por otros con sensores inductivos, más adelante la mayor precisión y el mayor caudal de datos suministrado por los sensores dispuestos frente a coronas dentadas solidarias al cigüeñal hizo que éstos se generalizaran finalmente.

Conector

Bobinado e imán

Rueda polarMarca para el calado

Pipa o contacto móvilEste distribuidor actúa como sensor de posición y como

distribuidor de corriente de alta.

Page 107: Las4301 uap01 ap03 pdf01

107/264Captadores Hall

Estos tipos de sensores se utilizan la gran mayoría de veces como sensores montados en el distribuidor. La señal de régimen se toma directamente del sensor hall, ya que la señal ya está en forma digital. El intervalo del encendido se obtiene del perfil de la señal hall en la unidad de control. En una palabra, el propio captador hall hace de sensor de régimen motor y de sensor de posición.

Page 108: Las4301 uap01 ap03 pdf01

108/264

Otras veces, únicamente actúa como sensor de posición en combinación con un sensor inductivo de régimen, ver figura. En el ejemplo el tambor de captador hall consta de dos ventanas. En su movimiento el tambor cubre y descubre al captador hall dos veces por vuelta del árbol de leva. Por cada vuelta del rotor, da origen a dos ondas cuadradas con un determinado desfase entre ellas (en la figura 90º) que, junto a las señales generadas por el sensor de régimen, permiten que la unidad de mando reconozca con cierta anticipación el PMS del cilindro 1.

Page 109: Las4301 uap01 ap03 pdf01

109/264Conexionado Sensor Régimen

ECU

Sensor Inductivo

Sensor inductivo

Sensor Hall

ECU+5Vo

-

Sensor Hall

Page 110: Las4301 uap01 ap03 pdf01

110/264

La estrategia DEPHIA.

La estrategia DÉPHIA (DEtección de Fase Integrada al Encendido), se basa en laadquisición de una señal procedente de las bobinas de encendido jumoestático.

Ud Se elabora a partir de las tensiones de salida de la bobina de encendido común a los cilindros 1 y 4.

Cilindro 1 Cilindro 3Cilindro 2 Cilindro 4

FUNCIÓN: INYECCION LA INFORMACIÓN REFERENCIA CILINDRO.

Page 111: Las4301 uap01 ap03 pdf01

111/264

- Cilindro 4 en fase compresión y cilindro 1 en fase escape.

Cilindro 1 Cilindro 4

VHT1 = 5 KV VHT4 = 10 KV

VHT = 15 KV

La estrategia DEPHIA.

FUNCIÓN: INYECCION LA INFORMACIÓN REFERENCIA CILINDRO.

Page 112: Las4301 uap01 ap03 pdf01

112/264

Cilindro 1 Cilindro 4

VHT1 = 10 KV VHT4 = 5 KV

VHT = 15 KV

- Cilindro 1 en fase compresión y cilindro 4 en fase escape.

La estrategia DEPHIA.

FUNCIÓN: INYECCION LA INFORMACIÓN REFERENCIA CILINDRO.

Page 113: Las4301 uap01 ap03 pdf01

113/264

- Cilindro 4 en fase compresión y cilindro 1 en fase escape.

La estrategia DEPHIA.

FUNCIÓN: INYECCION LA INFORMACIÓN REFERENCIA CILINDRO.

Cilindro 1 Cilindro 4

VHT1 = 5 KV VHT4 = 10 KV

VPH =

VHT = 15 KV

7,5 KV7,5 KV

+ 2,5 KV

Page 114: Las4301 uap01 ap03 pdf01

114/264

VHT1 = 10 KV VHT4 = 5 KV

VPH =

VHT = 15 KV

7,5 KV7,5 KV

- 2,5 KV

- Cilindro 1 en fase compresión y cilindro 4 en fase escape.

La estrategia DEPHIA.

FUNCIÓN: INYECCION LA INFORMACIÓN REFERENCIA CILINDRO.

Cilindro 1 Cilindro 4

Page 115: Las4301 uap01 ap03 pdf01

115/264

En función de la tensión VPH, el calculador define un estado lógico llamado FASE:- Un estado lógico "1" si la tensión VPH es negativa: el cilindro 1 está en fase de

compresión.- Un estado lógico "0" si la tensión VPH es positiva: el cilindro 4 está en fase de

compresión.

Cilindro 1 Cilindro 4

VPH

La estrategia DEPHIA.

FUNCIÓN: INYECCION LA INFORMACIÓN REFERENCIA CILINDRO.

Page 116: Las4301 uap01 ap03 pdf01

116/264

La estrategia DEPHIA.

FUNCIÓN: INYECCION LA INFORMACIÓN REFERENCIA CILINDRO.

a

b

a

b

VPH < 0

a

b

a

b

VPH > 0

Page 117: Las4301 uap01 ap03 pdf01

117/264LA INFORMACIÓN REFERENCIA CILINDRO.FUNCIÓN: INYECCION

La estrategia DEPHIA.

Comando primario bobinas 1 et 4.

Señal DEPHIA.

Voltio

ms

Voltio

Page 118: Las4301 uap01 ap03 pdf01

118/264

Captador de Presión en la Admisión

El sensor de presión absoluta está conectado al colector de admisión y proporciona una señal de tensión proporcional a la presión existente en el colector de admisión.

Atendiendo a su principio de funcionamiento, nos podemos encontrar en los sistemas de encendido dos tipos de captadores de presión absoluta en la admisión:

Captador de membrana.Captador piezoeléctrico cerámico y de pyrex.Captador digital.

Page 119: Las4301 uap01 ap03 pdf01

119/264Captador MAP de Membrana

Cuando se deforma la membrana de la cápsula, desplaza el núcleo, lo que origina una variación de flujo magnético de la bobina y, en consecuencia, varia la frecuencia enviada por la unidad electrónica.

Page 120: Las4301 uap01 ap03 pdf01

120/264

Cuando la depresión actúa sobre la membrana de la cápsula, el núcleo esta poco metido en la bobina, la frecuencia del oscilador es elevada. Cuando la presión es idéntica en ambos lados de la membrana, el núcleo empujado por el muelle está muy introducido en la bobina, entonces la frecuencia del oscilador es menor.

ALTO VACÍO

BAJO VACÍO

Page 121: Las4301 uap01 ap03 pdf01

121/264Captador MAP Pizoeléctrico

La unidad de mando mantiene a 5 voltios la alimentación del captador. Ante una depresión en el colector de admisión, provoca que el diafragma cerámico del sensor se arquee variando el valor de las resistencias del puente, y haciendo variar también el valor de la tensión en la salida.

Puente de resistenciasDiafragma

Tensión de alimentación

Tensiónsalida

Soporte

Page 122: Las4301 uap01 ap03 pdf01

122/264

El sensor se instala dentro de un contenedor de plástico, sobre el que se ha provisto un orificio que, conectado a un tubo de goma se transmite el vacío del colector hasta el interior del sensor.

A: Negativo alimentación 5V. B: Señal. Tensión variable.C: Positivo alimentación 5V.

A: Positivo alimentación 5V.B: Negativo alimentación 5V.C: Señal. Tensión variable.

Page 123: Las4301 uap01 ap03 pdf01

123/264Captador MAP Digital

Este tipo de sensor, recibe una tensión de alimentación de referencia a 5 voltios, procedente de la unidad de mando, la cual convierte el sensor en una frecuencia proporcional a la situación de vacío. Esta frecuencia se vuelve a dirigir a la central de mando teniendo un valor aproximados entre 80 Hz a 0,2 bar y 162 Hz a 1 bar.

Toma de vacío

Page 124: Las4301 uap01 ap03 pdf01

124/264Conexionado Sensor MAP

En función del tipo de sensor MAP pizoeléctrico, el conexionado puede variar.

ECU5 V

C

BA

Sensor MAP

ECU5 V

A

B

C

Sensor MAP

Page 125: Las4301 uap01 ap03 pdf01

125/264

Existe un gran número de unidades electrónicas de mando que incorporan al sensor de presión absoluta en su interior, formando un conjunto hermético y compacto.

Page 126: Las4301 uap01 ap03 pdf01

126/264Sensor Temperatura Motor

Su misión es informar directamente a la unidad de mando de la temperatura motor.

El sensor de temperatura motor, montado con la parte sensible sumergida en el líquido de refrigeración de motor, está constituido por una resistencia de coeficiente de temperatura negativo (NTC), Por lo tanto si la temperatura del sensor aumenta al aumentar la temperatura del líquido de refrigeración, se produce una disminución del valor de resistencia.

Sensor NTC

Page 127: Las4301 uap01 ap03 pdf01

127/264Conexionado Sensor T. Motor

La unidad de mando pone bajo tensión al sensor de temperatura de refrigerante, que actúa como una resistencia variable en función de la temperatura. La corriente eléctrica fluye a través del sensor, a masa. En el sensor se produce una caída de tensión, este valor de tensión corresponde a una temperatura determinada del motor. La unidad de mando asigna un valor determinado de temperatura a cada valor de tensión.

ECU 5 V

Sensor temperatura motor

Page 128: Las4301 uap01 ap03 pdf01

128/264Sensor Temperatura Aire

El sensor de temperatura de aire puede ir montado en el conducto de admisión de aire o en la propia carcasa del filtro del aire. Están compuestos, al igual que los sensores de temperatura de refrigeración, de una resistencia del tipo NTC, (algunas veces, nos podemos encontrar tanto en sensores de temperatura de agua como sensores de temperatura de aire, resistencia del tipo PTC).

Page 129: Las4301 uap01 ap03 pdf01

129/264Conexionado Sensor T. Aire

Al igual que el sensor de temperatura motor, la unidad de mando controla las variaciones de resistencia del sensor a través de los cambios de tensión y obtiene por lo tanto, la información sobre la temperatura del aire aspirado.

Senspr temperatura de aire

ECU 5 V

Page 130: Las4301 uap01 ap03 pdf01

130/264Sensor de Detonación

Una de las características negativas relacionadas con los sistemas de gestión del avance es aquella según la cual, por motivos de precaución, es necesario siempre mantener un cierto margen de seguridad para evitar que en condiciones puntuales de funcionamiento del motor pudiesen producir detonaciones. Estos márgenes de seguridad, a veces excesivos pero de todas maneras necesarios, no permitían el máximo aprovechamiento del motor.

Page 131: Las4301 uap01 ap03 pdf01

131/264Sensor de Detonación

Para solucionar este inconveniente se emplean sensores de detonación que, montados por lo general en la parte superior del bloque, detectan detonaciones en la culata. Estos sensores están compuestos de cristales piezoeléctricos que generan una señal eléctrica cuando perciben el exceso de vibraciones producidas por los fallos de combustión.

Page 132: Las4301 uap01 ap03 pdf01

132/264Sensor de Detonación

La unidad de mando evalúa las señales procedentes del sensor y activa una estrategia de retraso del encendido de una forma paulatina, hasta que la detonación desaparece. Posteriormente, se vuelve a situar el momento de encendido, a pequeños pasos, hacía avance, hasta que queda situado en su valor programado. Si la detonación apareciese en cualquier momento, la ECU volvería a producir el retraso hasta su desaparición. Las detonaciones pueden ser diferenciadas cilindro a cilindro, pudiéndose ajustar el avance individualmente por cilindro.

Page 133: Las4301 uap01 ap03 pdf01

133/264

Conexionado Sensor de Detonación

El apriete del tornillo de sujección del detector de picado ha de realizarse a su par correspondientes, ya que de lo contrario emitirá señales inpropiascon el estado de funcionamiento del motor.

ECU

Page 134: Las4301 uap01 ap03 pdf01

134/264Selector de Octanaje

Algunos sistema de encendido poseen un conector de servicio, mediante el cual pueden llevarse a cabo un ajuste del octanaje con ayuda de un cable de servicio, o simplemente variando la posición de un conmutador. Este puede ser necesario al utilizar combustible de distinto índice de octano o en caso de un posible picado del motor.

Este ajuste de octanaje origina una modificación en el avance del momento de encendido, adoptando un campo característicos distintos.

Page 135: Las4301 uap01 ap03 pdf01

135/264

Conexionado del selector Octanaje

La selección del tipo de octanaje, varia de unos modelos a otros. He aquídos formas distintas de conexionado de selector de octanaje: La unidad de mando manda una tensión de referencia, normalmente de 5V y en esta, en función del tipo de conexionado, se producirá una caída de tensióndeterminada, identificada por la unidad de mando.

ECU 5 V

Conector de octanaje

ECU 5 V

Conector de octanaje

Page 136: Las4301 uap01 ap03 pdf01

136/264Unidad de Mando (ECU)

CIRCUITOANALÓGICO

TRATAMIENTODE SEÑALES

CIRCUITODIGITAL

SENSOR DEPRESIÓN

SENSOR DEPRESIÓN

SENSOR DER.P.M. Y

POSICIÓN

SENSOR DER.P.M. Y

POSICIÓN

Alimentación Alimentación

COMPARADORAMPLIFICADOR

Señal de presión

Señal tipo reloj r.p.m.

Señal posición

Señal de mando

CIRCUITO DEPOTENCIA

Hacia el distribuidorBOBINA DEENCENDIDO

Page 137: Las4301 uap01 ap03 pdf01

137/264

Circuito integrado analógico:Se divide en dos partes, una de tratamiento de señales encargado de transformar

las señales analógicas que provienen de los captadores en señales digitales y otra de comparación y amplificación de la señal de mando emitida por el circuito numérico; esta última es la encargada de gobernar la etapa de potencia, no solamente para determinar el ángulo de avance al encendido más idóneo, sino para conseguir también:

Mantener constante la energía aportada por la bobina.Variar el ángulo de contacto según el régimen motor y tensión de alimentación.Limitar la corriente por el primario.

Circuito integrado numérico:Comprende un circuito de cálculo y una memoria que guarda el campo característico

del motor. El circuito numérico recibe las señales interpretándolas y comparándolas con las de su memoria, determina el momento adecuado para abrir o cerrar el circuito primario de la bobina; para ello envía señales de mando hacía el circuito analógico que amplifica las señales y gobierna el circuito de potencia.

Circuito de potencia:Es un montaje de transistores darlington y se encarga de transmitir masa al

terminar (-) de la bobina y de quitárselo cuando llegue el momento del salto de chispa.

Page 138: Las4301 uap01 ap03 pdf01

138/264Etapa de Potencia

+ Bobina

Etapa de potencia

AT

COMPARADORAMPLIFICADOR

CIRCUITOANALÓGICO

Page 139: Las4301 uap01 ap03 pdf01

139/264

En algunas unidades de mando la etapa de potencia se monta en elexterior, ya que esta es más susceptible de avería, con lo que se abarata el coste de la reparación.

Page 140: Las4301 uap01 ap03 pdf01

140/264

Nos podemos encontrar encendidos electrónicos integrales que van gobernados por la unidad electrónica de control del sistema de inyección (realmente serian sistemas de gestión de motor). De igual manera estos sistemas pueden incorporar la etapa de potencia del encendido en el exterior de la unidad de mando o bien en el interior.

ECU

Sensor rpmy posición

Etapa de potencia

Bobina

Distribuidor

Bobina

Sensor rpmY posición

ECU

Distribuidor

Page 141: Las4301 uap01 ap03 pdf01

141/264Etapa de potencia

En los sistemas de encendido que consten con etapas de potencia exterior, dichas etapas están excitadas directamente por la unidad de mando mediante una señal normalmente cuadrada. Podemos diferenciar dos tipos distintos.

- Bobina ECU+15

- Bobina ECU

La ECU transfiere masa a la etapa de potencia cuando quiera que esta cargue a la bobina y le quita la masa en el momento que dictamine el salto de chispa en la bujía.

La ECU transfiere positivo a la etapa de potencia cuando quiera que esta cargue a la bobina y le quita la masa en el momento que dictamine el salto de chispa en la bujía.

Page 142: Las4301 uap01 ap03 pdf01

142/264Distribuidor de Encendido

El distribuidor en el encendido electrónico integral suele ser eso, únicamente un distribuidor de la corriente de alta, aunque podemos encontrar varios modelos de encendido electrónico integral en los que el captador de velocidad o posición están incorporados en el propio distribuidor como si se tratase de un captador de encendido electrónico transistorizado.

Arrastre

Carcasa

Pipa Tapa

Carcasa

Eje

Captadorhall

Arrastre

Page 143: Las4301 uap01 ap03 pdf01

143/264Sistema de Encendido EZ61-MSTS

1. Sensor r.p.m. y posición.2. Etapa de potencia.3. Interruptor de encendido.4. Batería.5. Cuentarrevoluciones.6. Bobina de encendido.7. Distribuidor.

8. Unidad de mando. ECU.9. Sensor de temperatura motor.10. Selector de octanaje.11. Salida señal para ECU inyección.12. Pin 10 de la ECU inyección.13. Interruptor de mariposa.

Page 144: Las4301 uap01 ap03 pdf01

144/264Sistema de Encendido EZ PLUS

K20:K84:

L3:P23:P24:Y10X5:

X10:X13:X15:

Etapa de potencia.Unidad electrónica de mando.Bobina de encendido.Sensor de presión en el colector.Sensor temperatura de aceite.Distibuidor con captador Hall.Conector tablero de instrumentos.Enchufe codificador, reglaje básico.Enchufe de diagnosis.Enchufe de octanaje.

Page 145: Las4301 uap01 ap03 pdf01

145/264Sistema de Encendido Digiplex 2

1. Toma de vacío del colector.2. Unidad electrónica de control (ECU).3. Bobina de encendido.4. Distribuidor de alta tensión.5. Volante motor.6. Eventual interruptor para reducción avance7. Eventual interruptor para curva base.8. Interruptor de mínimo de la mariposa.

9. Batería.10. Bujías.11. Cuentarrevoluciones.12. Válvula de mínima (Cut-off)13. Toma de diagnosis.14. Sensor de r.p.m. y P.M.S.15. Motor de arranque.16. Centralización de masas.

Page 146: Las4301 uap01 ap03 pdf01

146/264Sistema de Encendido Microplex

1. Unidad Electrónica de mando.2. Toma de vacío de admisión.3. Bujías.4. Distribuidor de alta tensión.5. Bobina de encendido.6. Etapa de potencia de encendido.7. Llave de contacto.8. Cuentarevoluciones.9. Sensor de posicón PMS.10.Sensor de régimen.11.Sensor de detonación.12.Interruptor seguridad sobrealimentación.13.Señal tacométrica.14.Toma de diagnosis.

Page 147: Las4301 uap01 ap03 pdf01

147/264Ejemplo Controles de Encendido (I)

Esquema encendido Renault 11 Modelo Renault 11

Código motor C2j L7-17

Orden de encendido 1-3-4-2

Reglaje de encendido a PMS sin vacío (o)

Avance inicial 8º / 700 r.p.m.

Comprobación avance 7º - 9º / 750 rpm

24º - 30º / 4.050 rpm

Sensor regimen y posición

Resistencia 150 – 250 Ω

15º - 23º / 1.750 rpm

Entrehierro 0,5 – 1,5 mm

Sistema de encendido Renix AEI

Bobina de encendido Renix

Resistencia del primario 0,4 – 0,8 Ω

Resistencia del secundario 4 – 5,5 kΩ

Distribuidor de encendido Ducelier

+ bobina - bobinaConectorsensor

Sensor rpm,posición

ECUbobina

Sensorvacío

Conectoralimentación

Cuentarevoluciones- negativo+ positivo

Nota: En los últimos modelos de encendido Renix, el conector de alimentación solo disponía de tres pines (positivo, negativo y señal cuentarevoluciones

Page 148: Las4301 uap01 ap03 pdf01

148/264Comprobaciones

2) Sensor régimen y posición:

Sensor Sensor

Conector Conector

Resistencia Aislamiento

1) Alimentación de la unidad de mando (ECU):

Tensión mínima: 10 V (3)

(2)

3) Función salida de la ECU:

(+)

(-)

Al arrancarparpadea

Page 149: Las4301 uap01 ap03 pdf01

149/264Ejemplo Controles de Encendido (II)

Esquema encendido Seat Ibiza- Malaga 1.5 inyección

ECU Encendido

ECU Inyección

Distribuidor

Bobina

Relé taquimétrico

NTC

Etapa depotencia

Contactor

Page 150: Las4301 uap01 ap03 pdf01

150/264Identificación de Pines ECU

Nº DESTINO

1 Masa a través de la etapa de potencia.

2 Salida de masa hacia captador Hall.

3 Alimentación a través de contacto (15).

4 Alimentación captador Hall.

5 Salida señal taquimétrica hacia relé taquimétrico y ECU inyección de gasolina.

6 Entrada señal ralentí desde el contactor de mariposa.

7 Libre

8 Libre

9 Libre

10 Libre

11 Libre

12 Entrada señal desde el generador Hall.

13 Señal de control de la etapa de potencia.

14 Señal de plena carga desde el contactor de mariposa.

15 Entrada información desde la ECU inyección de gasolina

Page 151: Las4301 uap01 ap03 pdf01

151/264Comprobaciones

Verificar si existe salto de chispa y el circuito de alta, tal como se explicó en el apartado de encendido electrónico transistorizado.1) Verificar la alimentación y la masa de la unidad de mando. Accionar el contacto.

(3)

(1)

Valor: Vbat.

2) Comprobar el captador hall. Con el contacto accionado:

a) Alimentación:

(2)

(4)

Valor: _____

b) Tensión referencia.

(2)

(12)

Valor: _____

c) Función salida.

(2)

(12)(4)

(12)

Page 152: Las4301 uap01 ap03 pdf01

152/264

4) Controlar la señal de mando de la ECU hacia la etapa de potencia.:

a) Con lámpara led

(4)

(13)

____

b) Con osciloscopio.

(1 ó masa)

(13)

3) Verificar la alimentación y la masa de la etapa de potencia y de la bobina. Accionar el contacto.

Valor: Vbat.Valor: Vbat.

Valor: Vbat.

Page 153: Las4301 uap01 ap03 pdf01

153/264

5) Verificar la función salida de la etapa de potencia. Conectar una lampara led entre el (+) y (-) de la bobina o entre el pin 4 y 1 de´la etapa. Accionando el arranque.

(14)

(1)

Valor: Vbat. a plena carga.(6)

(1)

Valor: Vbat. a ralentí.

6) Verificar señal del contactor de mariposa. Accionar el arranque o puentear el relétaquimétrico entre sus terminales 30 y 87.

7) Comprobar la señal taquimétrica emitida por la ECU.a) Con lámpara led

(3)

(5)

b) Con osciloscopio.

(1 ó masa)

(5)

Page 154: Las4301 uap01 ap03 pdf01

154/264

Ajuste Básico del Punto de Encendido

1) Comprobar el sentido de giro del distribuidor y el orden de encendido.

2) Desconectar el conector del contactor de mariposa y hacer un puente entre los tres terminarles del conector de la instalación.

Conector interruptor de mariposa

3) Conectar una lámpara estroboscópica, arrancar el motor y ajustar el régimen a ralentía unas 850 r.pm.

4) Comprobar y ajustar el punto de encendido, si es preciso a 10º de avance.

Page 155: Las4301 uap01 ap03 pdf01

155/264

Page 156: Las4301 uap01 ap03 pdf01

156/264Encendido Electrónico Estático

El encendido electrónico estático contiene las funciones del encendido electrónico integral y se suprime la distribución de alta tensión por el distribuidor. La alta tensión es distribuida directamente a a las bujías a través de bobina doble (o triple para 6 cilindros) o mediante bobinas individuales (monobobinas) una para cada una de las bujías.

1. Bujía.2. Bobina doble de encendido.3. Interruptor de mariposa4. Unidad de mando.5. Toma captador de presión.6. Sensor temperatura motor.7. Sensor de régimen y posición.8. Rueda fónica en volante motor.9. Batería.10. Llave de contacto.

Las ventajas de este sistema son:Eliminación del distribuidor.Reducción del nivel de ruidos.Menor pérdida de energía.

Page 157: Las4301 uap01 ap03 pdf01

157/264Bobina Doble

La bobina doble está formada por dos devanados primarios, gobernados de forma alternativa cada uno por una etapa de potencia, y dos secundarios, unido cada uno de ellos por sus extremos, directamente a las bujías. Existen, por lo tanto, dos circuitos de encendido 1-4 y 2-3 en el motor de cuatro cilindros y tres circuitos de encendidos 1-5, 4-3 y 2-6 en el motor de seis cilindros.

DIS 6

DIS 4

Al encendido electrónico estático también se le denomina “Encendido de chispa perdida”, ya que el salto de chispa en una de las bujías no es utilizado para combustionar la mezcla, aunque si tiene una insignificante perdida de energía.

Page 158: Las4301 uap01 ap03 pdf01

158/264Principio de Funcionamiento

La alta tensión inducida en los secundarios de forma alternativa, hace que en ambas bujías, conectadas en serie con el secundario en cuestión, se originen un salto de chispa. Las bujías de encendido están ordenadas de tal manera que una de las bujías encienda en el tiempo de trabajo del cilindro, mientras que la otra encienda en el tiempo de escape desfasado 360º. Es decir, si la bujía del cilindro 1 enciende finalizando la compresión, la del cilindro numero 4 encenderáterminando escape. Este procedimiento se repite nuevamente una vuelta después, pero intercambiando los papeles en los cilindros.

Page 159: Las4301 uap01 ap03 pdf01

159/264Polaridad en las bujías

Dado que la dirección del flujo de corriente en el circuito secundario estáregida por el diseño, se alcanzan polaridades diferente del voltaje de encendido en ambas bujías conectadas a un mismo secundario. Esto significa que la bujía del cilindro número 1 y 4 tendrán una tensión una positiva y otra negativa, al igual que en las bujías de los cilindros 2 y 3.

En estos sistemas de encendido se utilizan bujías con un recubrimiento especial en sus electrodos, debido a la alta tensión que se originan entre ellos. Igualmente por esto permiten que separación entre electrodos se superior a las bujías utilizadas en los anteriores sistemas de encendido.

Page 160: Las4301 uap01 ap03 pdf01

160/264Tipos de Bobinas de EEE

NANOBOBINADIS 4

DIS 6

VALEO ROCHESTER IAW O MMBA

Page 161: Las4301 uap01 ap03 pdf01

161/264Particularidad en Bobinas

Page 162: Las4301 uap01 ap03 pdf01

162/264

Bobina Individual o Monobobina

Este sistema de encendido estático es la última generación en el desarrollo de los encendidos. Como ya se ha dicho la generación de alta tensión tiene lugar mediante una bobina de encendido para cada cilindro y bujía.

1-6 Bujías.11-16 Monobobinas.21 Etapa potencia.22 Etapa potencia.40 Unidad de mando motronic.41 Unidad de codificación.31 Sensor de régimen y posición.32 Sensor de fase.33 Sensor de temperatura motor.34 potenciómetro mariposa.35 Medidor de masa de aire.36 Sensor de picado.37 Sensor de picado.

Este sistema de encendido estáintegrado con el

sistema de inyección de gasolina

Page 163: Las4301 uap01 ap03 pdf01

163/264Monobobinas

Las bobinas de encendido están montadas directamente en la bujía y están controladas por unidades de potencia.

Page 164: Las4301 uap01 ap03 pdf01

164/264

Constitución de las Monobobinas

Las bobinas constan en su interior de un primario y un secundario, igual que las bobinas vistas hasta el momento, pero con la particularidad que en el secundario se acopla un diodo especial, que solo permite que la corriente circule por el secundario cuando la tensión aplicada a este sea elevada, del orden de kV. Con esto se evita la posibilidad de que salte una chispa en el momento de restablecer la corriente por el primario, como consecuencia de la variación de flujo.

Page 165: Las4301 uap01 ap03 pdf01

165/264Unidad de Mando

La unidad de mando del encendido electrónico estático es prácticamente idéntica a la del encendido electrónico integral. La diferencia existente entre la unidad de mando de un encendido electrónico integral y un estático, radica en la necesidad que tiene esta última de disponer de un sensor de fase.

Page 166: Las4301 uap01 ap03 pdf01

166/264Unidad de Mando

El sensor de fase suele ser un captador Hall montado en el arbol de levas, cuya misión es reconocer el momento en que el cilindro número uno esta realizando la admisión, ya que con el sensor de régimen y posición lo único que reconoce es que está situado en el PMS, pero no sabe que tiempo del ciclo está efectuando.

Page 167: Las4301 uap01 ap03 pdf01

167/264Localización Etapa de Potencia

ECU

Sensor rpmy posición

Etapa de potencia

Bobina

Bobina

Sensor rpmY posición

ECU

Page 168: Las4301 uap01 ap03 pdf01

168/264Etapa de Potencia

Las etapas de potencia, al igual que en el encendido integral, se encargan de controlar los tiempos de conducción de corriente por los primarios de las bobinas y también limitan la corriente en el primario de la bobina, para una vezalcanzado el valor nominal, se mantenga constante hasta el momento del encendido.

Se pueden agrupar dos o mas nanobobinas, con sus

correspondientes etapas de potencia para ser aplicadas a un

motor de cuatro cilindros.

Page 169: Las4301 uap01 ap03 pdf01

169/264Unidad de Mando (I)

Etapa depotencia

Page 170: Las4301 uap01 ap03 pdf01

170/264Unidad de Mando (II)

Etapas depotencia

Page 171: Las4301 uap01 ap03 pdf01

171/264Sistema MMBA AEI 450A

1. Batería.2. Conmutador de arranque.3. Fusible de protección 15 A.4. Polea motor de 4 dientes.5. Sensor rp.m. y PMS.6. Bobina de encendido cilin. 1-4.7. Bujías.8. Placa disipadora de calor.9. Etapa de potencia de bobina 6.10. Etapa de potencia de bobina 11.11. Bobina de encendido cilin. 2-3.12. Doble relé de alimentación.13. ECU de encendido e inyección.14. Sensor de detonación.15. Sensor de presión absoluta.

Fiat Coupé 1995 16V Turbo

Page 172: Las4301 uap01 ap03 pdf01

172/264Sistema Encendido ESC P1 - Ford

1. Sensor r.p.m. y posición.2. Sensor temperatura motor.3. Sensor temperatura aire.4. Selector de octanaje.5. Toma de vacío.6. Unidad de mando ESC P1.7. Bobina de encendido DIS.

Page 173: Las4301 uap01 ap03 pdf01

173/264Esquema Eléctrico ESC P1 - Ford

1. Sensor r.p.m. y posición.2. Unidad de mando ESC P1.3. Interruptor de encendido.4. Batería.5. Sensor temperatura motor.6. Bobina de encendido DIS.7. Selector de octanaje.8. cuentarrevoluciones.9. Bujías.10. Sensor temperatura aire.

Page 174: Las4301 uap01 ap03 pdf01

174/264Identificación de Pines ECU

112

Nº DESTINO

1 Señal captador inductivo de régimen y posición.

2 Señal captador inductivo de régimen y posición.

3 Señal temperatura de aire.

4 Masa sensores.

5 Señal temperatura motor.

6 Codificación para el octanaje.

7 Codificación para el octanaje.

8 Alimentación a través de contacto (15).

9 Masa.

10 Libre

11 Negativo transferido (-) a un primario.

12 Negativo transferido (-) a un primario.

Page 175: Las4301 uap01 ap03 pdf01

175/264Comprobaciones

Verificar si existe salto de chispa y el circuito de alta, tal como se explicó en el apartado de encendido electrónico transistorizado.

1

1) Verificar la alimentación y la masa de la unidad de mando. Accionar el contacto.

(9)

(8)Valor: Vbat.

2) Comprobar el captador de régimen y posición.

a) Resistencia.

1

(1)

(2)

Valor: _____ Ω

b) Nula derivación.

Valor: _____

1

(1)

(9)

Ω

c) Señal.

1

(1)

(2)

Valor: _______

Page 176: Las4301 uap01 ap03 pdf01

176/264

También se puede obtener la señal mediante osciloscopio.

1

(2)

(1)

3) Verificar el circuito de los primarios y la alimentación de la bobina. Accionar el contacto y desconectar la unidad de mando.

Valor: Vbat.

1

(11)

(9)1

(12)

(9)

4) En caso de no obtener tensión en ninguna de las dos pruebas, verificar la alimentación a la entrada de de la bobina, y el estado de la bobina.

Valor: __________

Valor: __________

Page 177: Las4301 uap01 ap03 pdf01

177/264

5) Verificar la función salida de la unidad de mando de los dos primarios. Accionando el arranque.

1

(11)

(8)1

(12)

(8)

6) Verificar señal del sensor temperatura motor. Medir la resistencia del sensor a distintas temperturas o medir su caida de tensión con el motor en marcha.

1

(5)

(4)1

(5)

(4)

ΩValor: __________

Valor 20º: ______80º: ______

7) Verificar el sensor de temperatura de aire igual como el sensor de temperatura motor.

1

(3)

(4)1

(3)

(4)

ΩValor: __________

Valor 20º: ______0º: ______

Page 178: Las4301 uap01 ap03 pdf01

178/264

Sistema Inyeción EEC (Motorcraft)

1. Sensor r.p.m. y posición.2. Módulo E-DIS.3. Sensor MAP.4. Potenciómetro mariposa.5. Caudalímetro.6. Sensor temperatura motor.7. Sensor temperatura aire.8. Conector de servicio.9. Convertidor de presión.10. Sonda Lambda.11. Relé alimentación.12. Módulo E-DIS.13. Bobina de encendido DIS.

Page 179: Las4301 uap01 ap03 pdf01

179/264Principio Funcionamiento

La señal del sensor de régimen y posición sirve de base para el cálculo. Para posicionar exactamente el tiempo de cierre del circuito de corriente primario se digitaliza la señal del sensor de régimen mediante un generador de impulsos en el módulo E-DIS. El microprocesador del módulo E-DIS determina el momento de cierre requerido a parir de esta información sobre el régimen motor.

La señal de régimen digitalizada es enviada como señal de onda cuadras, denominada PIP a la unidad de inyección EEC. La unidad EEC utiliza la señal PIP para determinar el avance de encendido.

La información de avance al cencendido es transferida como señal SAW al módulo E-DIS. Esta información es almacenada en una memoria del módulo. El microprocesador compara los datos SAW con la señal del sensor de régimen digitalizada, y así determina la posición exacta del avance de encendido. En esta posición, el circuito de corriente primaria es interrumpido, y las chispas de encendido se disparan mediante la bobina DIS.

El microprocesador hace uso del desfase de la señal del sensor de régimen a 90ºantes del PMS, con objeto de controlar el circuito primario pertinente, de acuerdo con el orden de encendido. El cálculo siguiente del avance de encendido o control del circuito primario se refiere al circuito de encendido 1-4.

La contraetapa electrónica nos facilita la base de control del circuito de encendido 2-3 desfasada en 180º.

Page 180: Las4301 uap01 ap03 pdf01

180/264Esquema del Módulo E-DIS

9

EEC IV

1. Sensor r.p.m. y posición.2. Cuentarevoluciones.3. Interruptor de encendido.4. Batería.5. Unidad de mando inección.6. Relé alimentación.7. Bobina de encendido DIS.8. Bujías.9. Unidad o Módulo E-DIS.

Page 181: Las4301 uap01 ap03 pdf01

181/264Identificación de Pines ECU

112

Nº DESTINO

1 Señal PIP de salida hacia la ECU inyección. Señal de avance básico al encendido.

2 Señal EDM. Línea para la autodiagnosis.

3 Señal SAW de entrada al módulo E-DIS. Señal de avance básico del encendido

4 Masa Electrónica

5 Señal captador inductivo de régimen y posición.

6 Señal captador inductivo de régimen y posición.

7 Masa apantallamiento.

8 Alimentación procedente del relé principal.

9 Masa.

10 Negativo transferido (-) a un primario.

11 Señal taquimétrica para el cuentarevoluciones.

12 Negativo transferido (-) a un primario.

Page 182: Las4301 uap01 ap03 pdf01

182/264Comprobaciones

Verificar si existe salto de chispa y el circuito de alta, tal como se explicó en el apartado de encendido electrónico transistorizado.

1

1) Verificar la alimentación y la masa del módulo E-DIS. Accionar el contacto.

(9)

(8)Valor: Vbat.

2) Comprobar el captador de régimen y posición.

a) Resistencia.

1

(5)

(6)

Valor: _____ Ω

b) Nula derivación.

Valor: _____

1

(5)

(9)

Ω

c) Señal.

1

(5)

(6)

Valor: _______

Page 183: Las4301 uap01 ap03 pdf01

183/264

También se puede obtener la señal mediante osciloscopio.

1

(6)

(5)

3) Verificar el circuito de los primarios y la alimentación de la bobina. Accionar el contacto y desconectar la unidad de mando.

Valor: Vbat.

1

(10)

(9)1

(12)

(9)

4) En caso de no obtener tensión en ninguna de las dos pruebas, verificar la alimentación a la entrada de de la bobina, y el estado de la bobina.

Valor: __________

Valor: __________

Page 184: Las4301 uap01 ap03 pdf01

184/264

5) Verificar la función salida de la unidad de mando de los dos primarios. Accionando el arranque.

1

(10)

(8)1

(12)

(8)

6) Verificar la señal PIP de salida del módulo E-DIS hacía la ECU de inyección.

1

(9)

(1)

7) Verificar la señal SAW de entrada de la unidad de mando hacía el módulo E-DIS

1

(3)

(1)

Page 185: Las4301 uap01 ap03 pdf01

185/264

Sistema Gestión Motor Sagem SL96

1. Batería.2. Caja máxifusibles vano motor.3. Caja fusibles vano motor.4. Llave de contacto.5. Caja fusibles habitáculo.6. Cuadro de instrumentos.7. Relé doble.8. Regulador ralentí.9. Bomba combustible.10.ECU gestión motor.11.Conector diagnosis.12.Recalentador de aire.13.Sensor temperatura aire.14.Sensor MAP.15.Caldeo colector.16.Electroválvula caníster.17.Contactor de inercia.18.Bobina de encendido.19.Sensor posición mariposa.20.Sensor temperatura motor.21.Sonda lambda.22.Sensor régimen y posición.23.Sensor detonación.24.Sensor velocidad vehículo.25.Inyector cilindro nº 1.26.Inyector cilindro nº 4.27.Inyector cilindro nº 2.28.Inyector cilindro nº 3.29.Sistema antiarranque.30.ECU climaticazión.

Page 186: Las4301 uap01 ap03 pdf01

186/264