Manual Vw Tdi 2.0

44
Programa autodidáctico 316 Service Training El motor TDI de 2,0 l Diseño y funcionamiento

Transcript of Manual Vw Tdi 2.0

Page 1: Manual Vw Tdi 2.0

Programa autodidáctico 316

Service Training

El motor TDI de 2,0 l

Diseño y funcionamiento

Page 2: Manual Vw Tdi 2.0

2

Hace tiempo que pertenecen al pasado los motores diésel que se caracterizaban por una cierta pesadez, que sacaban de la cama a los vecinos a la hora de arrancar por las mañanas y que acarreaban tras de sí una nube negra de gases de escape al acelerar al máximo. Se han mejorado de forma importante las prestaciones, el dinamismo, el confort de conducción, así como las características de economía y de las emisiones contaminantes, por haberse sometido a un decidido desarrollo ulterior a todos los componentes del motor, el procedimiento de la combustión, los materiales y los procesos de mecanización, así como las presiones de la inyección.

Para cumplir con las leyes ahora más estrictas sobre las emisiones contaminantes y seguir reduciendo el consumo de combustible, asociado a unas mayores prestaciones, Volkswagen apuesta por la generación de motores TDI con culata de 4 válvulas.

El motor TDI de 2,0 l ha sido desarrollado como la primera versión diésel de cuatro cilindros con culata de cuatro válvulas en el Consorcio Volkswagen para su aplicación en el Touran, en el Golf 2004 y en una fecha posterior también en otros modelos más.

El Programa autodidáctico representa el diseño y funcionamiento de nuevos desarrollos.Los contenidos no se someten a actualización.

Las instrucciones de actualidad relativas a comproba-ción, ajuste y reparación se consultarán en la docu-mentación del Servicio Postventa para esos efectos.

NUEVO AtenciónNota

S316_039

Page 3: Manual Vw Tdi 2.0

3

Referencia rápida

Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Mecánica del motor . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Gestión del motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Esquema de funciones . . . . . . . . . . . . . . . . . . . . . . . . .38

Servicio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Pruebe sus conocimientos . . . . . . . . . . . . . . . . . . . . . 41

Page 4: Manual Vw Tdi 2.0

4

Introducción

El motor TDI de 2,0 l / 103 kW con culata de 4 válvulas

S316_011

El motor TDI de 2,0 l / 103 kW es el primer representante de la nueva generación de motores TDI con culata de 4 válvulas de VOLKSWAGEN.En el Volkswagen Touran ya se ha implantado una versión variante de 100 kW de este motor.

Ha sido desarrollado a partir del motor TDI de 1,9 l / 96 kW. La mayor cilindrada con respecto al motor base fue conseguida ampliando el diámetro de los cilindros.

El nuevo motor TDI de 2,0 l / 103 kW tiene una culata de flujo transversal en aluminio de nuevo desarrollo, con dos válvulas de admisión y dos de escape por cada cilindro.

Otras características técnicas de este motor son un radiador conmutable para la recirculación de gases de escape, una brida de estanqueidad del cigüeñal con rueda generatriz de impulsos integrada para el régimen del motor y un nuevo sistema de precalentamiento por incandescencia.

Page 5: Manual Vw Tdi 2.0

5

320

280

200

120

1000

S316_012

Diagrama de par y potencia

20

360

240

160

80

400

30

40

50

60

70

80

90

100

2000 3000 4000

0

1040

0

Régimen del motor (rpm)

Par

(Nm

)

Pote

ncia

(kW

)

Datos técnicos

Letras distintivas del motor BKD

Arquitectura Motor de 4 cilindros en línea

Cilindrada 1.968 cc

Diámetro de cilindros 81 mm

Carrera 95,5 mm

Válvulas por cilindro 4

Relación de compresión 18 : 1

Potencia máx. 103 kW a 4.000 rpm

Par máx. 320 Nm a 1.750 rpm hasta 2.500 rpm

Gestión del motor EDC 16 con sistema de inyector bomba

Combustible Gasoil de 49 CZ como mínimo

Tratamiento de los gases de escape

Recirculación de gases de escape y catalizador de oxidación

Norma de las emisiones de escape

UE4

A un régimen comprendido entre las 1.750 rpm y 2.500 rpm, el motor TDI de 2,0 l / 103 kW desarrolla un par de 320 Nm.

Su potencia máxima de 103 kW la alcanza a un régimen de 4.000 rpm.

5000

Page 6: Manual Vw Tdi 2.0

6

Mecánica del motor

Árbol de levas de

admisión

Balancines flotantes de

rodillo para las válvulas

Conducto de

admisión

Válvulas en

posición vertical

Conducto de escape

Inyector bomba en disposición

vertical, central

Ejes enchufables

Balancín basculante con

cojinete central y rodillo

para inyector bomba

S316_013

Culata

La culata del motor TDI de 2,0 l es una versión de flujo transversal en aluminio con dos válvulas de admisión y dos de escape para cada cilindro.Las válvulas están dispuestas en posición vertical.

Los dos árboles de levas en cabeza son accionados conjuntamente por medio de una correa dentada.

El árbol de levas de escape, aparte de encargarse de la gestión de las válvulas de escape, asume la función de accionar los inyectores bomba.El árbol de levas de admisión, aparte de encargarse de gestionar los movimientos de las válvulas de admisión, asume la función de accionar la bomba en tándem.

El mando de las válvulas se realiza por medio de balancines flotantes de rodillo alojados en ejes enchufables.

Árbol de levas

de escape

Page 7: Manual Vw Tdi 2.0

7

Módulo portasombreretes

El módulo portasombreretes es una pieza compacta en fundición a presión de aluminio. Se encarga de las siguientes funciones:

● Alojamiento de los árboles de levas● Alojamiento de los ejes y guiado de los

balancines flotantes para el accionamiento de los inyectores bomba

● Alojamiento del conector central para la alimentación de corriente eléctrica

● Alojamiento del conducto pasacables para los inyectores bomba y para las bujías de precalentamiento.

Con la estructura del módulo portasombreretes con sus cinco nervaduras transversales de alta resistencia no sólo se consigue una mayor rigidez para la culata, sino que también mejoran de forma importante las condiciones acústicas del motor.

Alojamiento para el

árbol de levas

de admisión

Alojamiento para el

árbol de levas de

escape

Alojamiento para el eje de los

balancines con cojinete central y rodillo

Conector

central

Nervadura transversal

Canaleta

pasacables

S316_098

S316_014

Concepto de unión «tornillo en tornillo»

El módulo portasombreretes va atornillado con las dos hileras interiores de tornillos por medio de una unión «tornillo en tornillo», que se establece de forma directa hacia las cabezas de los tornillos de la culata. Esta forma compacta de atornillar el módulo portasombreretes y la culata con el bloque motor ha constituido una condición esencial para poder realizar la reducida distancia entre cilindros de este motor.

S316_100

Módulo porta-

sombreretes

Culata

Bloque motor

Tornillo de

culata

Page 8: Manual Vw Tdi 2.0

8

Mecánica del motor

Culata de 4 válvulas

S316_020

Para cada cilindro se implantan respectivamente dos válvulas de admisión y dos escape, en posición vertical.

La geometría, el tamaño y la configuración de los conductos de admisión y escape contribuyen a mejorar el llenado de los cilindros y el intercambio de gases del motor.

Los inyectores bomba van dispuestos centralmente en posición vertical, quedando directamente por encima de las cámaras centrales de los pistones.Este diseño se traduce en una preparación adecuada de la mezcla. De ahí resulta un menor consumo de combustible y se reducen las emisiones contaminantes.

Para conseguir condiciones óptimas del flujo en los conductos de admisión y escape se ha decalado la estrella de implantación de las válvulas a 45° con respecto al eje geométrico longitudinal del motor.

Conductos de

admisión

Conductos de

escape

Estrella de implantación de válvulas decalada a 45° Implantación convencional de las válvulas

S316_156

Eje geométrico longi-

tudinal del motor

S316_023

Conductos de admisión

Conductos de escape

Page 9: Manual Vw Tdi 2.0

9

Accionamiento de las válvulas de admisión y escape

Los dos árboles de levas para el mando de las válvulas de admisión y escape se accionan por medio de una correa dentada. El mando de las válvulas se realiza a través de un balancín flotante de rodillo, alojado en un eje enchufable.

Árbol de levas

de admisiónÁrbol de levas

de escape

Válvulas de escape

Válvulas de admisión

Eje enchufable

Eje enchufable

Debido a las condiciones dadas para el montaje, los cuatro balancines flotantes de rodillo son diferentes en lo que respecta a geometría y dimensiones.

Balancines flotantes

de rodillo

S316_019

S316_033

Page 10: Manual Vw Tdi 2.0

10

Mecánica del motor

Estructura y funcionamiento del elemento compensador del juego de la válvula

Balancines flotantes de rodillo

El elemento de compensación para el juego de la válvula consta, entre otras piezas, de dos componentes móviles uno en otro: el émbolo y el cilindro.El muelle del émbolo hace que estos dos componentes sean separados al grado que deje de existir juego entre el rodillo del balancín y el árbol de levas. La válvula de retención se utiliza para el llenado y sellado de la cámara de alta presión.

Conducto

comunicante

Patín

Elemento compensa-

dor del juego de

válvulas

Van alojados por un extremo en el eje enchufable. El elemento para la compensación del juego de la válvula se encuentra directamente por encima del vástago de la válvula.

La alimentación de aceite para el elemento de compensación del juego de la válvula se realiza a partir del eje enchufable, a través de un conducto comunicante en el balancín. Un patín alojado en disposición móvil entre el elemento de compensación del juego y el vástago de la válvula se encarga de establecer un reparto uniforme de la fuerza.

Émbolo

Cilindro

Muelle del

émbolo

S316_168

S316_021

Balancín flotante de rodillo

Eje enchufable

Árbol de levas

Vástago de la válvula

Válvulas de admisión

y escape

Válvula de

retención

Cámara de

alta presión

Balancín flotan-

te de rodillo

Vástago de válvula

Cámara

de aceite

Conducto

comunicante

Page 11: Manual Vw Tdi 2.0

11

Compensación del juego de la válvula

El asiento de la válvula establece la estanqueidad hacia la cámara de combustión.Para aumentar la presión de apriete superficial y, con ella, la fuerza de estanqueidad en la zona de contacto entre el asiento de la válvula y el anillo de asiento, se ha procedido a reducir la anchura del asiento a base de practicar un bisel adicional. Este bisel adicional contribuye además a que el aire aspirado experimente una turbulencia espiroidal adecuada.

Los anillos de asiento de las válvulas no se deben someter a rectificado, porque ello alteraría de forma importante la turbulencia espiroidal del aire de admisión y la formación de la mezcla.Sólo es tolerable asentar las válvulas.

Anillos de asiento de las válvulas

Anchura del asiento

de válvula

Anillo de asiento

de válvula

S316_018

Bisel adicional

Carrera de la válvula

S316_170

S316_172

Cuando la leva oprime sobre el rodillo del balancín, la válvula de retención cierra y se presuriza la cámara de alta presión.Al ser abierta la válvula, el elemento de compensación del juego actúa como una pieza rígida, por no ser compresible el aceite en la cámara de alta presión.

La leva deja de oprimir sobre el rodillo del balancín y la válvula de admisión o escape queda cerrada. La presión desciende en la cámara de alta presión. El muelle del émbolo separa el cilindro y el émbolo hasta que deje de existir juego entre el rodillo del balancín y el árbol de levas. La válvula de retención abre, dejando entrar aceite en la cámara de alta presión.

Juego

Asiento de

la válvula

S316_320

S316_322

Page 12: Manual Vw Tdi 2.0

12

Mecánica del motor

Pistón

Conducto de refrigeración

Los pistones del motor TDI de 2,0 l poseen una cámara de combustión dispuesta en el centro. Con esta cámara de combustión en la cabeza del pistón se consigue una turbulencia espiroidal de buena calidad, que se traduce en una óptima preparación de la mezcla.

Reduciendo la profundidad del cajeado para las válvulas y la anchura del alma de fuego a sólo 9 mm se ha logrado reducir a su vez el espacio nocivo y también las emisiones contaminantes.

El pistón posee un conducto de refrigeración de geometría ondulada. Con este conducto de refrigeración se reduce la temperatura en la zona de los segmentos y de la cabeza del pistón.

La geometría ondulada confiere al conducto de refrigeración una mayor superficie, que se viene a mejorar la transmisión del calor del pistón hacia el aceite. De ese modo mejora el efecto de refrigeración.

Conducto de

refrigeración

Cámara de

combustiónCajeados para

las válvulas

Anchura del

alma de fuego

Conducto de

refrigeración

S316_027

S316_035

Espacio nocivo

El espacio nocivo es el espacio hacia el cual tiene un mal alcance el frente de la llama que se produce con motivo de la combustión. El combustible sólo se quema de forma incompleta en esta zona.

Espacio nocivo

Cajeado para la

válvula

Espacio nocivo

Alma de fuegoS316_226

S316_228

Page 13: Manual Vw Tdi 2.0

13

Implantación asimétrica del bulón

Implantación asimétrica del bulón significa que el bulón del pistón se encuentra fuera del centro. Esta medida sirve a la reducción de la sonoridad, porque reduce el basculamiento del pistón en el punto muerto superior.

S316_234

Con cada posición inclinada de la biela intervienen fuerzas laterales en el pistón, que oprimen a este alternativamente contra la pared del cilindro.

En la zona del punto muerto superior, la fuerza lateral del pistón invierte su sentido de movimiento. El pistón es basculado allí hacia la pared opuesta del cilindro, produciendo ruidos de esa forma. Para reducir esta sonoridad se procede a implantar el eje del bulón fuera del centro.

Con la implantación asimétrica del eje del bulón, el pistón cambia de lado desde antes de alcanzar el punto muerto superior y, por tanto, antes de que aumente la presión al máximo, y se apoya sobre la pared opuesta del cilindro.

S316_182

Centro pistón

Implantación

asimétrica

S316_230 S316_232

Page 14: Manual Vw Tdi 2.0

14

Mecánica del motor

Mando de correa dentada

La correa dentada impulsa desde el cigüeñal a los dos árboles de levas, así como a la bomba de líquido refrigerante.

Protector de la correa dentada

Plástico

Fibras de poliamida

S316_054

S316_238

Para amortiguar la sonoridad, el protector de la correa dentada lleva en la parte interior un revestimiento avellonado de fibras de poliamida.

Correa dentada

La correa dentada de 30 mm de anchura está dotada de una malla dorsal de poliamida.Esta malla del lomo reduce el desgaste en los bordes de la correa dentada.

Protector de la

correa dentada

Árboles de levas

Correa dentada

Bomba de líquido refrigerante

Malla dorsal

de poliamida

Ramales de acciona-

miento en fibra de vidrioMalla cobertora

de poliamida

Material básico

de goma

S316_162

S316_236

Cigüeñal

Page 15: Manual Vw Tdi 2.0

15

Bomba en tándem

Bomba de vacío

La culata nueva ha conducido a que se hiciera un nuevo diseño para la bomba en tándem.

La bomba en tándem consta de la bomba de vacío y la bomba de combustible. Es accionada por el árbol de levas de admisión.

La bomba de vacío consta de un rotor alojado fuera del centro y una aleta móvil de material plástico, que separa la bomba de vacío en dos cámaras.La aleta modifica continuamente su posición respondiendo al movimiento giratorio del rotor. De esa forma una cámara crece y la otra disminuye.

S316_022

S316_122 S316_120

Por el lado aspirante se aspira el aire del sistema de vacío, que por el lado impelente es enviado a la culata a través de una válvula titilante. La bomba de vacío recibe aceite lubricante a través de un conducto que va hacia la culata. El aceite se utiliza para lubricar el rotor y para el sellado de refino de la aleta con respecto a la carcasa de la bomba.

Rotor

AletaAire aspirado

Aire comprimido

Salida de aire

hacia la culata

(válvula titilante)

Entrada de aire del

sistema de vacío

Rotor

Aleta

Lado impelente

Lado aspirante

Bomba de vacío Bomba de combustible

Conducto

de aceite

Page 16: Manual Vw Tdi 2.0

16

Mecánica del motor

Bomba de combustible

Retorno al depósito

Alimentación proce-

dente del depósito

Válvula reguladora de presión

alimentación de combustible

Válvula reguladora

de presión retorno

de combustible

Tamiz

Retorno de los

inyectores bomba

Alimentación hacia

los inyectores bomba

S316_124

La bomba de combustible trabaja según el principio de una bomba de engranajes interiores. El funcionamiento de la aspiración y elevación del combustible se representa con el movimiento de la cantidad parcial marcada en rojo, que se va desplazando de una imagen gráfica a la otra.La presión del combustible es mantenida estable por medio de la válvula reguladora de presión en el conducto de alimentación.

Alcanza 11,5 bares como máximo al girar el motor a un régimen de 4.000 rpm.La válvula reguladora de presión en el retorno mantiene el combustible a una presión de aprox. 1 bar. De esa forma se establecen relaciones más uniformes de las fuerzas en las electroválvulas de los inyectores bomba.

S316_126 S316_128

Page 17: Manual Vw Tdi 2.0

17

Inyector bomba

Para el motor TDI de 2,0 l con culata de 4 válvulas se ha desarrollado más a fondo el sistema del inyector bomba.

Características del inyector bomba:

● diseño esbelto y compacto,● fijación a la culata por medio de dos tornillos,● una mayor presión de inyección a régimen de

carga parcial● freno del émbolo de evasión para reducir la

sonoridad de la inyección,● apoyo cónico de nuevo diseño para el

inyector bomba en la culata.

Localización

El inyector bomba se implanta en la culata. Va dispuesto de forma vertical y central, directamente por encima de la cámara de combustión del pistón.

S316_144

S316_158

Fijación

El inyector bomba se fija por medio de dos tornillos. Con esta unión a rosca, casi exenta de esfuerzos transversales, se reduce la transmisión de la sonoridad física interior del inyector bomba hacia la culata.

Tornillos de fijación

Page 18: Manual Vw Tdi 2.0

18

Mecánica del motor

Freno del émbolo de evasión

El émbolo de evasión se encuentra entre la bomba y el inyector y se encarga de gestionar la dosificación y duración de la preinyección.Para reducir la sonoridad de la inyección se implanta un freno para el émbolo de evasión en el inyector bomba. En el sistema de inyectores bomba se produce sonoridad debida a:

● la generación y degradación muy pronuncia-das en la cámara de alta presión,

● la generación de efectos de cavitación después de degradarse la presión

● y el tope mecánico de:-émbolo de evasión,-aguja de válvula,-aguja de tobera.

Una corrección eficaz y correspondientemente practicable para reducir la sonoridad consiste en frenar el émbolo de evasión antes de que alcance su tope mecánico, implantando así el «freno del émbolo de evasión».

Para frenar el émbolo de evasión se procede a reducir la presión hidráulica ejercida sobre éste antes de que alcance su tope mecánico.

S316_174

S316_060

Asiento cónico

El asiento cónico de nuevo diseño para el inyector bomba en la culata permite centrar éste de forma óptima. El nuevo concepto de estanqueidad entre el inyector y la culata ha sido modificado de lo que era un asiento plano con arandela de estanqueidad, ahora en un asiento cónico.

De esa forma se eliminan la junta de protección térmica y el anillo tórico inferior que se montaban hasta ahora.

S316_064

Asiento

cónico

Culata

S316_060

Émbolo de evasión

Page 19: Manual Vw Tdi 2.0

19

Como freno del émbolo de evasión se entiende aquí el cilindro guía para el émbolo de evasión, dotado de tres superficies aplanadas (triplanicie) y un borde de control.Antes de efectuar el movimiento de evasión, este émbolo se encuentra en estado cerrado.

Funcionamiento

Inmediatamente después de iniciar el movimiento descendente queda aplicada la alta presión al diámetro mayor del émbolo de evasión, con lo cual posibilita un final rápido del ciclo de preinyección.

En cuanto el cilindro guía llega al borde de control a través de las tres superficies planas se cierra la alimentación hacia la cámara de presión del émbolo de evasión. Esto reduce instantáneamente la presión en el diámetro mayor. El émbolo de evasión asienta de ese modo más lentamente y se reduce la sonoridad de su llegada a tope.

Cilindro guía del

émbolo de evasión

Borde de control

Cuerpo del inyector

bomba

Émbolo de evasión

Diámetro mayor del

émbolo de evasión

S316_090

S316_092

S316_094

Triplanicie

Cámara de presión del

émbolo de evasión

Page 20: Manual Vw Tdi 2.0

20

Gestión del motor

Estructura del sistema

Sensores

G70 Medidor de la masa de aire

G28 Sensor de régimen del motor

G40 Sensor Hall

G62 Sensor de temperatura del líquidorefrigerante

G83 Sensor de temperatura del líquidorefrigerante a la salida del radiador

F Conmutador de luz de freno F47 Conmutador de pedal de

freno para GRA

G79 Sensor 1 para posición del pedal acelerador

G185 Sensor 2 para posición del pedal acelerador

J248 Unidad de control para sistemade inyección directa diésel

G81 Sensor de temperatura del combustible

G42 Sensor de temperatura del aire aspirado

G476 Sensor de posición del embrague

G31 Sensor de presión de sobrealimentación

CAN-Bus de datos

Terminal paradiagnósticos

Page 21: Manual Vw Tdi 2.0

21

Actuadores

J17 Relé de bomba de combustibleG6 Bomba de combustible

N240 Válvula para inyector bomba, cilindro 1N241 Válvula para inyector bomba, cilindro 2N242 Válvula para inyector bomba, cilindro 3N243 Válvula para inyector bomba, cilindro 4

Bloque de válvulas electromagnéticas con:N18 Válvula para recirculación de gases de escapeN345 Válvula de conmutación para radiador,

recirculación de gases de escapeN75 Electroválvula para limitación de la presión

de sobrealimentación

J293 Unidad de control para ventilador del líquido refrigerante

V7 Ventilador para líquido refrigeranteV35 Ventilador derecho para líquido refrigerante

J370 Unidad de control para excitación de bujíasQ10 Bujía de precalentamiento 1Q11 Bujía de precalentamiento 2Q12 Bujía de precalentamiento 3Q13 Bujía de precalentamiento 4

V157 Motor para chapaleta en el colector de admisión

S316_110

Page 22: Manual Vw Tdi 2.0

22

Gestión del motor

Unidades de control en el CAN-Bus de datos

J104 Unidad de control para ABS con ESPJ217 Unidad de control para cambio automáticoJ234 Unidad de control para airbagJ248 Unidad de control para sistema de

inyección directa diéselJ285 Unidad de control con unidad indicadora en

el cuadro de instrumentosJ519 Unidad de control para red de a bordoJ527 Unidad de control para electrónica de

la columna de direcciónJ533 Interfaz de diagnosis para bus de datosJ743 Mecatronic para cambio DSG

El esquema representado abajo muestra la integración de la unidad de control para sistema de inyección directa diésel J248 en la estructura del CAN-Bus de datos del vehículo.

A través del CAN-Bus de datos se transmite información entre las unidades de control.Por ejemplo, la unidad de control para sistema de inyección directa diésel recibe la señal de velocidad procedente del sensor de régimen a través de la unidad de control para ABS.

Codificación de colores / leyenda

= CAN-Bus Tracción

= CAN-Bus Confort

= CAN-Bus Infotenimiento

J104J217

J234

J248

J285

J519

J527

J533

J743

S316_220

Page 23: Manual Vw Tdi 2.0

23

Sensor de régimen del motor G28

Efectos en caso de ausentarse la señal

S316_036

S316_040

Polo NortePolo Sur

Si se avería el sensor de régimen del motor, el motor sigue funcionando en marcha de emergencia. El régimen del motor se limita en ese caso a revoluciones comprendidas entre las 3.200 rpm y las 3.500 rpm.

Aplicaciones de la señal

Con la señal del sensor de régimen del motor, la unidad de control del motor detecta el régimen de revoluciones del motor y la posición exacta del cigüeñal. Con esta información calcula la cantidad y el comienzo de la inyección.

Sensor de régimendel motor G28

Retén

La brida de estanqueidad del cigüeñal por el lado del volante está combinada con la rueda generatriz de impulsos para el régimen del motor. El retén en la brida de estanqueidad es de politetrafluoretileno (PTFE).

El sensor de régimen del motor es un sensor por efecto de Hall. Va atornillado en la carcasa de la brida de estanqueidad del cigüeñal. La rueda generatriz de impulsos se encuentra encajada en posición exacta sobre la brida del cigüeñal.

La rueda generatriz de impulsos está compuesta por un anillo de acero, sobre el cual se aplica una mezcla de gomas específicas.En esta mezcla de gomas está contenida una gran cantidad de virutas de metal, magnetizadas alternadamente hacia los polos Norte y Sur.Como marcas de referencia para el sensor de régimen del motor hay en la rueda generatriz dos zonas más anchas con magnetización polar Norte.De ahí resulta una rueda generatriz de 60-2-2 impulsos.

Page 24: Manual Vw Tdi 2.0

24

Gestión del motor

Sensor Hall G40

S316_044

S316_046

Efectos en caso de ausentarse la señal

Si se ausenta esta señal se emplea la señal del sensor de régimen del motor. El arranque del motor puede tardar un poco más en ese caso, porque no se reconoce de inmediato la posición del árbol de levas y, por tanto, la asignación de los cilindros correspondientes.

Aplicaciones de la señal

Con ayuda de la señal del sensor Hall se detecta la posición exacta del árbol de levas con respecto al cigüeñal durante la fase de arranque del motor. En combinación con la señal del sensor de régimen del motor G28 se sabe cuál es el cilindro que se encuentra en PMS de encendido.

PMS cilindro 4 PMS cilindro 3

PMS cilindro 1

PMS cilindro 2

El sensor Hall va fijado a la culata, por debajo del árbol de levas de admisión. Explora los dientes de una rueda generatriz de impulsos para arranque rápido, con cuya ayuda se detecta la posición del árbol de levas.

La rueda generatriz de impulsos en el árbol de levas es de nuevo diseño. En combinación con el sensor Hall G40 (árbol de levas) resulta de ahí una función de marcha de emergencia, con la cual es posible que el motor siga en funcionamiento incluso si se avería el sensor de régimen del motor.

Sobre la circunferencia de la rueda generatriz de impulsos hay 4 segmentos con las anchuras de 6°, 12°, 18° y 24° ángulo del árbol de levas para la asignación a los cilindros. Un segmento más, con una longitud de 45° ángulo del árbol de levas se utiliza para la asignación de los cilindros en la marcha de emergencia.

Page 25: Manual Vw Tdi 2.0

25

Función de marcha de emergencia

Imagen de la señal del sensor Hall G40 (árbol de levas) y del sensor de régimen del motor G28 en funcionamiento normal

Imagen de la señal del sensor Hall G40 (árbol de levas) y del sensor de régimen del motor G28 en marcha de emergencia

S316_048

S316_050

En contraste con los motores TDI anteriores, este motor sigue en funcionamiento si se avería el sensor de régimen del motor o si transmite señales no plausibles.

Para la de función de marcha de emergencia, la unidad de control del motor analiza solamente los flancos ascendentes de los segmentos de la señal del sensor Hall, porque debido a las vibraciones que se producen durante el proceso de la puesta en marcha la unidad de control del motor detecta demasiados flancos de segmentos y éstos sólo son difícilmente asignables. Para la detección de PMS del cilindro 3 se utiliza como marca de referencia el segmento de 45° de longitud.

En marcha de emergencia:

● se limita el régimen del motor a revoluciones comprendidas entre las 3.200 rpm y 3.500 rpm,● se limita la cantidad inyectada,● se necesita más tiempo para el proceso de la puesta en marcha.

18° AL 45° AL 6° AL 24° AL 12° AL 18° AL

18° AL 45° AL 6° AL 24° AL 12° AL 18° AL

PMS1 PMS3 PMS4 PMS2 PMS1

PMS1 PMS3 PMS4 PMS2 PMS1

Vuelta del árbol de levas

Vuelta del cigüeñal

Page 26: Manual Vw Tdi 2.0

26

Sensor de posición del embrague G476

El sensor de posición del embrague va fijado por encastre elástico a la bomba de embrague. Se utiliza para detectar que el pedal de embrague ha sido accionado.

Aplicaciones de la señal

Estando accionado el embrague:

● se desactiva el programador de velocidad de crucero y

● se reduce por corto tiempo la cantidad inyectada, impidiéndose así un tironeo delmotor durante el ciclo de cambio de marcha.

Estructura

La bomba de embrague va fijada al caballete soporte por medio de una unión tipo bayoneta.

Al ser accionado el pedal de embrague, el empujador se encarga de desplazar el émbolo en la bomba.

Pedal de embrague

con sensor de posición

Sensor de posición

del embrague

Émbolo con

imán permanente

Empujador

Recorrido del pedal

Gestión del motor

S316_191

S316_194

Caballete soporte

Bomba de

embrague

Page 27: Manual Vw Tdi 2.0

27

Pedal de embrague no accionado

Al no estar accionado el pedal de embrague, el empujador y el émbolo se encuentran en posición de reposo.El analizador electrónico en el sensor de posición del embrague transmite una señal de tensión para la unidad de control del motor, que se encuentra 2 voltios por debajo de la tensión de alimentación (tensión de batería).A raíz de ello, la unidad de control del motor reconoce que no está accionado el pedal de embrague.

Pedal de embrague accionado

Al estar accionado el pedal de embrague, el empujador se desplaza conjuntamente con el émbolo en dirección hacia el sensor de posición del embrague. En el extremo anterior del émbolo va fijado un imán permanente.En cuanto el imán permanente sobrepasa el punto de conmutación del sensor Hall, el analizador electrónico ya sólo transmite una señal de tensión de 0 a 2 voltios para la unidad de control del motor, la cual reconoce de esa forma que se encuentra accionado el pedal de embrague.

Efectos en caso de ausentarse la señal

Si se avería el sensor de posición del embrague se suprime la función del programador de velocidad de crucero y pueden producirse tironeos del motor durante el ciclo de cambio de marcha.

Así funciona

Émbolo con

imán permanenteEmpujador

Punto de conmuta-

ción (sensor Hall)

S316_224

Sensor de posición

del embrague

Émbolo con

imán permanenteEmpujador

Punto de conmuta-

ción (sensor Hall)

S316_240

Sensor de posición

del embrague

Señal de tensión para la

unidad de control del motor

Señal de tensión para la

unidad de control del motor

Page 28: Manual Vw Tdi 2.0

28

Sensores de posición del acelerador G79 y G185

Los dos sensores de posición del acelerador forman parte del módulo pedal acelerador y funcionan sin contacto físico, en forma de sensores inductivos.

Aplicaciones de la señal

La unidad de control del motor utiliza las señales de los sensores de posición del acelerador para calcular la cantidad de combustible a inyectar.

Pedal acelerador con los

sensores de posición

Gestión del motor

S316_193

El motor ya sólo funciona a régimen de ralentí acelerado (1.500 rpm como máximo) y deja de reaccionar ante los gestos del pedal acelerador.

Efectos en caso de ausentarse la señal

El sistema establece primeramente el control al ralentí. Si en el curso de un plazo específico para el chequeo se detecta el segundo sensor en la posición de ralentí se vuelve a posibilitar la circulación del vehículo.

Si el conductor pide plena carga, el régimen sólo aumenta lentamente.

Ventajas

- Sin desgaste, porque los sensores trabajan sin contactos físicos

- No requiere ajuste básico para el kick-down,por formar parte del módulo pedal acelerador y no surgir por ello toleranciasentre el pedal acelerador y la carrocería

Si se averían uno o ambos sensores se inscribe una avería en la memoria y se enciende el testigo de avería para el acelerador electrónico.Las funciones de confort, tales como el programador de velocidad de crucero o la regulación del par de inercia del motor, se desactivan en ese caso.

Si se avería un sensor Si se averían ambos sensores

Page 29: Manual Vw Tdi 2.0

29

Bobinas de

excitación

Zona de las

bobinas de recepción

Los componentes mecánicos del módulo pedal acelerador transforman el movimiento angular del pedal en un movimiento rectilíneo.

Una plaquita de metal va instalada de modo que, al ser accionado el pedal acelerador, se desplace de forma rectilínea con una pequeña distancia con respecto a la pletina.

Componentes

mecánicos

Plaquita de

metal

Pletina

S316_208S316_210

Estructura

El módulo pedal acelerador consta del propio pedal, el tope para el pedal, los componentes mecánicos para reenviar el sentido del movimiento y los dos sensores de posición del pedal acelerador G79 y G185.

Los sensores van integrados en una pletina y constan cada uno de una bobina de excitación, tres bobinas receptoras, así como un módulo electrónico de control y un analizador electrónico. Por motivos de seguridad se hace funcionar a ambos sensores de forma independiente entre sí.

Pedal acelerador

Pletina

Componentes

mecánicos

Cubierta

Plaquita de metal

S316_201

Pedal acelerador no accionado Pedal acelerador accionado

Pletina

Componentes

mecánicos

Plaquita de

metal

Page 30: Manual Vw Tdi 2.0

30

Gestión del motor

La electrónica del pedal, alimentada con una corriente de 5 V, genera una tensión alterna de alta frecuencia, en virtud de la cual se engendra un campo electromagnético alterno en torno a la bobina de excitación. Este campo electro-magnético alterno actúa sobre una plaquita móvil de metal. Con motivo de esta operación se engendra otro campo electromagnético alterno más en torno a la plaquita.

Este campo electromagnético supeditado al lugar en que se engendra, actúa sobre las bobinas de recepción e induce allí una señal alterna correspondiente.

El analizador electrónico rectifica las tensiones alternas de las tres bobinas de recepción, las amplifica y pone en relación mutua las tensiones de salida de las tres bobinas de recepción. Después de analizar las tensiones se transforma el resultado en una señal de tensión lineal, la cual es transmitida a la unidad de control del motor.

La magnitud de la tensión alterna inducida depende primordialmente de la posición momentánea de la plaquita de metal. Según su posición se produce una sobrecobertura variable de la plaquita de metal con respecto a las bobinas de recepción.

La sobrecobertura alcanza su magnitud mínima en la posición de ralentí, con lo cual también es mínima la tensión alterna inducida.

En la posición de plena carga o bien de kick-down en las versiones con cambio automático, la sobrecobertura alcanza su magnitud máxima y, por tanto, también es máxima la tensión alterna inducida.

Bobinas de

excitación

Plaquita de metal

Bobinas de

recepción

S316_246

J248 Unidad de control para sistema

de inyección directa diésel

Plaquita de metal en

posición de ralentí

Campo electromagnético

alterno, bobina de

excitación

Así funciona

Análisis

Recorrido del pedal acelerador

Par deseado por el conductor

Zona de kick-down

Tope de plena carga

Tope final del

pedal acelerador

Analizador

electrónico

Campo electromagnético

alterno, plaquita de metal

Plaquita de metal en

posición de plena carga

S316_242

S316_244

Tens

ión

de s

eñal

en

volti

os

Page 31: Manual Vw Tdi 2.0

31

Sistema de recirculación de gases de escape

En la recirculación de gases de escape se hace recircular una parte de los gases de escape hacia el lado de admisión y esta parte se vuelve a introducir en la cámara de combustión. En virtud de que los gases de escape contienen muy poco oxígeno contribuyen a reducir las temperaturas punta de la combustión, y con ellas también las presiones máximas de la combustión. Esto se traduce en una reducción de las emisiones de óxidos nítricos.

La cantidad de gases que se hacen recircular hacia la cámara de combustión depende de:

- el régimen del motor,- la cantidad inyectada,- la masa de aire aspirada,- la temperatura del aire aspirado y- la presión del aire.

La recirculación de gases de escape está sometida a influencia por parte de la unidad de control del motor a través de una familia de curvas características.

G28 Sensor de régimen del motor

G62 Sensor de temperatura del

líquido refrigerante

G70 Medidor de la masa de aire

J248 Unidad de control para sistema de

inyección directa diésel

N18 Válvula para recirculación de

gases de escape

N345 Válvula de conmutación para

radiador, recirculación de gases

de escape

V157 Motor para chapaleta en el colector

de admisión

A Válvula de recirculación de gases

de escape

B Depresor

C Radiador para recirculación

de gases de escape

D Bomba de vacío

E Catalizador

G28 G70 G62

N18

J248

N345

D

E

A

B

V157

C

S316_112

Bloque de

electroválvulas

Page 32: Manual Vw Tdi 2.0

32

Gestión del motor

Radiador conmutable para recirculación de gases de escape

S316_114

Radiador para recirculaciónde gases de escapeEmpalmes para líquido refrigerante

Depresor

El motor TDI de 2,0 l / 103 kW tiene un radiador conmutable para recirculación de gases de escape.

procedente delcolector de escape

hacia la válvula de recircu-lación de gases de escape

Principio de funcionamiento de la refrigeración de gases de escape

Con la refrigeración de los gases de escape realimentados se reduce la temperatura de la combustión y resulta posible hacer recircular una mayor cantidad de gases de escape. De esta forma se generan menores cantidades de óxidos nítricos.

Se utiliza un radiador conmutable para la recirculación de gases de escape, con objeto de que el motor y el catalizador alcancen rápidamente su temperatura de servicio. Sólo después de alcanzar la temperatura de servicio es cuando se procede a refrigerar los gases de escape recirculados.

Page 33: Manual Vw Tdi 2.0

33

Refrigeración de gases de escape desactivada

Hasta una temperatura del líquido refrigerante de 50 °C la compuerta de escape se mantiene abierta y los gases de escape salen evadiendo el radiador.El catalizador y el motor alcanzan de ese modo su temperatura de servicio al cabo de corto tiempo. Las emisiones de hidrocarburos, monóxido de carbono y partículas se reducen con este procedimiento.

Refrigeración de gases de escape activada

La válvula de conmutación cierra la compuerta de escape a partir del momento en que el líquido refrigerante alcanza una temperatura de 50 °C. Los gases recirculados pasan ahora por el radiador. Esto contribuye a seguir reduciendo los óxidos nítricos.

S316_118S316_116

Compuerta

de escape

Radiador

Válvula de conmut-

ación para radia-

dor de recirculación

de gases de escape

N345

Válvula de recircula-

ción de gases de

escape

Compuerta

de escape

Radiador

Unidad de control

del motorVálvula para recirculación

de gases de escape N18

DepresorDepresorVálvula de conmut-

ación para radia-

dor de recirculación

de gases de escape

N345

Bloque de electroválvulas

Page 34: Manual Vw Tdi 2.0

34

Gestión del motor

Sistema de precalentamiento

En el motor TDI de 2,0 l / 103 kW se implanta un nuevo sistema de precalentamiento.

El nuevo sistema de precalentamiento es una versión para arranque rápido del motor diésel. Posibilita un arranque instantáneo «al estilo del motor de gasolina» en cualquier condición climatológica, sin largos períodos de precalentamiento.En combinación con el inyector de 6 taladros, que posee un chorro de inyección configurado de forma especial como «chorro de ignición», el nuevo sistema de precalentamiento ofrece notables cualidades de arranque y marcha en frío.

S316_074

Ventajas del nuevo sistema de precalentamiento:

● Arranque seguro a temperaturas de hasta 24 °C bajo cero.

● Tiempo de caldeo extremadamente breve. En un lapso de 2 segundos se alcanzan 1.000 °C en la bujía de precalentamiento.

● Temperatura gestionable para incandescenciade pre- y postcalentamiento.

● Susceptible de autodiagnosis.● Compatible con EOBD.

Estructura del sistema

Q13 bujía de precalentamiento 4

G28 Sensor de

régimen del motor

G62 Sensor de tempera-

tura del líquido

refrigerante

J248 Unidad de control para

sistema de inyección directa diésel

J519 Unidad de control

para red de a bordo

J370 Unidad de control para

excitación de las bujías

de precalentamiento

Q12 bujía de precalentamiento 3

Q11 Bujía de precalentamiento 2

Q10 Bujía de precalentamiento 1

K29 Testigo luminoso de

precalentamiento

J285 Unidad de control con

unidad indicadora en el

cuadro de instrumentos

Page 35: Manual Vw Tdi 2.0

35

Unidad de control para excitación de las bujías de precalentamiento J370

La unidad de control para excitación de las bujías de precalentamiento recibe información sobre la función de incandescencia de las bujías a través de la unidad de control del motor. El momento y la duración de la incandescencia, la frecuencia de excitación y la proporción de período para las bujías de precalentamiento vienen determinados por tanto, por la unidad de control del motor.

Las funciones implementadas en la unidad de control para precalentamiento automático son:

1. Excitar las bujías de precalentamiento con una señal PWM (PWM = modulada en anchura de los impulsos)

● Nivel PWM-Low = Bujía de precalentamiento con corriente aplicada● Nivel PWM-High = Bujía de precalentamiento sin corriente aplicada

2. Protección integrada mediante desconexión en caso de exceso de tensión y exceso de temperatura

3. Vigilancia selectiva de las bujías de precalentamiento

● Detección de corriente excesiva y corto en el circuito de precalentamiento● Desactivación por exceso de corriente en el circuito de precalentamiento● Diagnosis de la electrónica de precalentamiento● Detección de un circuito de precalentamiento abierto en caso de averiarse una de las bujías

S316_218

= Señal de control de unidad de control del motor

= Señal de diagnosis hacia la unidad de

control del motor

J317 = Relé para alimentación de tensión

J248 = Unidad de control del motor

J370 = Unidad de control para excitación de las

bujías de precalentamiento

Q10-Q13= Bujía de precalentamiento con espiga

de incandescenciaS316_080

Page 36: Manual Vw Tdi 2.0

36

Gestión del motor

Bujías de precalentamiento

La bujía de precalentamiento es un componente destinado a respaldar el arranque en frío. Con la energía térmica generada eléctricamente e introducida en la cámara de combustión crea condiciones ideales para la ignición del combustible inyectado.

El funcionamiento de las bujías de precalentamiento no se debe probar aplicando 12 voltios, porque con ello se funde la bujía.

Perno terminal

de conexión

Cuerpo de

la bujía

Barra

calefactora

Espira de

calefacción

Espira de

regulación

Bujía de precalen-

tamiento con com-

binación acortada

de espiras

Bujía de preca-

lentamiento con-

vencional

Debido a la implantación de 4 válvulas por cilindro en la culata resultan muy limitadas las posibilidades para la implantación de la bujía de precalentamiento. Por ese motivo estas bujías de precalentamiento son versiones muy esbeltas.

La bujía de precalentamiento consta del cuerpo, la barra de calefacción con espira calefactora y espira de regulación, así como del perno terminal de conexión.

Las bujías de precalentamiento trabajan con una tensión nominal de 4,4 voltios. En comparación con las bujía de precalentamiento metálicas convencionales autorreguladas, la combinación de la espira de regulación y espira de calefacción se ha acortado a un tercio aproximadamente. De esa forma se ha logrado reducir el tiempo de precalentamiento a 2 segundos.

Principio de funcionamiento del «chorro de ignición»

El motor TDI de 2,0 l tiene un inyector de 6 agujeros. Uno de los agujeros de inyección está ejecutado de modo que produzca un «chorro de ignición» con una distancia óptima con respecto a la bujía de precalentamiento.Con este «chorro de ignición» mejoran las cualidades de arranque y marcha en frío del motor.

S316_190

S316_166

S316_037

Inyector

bomba

Bujía de

precalen-

tamiento

Chorro de ignición

Page 37: Manual Vw Tdi 2.0

37

Precalentamiento

Después de conectar el encendido se activa el sistema de precalentamiento si la temperatura se halla por debajo de los 14 °C.

A esos efectos, la unidad de control del motor transmite una señal PWM a la unidad de control para excitación de las bujías de precalentamiento. A raíz de ello, esta unidad de control se encarga de excitar a su vez las bujías de precalentamiento con una señal modulada en anchura de los impulsos (PWM).

En la primera fase del precalentamiento se aplica a las bujías una tensión de aprox. 11 voltios durante 2 segundos como máximo. Después de ello, la unidad de control para excitación de las bujías de precalentamiento les aplica la tensión que es necesaria para el estado operativo en cuestión.

Postcalentamiento por incandescencia

Después de todo arranque del motor se produce un ciclo de postcalentamiento, para reducir la sonoridad de la combustión y las emisiones de hidrocarburos.

La excitación de las bujías de precalentamiento es corregida por la unidad de control del motor en función de la carga y el régimen.

Estando el motor en funcionamiento, la bujía de precalentamiento es enfriada por el movimiento del aire durante el intercambio de gases. Aparte de ello, la temperatura de la bujía desciende a medida que aumenta el régimen de revoluciones, si se mantiene constante la tensión aplicada a la bujía de precalentamiento.

Para compensar estos efectos de enfriamiento, la unidad de control del motor aumenta la tensión orientándose por una familia de características compuestas por los parámetros de carga y régimen.

A partir de una temperatura del líquido refrigerante de 20 °C se deja de practicar el postcalentamiento. Al cabo de 3 minutos como máximo se interrumpe el postcalentamiento.

Temperatura [°C]

Tiempo [s]

Tensión [V]

S316_148

Page 38: Manual Vw Tdi 2.0

38

Esquema de funciones

G31 Sensor de presión de sobrealimentación

G42 Sensor de temperatura del aire aspirado

G79 Sensor de posición del pedal acelerador

G185 Sensor -2- de posición del pedal acelerador

J370 Unidad de control para excitación de las

bujías de precalentamiento

J248 Unidad de control para sistema de inyección

directa diésel

J317 Relé para alimentación de tensión BNE 30

N240 Válvula para inyector bomba, cilindro 1

N241 Válvula para inyector bomba, cilindro 2

N242 Válvula para inyector bomba, cilindro 3

N243 Válvula para inyector bomba, cilindro 4

J248

V157

BNE 30

BNE 15

S

S S S S

J370

Q10 Q11 Q12 Q13

N240 N241 N242 N243 G42 G31 G185 G79

Q10 Bujía de precalentamiento 1

Q11 Bujía de precalentamiento 2

Q12 Bujía de precalentamiento 3

Q13 Bujía de precalentamiento 4

S Fusible

V157 Motor para chapaleta en el colector de admisión

J317

Codificación de colores / leyenda= Señal de entrada

= Señal de salida

= Positivo

= Masa

= CAN-Bus de datos

Page 39: Manual Vw Tdi 2.0

39

S316_178

J329S S

S S S

J49

G6

G70

N18N345 N75

G476

F47 F

G83G81G133G62G40G28

A - CAN-Bus Low

B - CAN-Bus High

F Conmutador de luz de freno

F47 Conmutador de pedal de freno para GRA

G6 Bomba de combustible

G28 Sensor de régimen del motor

G70 Medidor de la masa de aire

G40 Sensor Hall

G62 Sensor de temperatura del líquido refrigerante

G81 Sensor de temperatura del combustible

G83 Sensor de temperatura del líquido refrigerante

a la salida del radiador

G133 Sensor de composición del combustible

G476 Sensor de posición del embrague

J49 Relé para electrobomba de combustible II

J293 Unidad de control para ventilador del

líquido refrigerante

J329 Relé para alimentación de tensión BNE 15

N18 Válvula para recirculación de gases de escape

N75 Electroválvula para limitación de la presión de

sobrealimentación

N345 Válvula de conmutación para radiador,

recirculación de gases de escape

V7 Ventilador para líquido refrigerante

V35 Ventilador derecho para líquido refrigerante

V35V7J293

Page 40: Manual Vw Tdi 2.0

40

Servicio

Designación Herramienta Aplicación

T10163Extractor

Para desmontar los inyectores bomba en combinación con el martillo de inercia T10133/3

T10164/1Manguito de montaje

Para desmontar y montar los anillos toroidales

T10164/2Manguito de montaje

Para desmontar y montar los anillos toroidales

T10134Útil de montaje

Para montar la brida de estanqueidad con rueda generatriz de impulsos

Nuevas herramientas especiales

S316_102

S316_066

S316_070

S316_068

Page 41: Manual Vw Tdi 2.0

41

1. El módulo portasombreretes del motor TDI de 2,0 l

a) consta de dos componentes: el elemento superior del módulo portasombreretes y el inferior. Ambos elementos son de una aleación hipereutéctica de aluminio-silicio.

b) es una pieza compacta de fundición a presión en aluminio.

c) se fabrica en acero bonificado, en un procedimiento de forja en estampa.

2. ¿Qué características implantadas en el diseño de la culata contribuyen a optimizar la formación de la mezcla en el cilindro?

a) La implantación simétrica de dos válvulas de admisión y dos de escape; el inyector bomba en posición central vertical, dispuesto directamente por encima de la cámara de combustión del pistón, son factores que contribuyen a una buena formación de la mezcla.

b) La estrella de implantación de válvulas, como terminal de los conductos de intercambio de gases, ha sido decalada a 45° con respecto al eje geométrico longitudinal del motor. De esa forma se consiguen óptimas condiciones de flujo y una buena formación de la mezcla.

c) La acción conjunta del inyector que se asoma de forma inclinada hacia la cámara de combustión y la culata de tres válvulas (con dos válvulas de admisión y una de escape, estando configurados los conductos de admisión en forma de conductos de turbulencia espiroidal) respalda el mezclado intenso del aire con el combustible inyectado.

3. La fijación del inyector bomba se realiza:

a) mediante dos tornillos.

b) mediante tacos tensores.

c) por medio del concepto de uniones «tornillo en tornillo».

d) mediante un taco tensor y un tornillo.

Pruebe sus conocimientos

Page 42: Manual Vw Tdi 2.0

42

Pruebe sus conocimientos

4. El motor TDI de 2,0 l / 103 kW tiene un radiador conmutable para recirculación de gases de escape. ¿Cuál de las siguientes afirmaciones es correcta?

a) A partir de una temperatura del líquido refrigerante de 50 °C los gases de escape recirculados pasan a través del radiador conmutable para recirculación de gases de escape. La temperatura de la combustión disminuye y es posible recircular una mayor masa de gases de escape. Durante esa operación se reducen los óxidos nítricos.

b) El caudal de los gases de escape es guiado a razón de dos terceras partes hacia el lado exterior y una tercera parte hacia el lado interior del radiador de gases de escape. Este principio posibilita una refrigeración uniforme de los gases de escape.

c) Hasta una temperatura del líquido refrigerante de 50 °C se conducen los gases de escape evadiendo el radiador. El catalizador y el motor alcanzan de esa forma su temperatura de servicio en un tiempo breve.Las emisiones de hidrocarburos, monóxido de carbono y de partículas se reducen a raíz de ello.

5. ¿Qué inyectores se implantan en el motor TDI de 2,0 l / 103 kW?

a) Inyectores de 7 agujeros.

b) Inyectores de 5 agujeros.

c) Inyectores de 6 agujeros.

6. ¿Qué propiedades tiene el sistema de precalentamiento del motor TDI de 2,0 l / 103 kW?

a) Tiempo de calentamiento extremadamente breve. En un lapso de 2 segundos se alcanzan 1.000 °C en la bujía de precalentamiento.

b) Se produce un ciclo de precalentamiento en cada arranque del motor.

c) Las bujías de precalentamiento trabajan al mismo tiempo como bujías de encendido.

Page 43: Manual Vw Tdi 2.0

43

Soluciones

1.) b

2.) a, b

3.) a

4.) a, c

5.) c

6.) a

Page 44: Manual Vw Tdi 2.0

316

© VOLKSWAGEN AG, Wolfsburg, VK-36 Service Training

Reservados todos los derechos. Sujeto a modificaciones técnicas.

000.2811.37.60 Estado técnico: 08/03

❀ Este papel ha sido elaborado con

celulosa blanqueada sin cloro.